Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 206, Numéro 2, 2012
Page(s) 87 - 102
Section Célébration du cinquantenaire de la fondation de la Société Française du Tissu Conjonctif
DOI https://doi.org/10.1051/jbio/2012009
Publié en ligne 4 juillet 2012
  • Ades L.C., Holman K.J., Brett M.S., Edwards M.J., Bennetts B., Ectopia lentis phenotypes and the FBN1 gene. Am J Med Genet A, 2004, 126, 284–289. [CrossRef] [Google Scholar]
  • Albig A.R., Schiemann W.P., Fibulin-5 antagonizes vascular endothelial growth factor (VEGF) signaling and angiogenic sprouting by endothelial cells. DNA Cell Biol, 2004, 23, 367–379. [CrossRef] [PubMed] [Google Scholar]
  • Aoyama T., Francke U., Dietz H.C., Furthmayr H., Quantitative differences in biosynthesis and extracellular deposition of fibrillin in cultured fibroblasts distinguish five groups of Marfan syndrome patients and suggest distinct pathogenetic mechanisms. J Clin Invest, 1994, 94, 130–137. [CrossRef] [PubMed] [Google Scholar]
  • Arteaga-Solis E., Gayraud B., Lee S.Y., Shum L., Sakai L., Ramirez F., Regulation of limb patterning by extracellular microfibrils. J Cell Biol, 2001, 154, 275–281. [CrossRef] [PubMed] [Google Scholar]
  • Bax D.V., Bernard S.E., Lomas A., Morgan A., Humphries J., Shuttleworth C.A., Humphries M.J., Kielty C.M., Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. J Biol Chem, 2003, 278, 34605–34616. [CrossRef] [PubMed] [Google Scholar]
  • Bax D.V., Mahalingam Y., Cain S., Mellody K., Freeman L., Younger K., Shuttleworth C.A., Humphries M.J., Couchman J.R., Kielty C.M., Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci, 2007, 120, 1383–1392. [CrossRef] [PubMed] [Google Scholar]
  • Bax D.V., Rodgers U.R., Bilek M.M., Weiss A.S., Cell adhesion to tropoelastin is mediated via the C-terminal GRKRK motif and integrin alphaVbeta3. J Biol Chem, 2009, 284, 28616-28623. [CrossRef] [PubMed] [Google Scholar]
  • Beuren A.J., Apitz J., Harmjanz D., Supravalvular aortic stenosis in association with mental retardation and a certain facial appearance. Circulation, 1962, 26, 1235–1240. [CrossRef] [PubMed] [Google Scholar]
  • Blood C.H., Sasse J., Brodt P., Zetter B.R., Identification of a tumor cell receptor for VGVAPG, an elastin-derived chemotactic peptide. J Cell Biol, 1988, 107, 1987–1993. [CrossRef] [PubMed] [Google Scholar]
  • Bonnet D., Cormier V., Villain E., Bonhoeffer P., Kachaner J., Progressive left main coronary artery obstruction leading to myocardial infarction in a child with Williams syndrome. Eur J Pediatr, 1997, 156, 751–753. [CrossRef] [PubMed] [Google Scholar]
  • Booms P., Pregla R., Ney A., Barthel F., Reinhardt D.P., Pletschacher A., Mundlos S., Robinson P.N., RGD-containing fibrillin-1 fragments upregulate matrix metalloproteinase expression in cell culture: a potential factor in the pathogenesis of the Marfan syndrome. Hum Genet, 2005, 116, 51–61. [CrossRef] [PubMed] [Google Scholar]
  • Booms P., Ney A., Barthel F., Moroy G., Counsell D., Gille C., Guo G., Pregla R., Mundlos S., Alix A.J., Robinson P.N., A fibrillin-1-fragment containing the elastin-binding-protein GxxPG consensus sequence upregulates matrix metalloproteinase-1: biochemical and computational analysis. J Mol Cell Cardiol, 2006, 40, 234–246. [CrossRef] [PubMed] [Google Scholar]
  • Bunton T.E., Biery N.J., Myers L., Gayraud B., Ramirez F., Dietz H.C., Phenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome. Circ Res, 2001, 88, 37–43. [CrossRef] [PubMed] [Google Scholar]
