Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 204, Numéro 4, 2010
Page(s) 267 - 272
Section Les chimiokines : de nouveaux messagers communs entre système nerveux et système immunitaire
DOI https://doi.org/10.1051/jbio/2010020
Publié en ligne 10 janvier 2011
  • Baggiolini M., Loetscher P., Chemokines in inflammation and immunity. Immunol Today, 2000, 21, 418–420. [CrossRef] [PubMed] [Google Scholar]
  • Bajetto A., Barbero S., Bonavia R., Piccioli P., Pirani P., Florio T., Schettini G., Stromal cell-derived factor-1alpha induces astrocyte proliferation through the activation of extracellular signal-regulated kinases 1/2 pathway. J Neurochem, 2001, 77, 1226–1236. [CrossRef] [PubMed] [Google Scholar]
  • Bajetto A., Bonavia R., Barbero S., Florio T., Schettini G., Chemokines and their receptors in the central nervous system. Front Neuroendocrinol, 2001, 22, 147–184. [CrossRef] [PubMed] [Google Scholar]
  • Clark-Lewis I., Kim K.S., Rajarathnam K., Gong J.H., Dewald B., Moser B., Baggiolini M., Sykes, B.D., Structure-activity relationships of chemokines. J Leukoc Biol, 1995, 57, 703–711. [PubMed] [Google Scholar]
  • Clark-Lewis I., Schumacher C., Baggiolini M., Moser B., Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem, 1991, 266, 23128–23134. [PubMed] [Google Scholar]
  • Clore G.M., Gronenborn A.M., Three-dimensional structures of alpha and beta chemokines. Faseb J, 1995, 9, 57–62. [PubMed] [Google Scholar]
  • Cocchi F., DeVico A.L., Garzino-Demo A., Arya S.K., Gallo R.C., Lusso, P., Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science, 1995, 270, 1811–1815. [CrossRef] [PubMed] [Google Scholar]
  • Ganju R.K., Brubaker S.A., Meyer J., Dutt P., Yang Y., Qin S., Newman W., Groopman J.E., The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem, 1998, 273, 23169–23175. [CrossRef] [PubMed] [Google Scholar]
  • Jones S.A., Moser B., Thelen M., A comparison of post-receptor signal transduction events in Jurkat cells transfected with either IL-8R1 or IL-8R2. Chemokine mediated activation of p42/p44 MAP-kinase (ERK-2). FEBS Lett, 1995, 364, 211–214. [CrossRef] [PubMed] [Google Scholar]
  • Knall C., Young S., Nick J.A., Buhl A.M., Worthen G.S., Johnson G.L., Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J Biol Chem, 1996, 271, 2832–2838. [CrossRef] [PubMed] [Google Scholar]
  • Kofuku Y., Yoshiura C., Ueda T., Terasawa H., Hirai T., Tominaga S., Hirose M., Maeda Y., Takahashi H., Terashima Y., Matsushima K., Shimada I., Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4. J Biol Chem, 2009, 284, 35240–35250. [CrossRef] [PubMed] [Google Scholar]
  • Lazennec G., Richmond A., Chemokines and chemokine receptors : new insights into cancer-related inflammation. Trends Mol Med, 2010, 16, 133–144. [CrossRef] [PubMed] [Google Scholar]
  • Mellado M., Rodriguez-Frade J.M., Aragay A., del Real G., Martin A.M., Vila-Coro A.J., Serrano A., Mayor F., Jr., Martinez A.C., The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol, 1998, 161, 805–813. [PubMed] [Google Scholar]
  • Mellado M., Vila-Coro A.J., Martinez C., Rodriguez-Frade J.M., Receptor dimerization : a key step in chemokine signalling. Cell Mol Biol, 2001, 47, 575–582. [PubMed] [Google Scholar]
  • Meucci O., Fatatis A., Simen A.A., Bushell T.J., Gray P.W., Miller R.J., Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci USA, 1998, 95, 14500–14505. [CrossRef] [Google Scholar]
  • Miller R.J., Rostène W., Apartis E., Banisadr G., Biber K., Milligan E.D., White F.A., Zhang J., Chemokine action in the nervous system. J Neurosci, 2008, 28, 11792–11795. [CrossRef] [PubMed] [Google Scholar]
  • Oberlin E., Amara A., Bachelerie F., Bessia C., Virelizier J.L., Arenzana-Seisdedos F., Schwartz O., Heard J.M., Clark-Lewis I., Legler D.F., Loetscher M., Baggiolini M., Moser B., The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 1996, 382, 833–835. [CrossRef] [PubMed] [Google Scholar]
  • Rostène W., Kitabgi P., Melik-Parsadaniantz S., Chemokines : a new class of neuromodulator ? Nat Rev Neurosci, 2007, 8, 895–903. [CrossRef] [PubMed] [Google Scholar]
  • Rostène W., Melik-Parsadaniantz S., De nouveaux messagers dans le cerveau. Pour la Science, 2008, 369, 66–72. [Google Scholar]
  • Walz D.A., Wu V.Y., de Lamo R., Dene H., McCoy L.E., Primary structure of human platelet factor 4. Thromb Res, 1977, 11, 893–898. [CrossRef] [PubMed] [Google Scholar]
  • Wang J.F., Park I.W., Groopman J.E., Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells : roles of phosphoinositide-3 kinase and protein kinase C. Blood, 2000, 95, 2505–2513. [PubMed] [Google Scholar]
  • Wong M., Fish, E.N., RANTES and MIP-1alpha activate stats in T cells. J Biol Chem, 1998, 273, 309–314. [CrossRef] [PubMed] [Google Scholar]
  • Yoshimura T., Matsushima K., Tanaka S., Robinson E.A., Appella E., Oppenheim J.J., Leonard E.J., Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci USA, 1987, 84, 9233–9237. [CrossRef] [Google Scholar]
  • Zheng J., Thylin M.R., Ghorpade A., Xiong H., Persidsky Y., Cotter R., Niemann D., Che M., Zeng Y.C., Gelbard H.A., Shepard R.B., Swartz J.M, Gendelman H.E., Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol, 1999, 98, 185–200. [CrossRef] [PubMed] [Google Scholar]
  • Zhuang Z.Y., Kawasaki Y., Tan P.H., Wen Y.R., Huang J., Ji R.R., Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of Fractalkine. Brain Behav Immun, 2007, 21, 642–651. [CrossRef] [PubMed] [Google Scholar]
  • Zou Y.R., Kottmann A.H., Kuroda M., Taniuchi I., Littman D.R., Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 1998, 393, 595–599. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.