  • Camilleri J.P., Structural approach of vascular aging. Presse Med, 1992, 21, 1184–1187. [PubMed] [Google Scholar]
  • Carta L., Pereira L., Arteaga-Solis E., Lee-Arteaga S.Y., Lenart B., Starcher B., Merkel C.A., Sukoyan M., Kerkis A., Hazeki N., Keene D.R., Sakai L.Y., Ramirez F., Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem, 2006, 281, 8016–8023. [CrossRef] [PubMed] [Google Scholar]
  • Carta L., Wagenseil J.E., Knutsen R.H., Mariko B., Faury G., Davis E.C., Starcher B., Mecham R.P., Ramirez F., Discrete contributions of elastic fiber components to arterial development and mechanical compliance. Arterioscler Thromb Vasc Biol, 2009, 29, 2083–2089. [CrossRef] [PubMed] [Google Scholar]
  • Chaudhry S.S., Gazzard J., Baldock C., Dixon J., Rock M.J., Skinner G.C., Steel K.P., Kielty C.M., Dixon M.J., Mutation of the gene encoding fibrillin-2 results in syndactyly in mice. Hum Mol Genet, 2001, 10, 835–843. [CrossRef] [PubMed] [Google Scholar]
  • Chaudhry S.S., Cain S.A., Morgan A., Dallas S.L., Shuttleworth C.A., Kielty C.M., Fibrillin-1 regulates the bioavailability of TGFbeta1. J Cell Biol, 2007, 176, 355–367. [CrossRef] [PubMed] [Google Scholar]
  • Cherniske E.M., Carpenter T.O., Klaiman C., Young E., Bregman J., Insogna K., Schultz R.T., Pober B.R., Multisystem study of 20 older adults with Williams syndrome. Am J Med Genet A, 2004, 131, 255–264. [CrossRef] [PubMed] [Google Scholar]
  • Chung A.W., Au Yeung K., Sandor G.G., Judge D.P., Dietz H.C., Van Breemen C., Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome. Circ Res, 2007a, 101, 512–522. [CrossRef] [PubMed] [Google Scholar]
  • Chung A.W., Au Yeung K., Cortes S.F., Sandor G.G., Judge D.P., Dietz H.C., Van Breemen C., Endothelial dysfunction and compromised eNOS/Akt signaling in the thoracic aorta during the progression of Marfan syndrome. Br J Pharmacol, 2007b, 150, 1075–1083. [CrossRef] [PubMed] [Google Scholar]
  • Corson G.M., Charbonneau N.L., Keene D.R., Sakai L.Y., Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues. Genomics, 2004, 83, 461–472. [CrossRef] [PubMed] [Google Scholar]
  • Curran M.E., Atkinson D.L., Ewart A.K., Morris C.A., Leppert M.F., Keating M.T., The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell, 1993, 73, 159–168. [CrossRef] [PubMed] [Google Scholar]
  • D’Cruz I.A., Miller R.A., Norman Chevers. A description of congenital absence of pulmonary valves and supravalvular aortic stenosis in the 1840’s. Br Heart J, 1964, 26, 723–725. [CrossRef] [PubMed] [Google Scholar]
  • DaviesCde L., Melder R.J., Munn L.L., Mouta-Carreira C., Jain R.K., andBoucher Y., Decorin inhibits endothelial migration and tube-like structure formation: role of thrombospondin-1. Microvasc Res, 2001, 62, 26–42. [CrossRef] [PubMed] [Google Scholar]
  • Davis E.C., Smooth muscle cell to elastic lamina connections in developing mouse aorta. Role in aortic medial organization. Lab Invest, 1993, 68, 89–99. [PubMed] [Google Scholar]
  • Davis E.C., Immunolocalization of microfibril and microfibril-associated proteins in the subendothelial matrix of the developing mouse aorta. J Cell Sci, 1994, 107, 727–736. [PubMed] [Google Scholar]
  • Davison I.G., Wright G.M., DeMont M.E., The structure and physical properties of invertebrate and primitive vertebrate arteries. J Exp Biol, 1995, 198, 2185–2196. [PubMed] [Google Scholar]
  • Dietz H.C., Cutting G.R., Pyeritz R.E., Maslen C.L., Sakai L.Y., Corson G.M., Puffenberger E.G., Hamosh A., Nanthakumar E.J., Curristin S.M., Stetten G., Meyers D.A., Francomano C.A., Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature, 1991, 352, 337–339. [CrossRef] [PubMed] [Google Scholar]
  • Dietz H.C., McIntosh I., Sakai L.Y., Corson G.M., Chalberg S.C., Pyeritz R.E., Francomano C.A., Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics, 1993, 17, 468–475. [CrossRef] [PubMed] [Google Scholar]
  • Dietz H.C., Loeys B., Carta L., Ramirez F., Recent progress towards a molecular understanding of Marfan syndrome. Am J Med Genet C Semin Med Genet, 2005, 139C, 4–9. [CrossRef] [PubMed] [Google Scholar]
  • Duba H.C., Doll A., Neyer M., Erdel M., Mann C., Hammerer I., Utermann G., Grzeschik K.H., The elastin gene is disrupted in a family with a balanced translocation t(7; 16)(q11.23; q13) associated with a variable expression of the Williams-Beuren syndrome. Eur J Hum Genet, 2002, 10, 351–361. [CrossRef] [PubMed] [Google Scholar]
  • Duca L., Floquet N., Alix A.J., Haye B., Debelle L., Elastin as a matrikine. Crit Rev Oncol Hematol, 2004, 49, 235–244. [CrossRef] [PubMed] [Google Scholar]
  • Duca L., Lambert E., Debret R., Rothhut B., Blanchevoye C., Delacoux F., Hornebeck W., Martiny L., Debelle L., Elastin peptides activate extracellular signal-regulated kinase 1/2 via a Ras-independent mechanism requiring both p110gamma/Raf-1 and protein kinase A/B-Raf signaling in human skin fibroblasts. Mol Pharmacol, 2005, 67, 1315–1324. [CrossRef] [PubMed] [Google Scholar]
  • Duca L., Blanchevoye C., Cantarelli B., Ghoneim C., Dedieu S., Delacoux F., Hornebeck W., Hinek A., Martiny L., Debelle L., The elastin receptor complex transduces signals through the catalytic activity of its Neu-1 subunit. J Biol Chem, 2007, 282, 12484–12491. [CrossRef] [PubMed] [Google Scholar]
  • Eldadah Z.A., Brenn T., Furthmayr H., Dietz H.C., Expression of a mutant human fibrillin allele upon a normal human or murine genetic background recapitulates a Marfan cellular phenotype. J Clin Invest, 1995, 95, 874–880. [CrossRef] [PubMed] [Google Scholar]
  • Eronen M., Peippo M., Hiippala A., Raatikka M., Arvio M., Johansson R., Kahkonen M., Cardiovascular manifestations in 75 patients with Williams syndrome. J Med Genet, 2002, 39, 554–558. [CrossRef] [PubMed] [Google Scholar]
  • Ewart A.K., Morris C.A., Ensing G.J., Loker J., Moore C., Leppert M., Keating M., A human vascular disorder, supravalvular aortic stenosis, maps to chromosome 7. Proc Natl Acad Sci USA, 1993a, 90, 3226–3230. [CrossRef] [Google Scholar]
  • Ewart A.K., Morris C.A., Atkinson D., Jin W., Sternes K., Spallone P., Stock A.D., Leppert M., Keating M.T., Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet, 1993b, 5, 11–16. [CrossRef] [PubMed] [Google Scholar]
  • Ewart A.K., Jin W., Atkinson D., Morris C.A., Keating M.T., Supravalvular aortic stenosis associated with a deletion disrupting the elastin gene. J Clin Invest, 1994, 93, 1071–1077. [CrossRef] [PubMed] [Google Scholar]
  • Fahem A., Robinet A., Cauchard J.H., Duca L., Soula-Rothhut M., Rothhut B., Soria C., Guenounou M., Hornebeck W., Bellon G., Elastokine-mediated up-regulation of MT1-MMP is triggered by nitric oxide in endothelial cells. Int J Biochem Cell Biol, 2008, 40, 1581–1596. [CrossRef] [PubMed] [Google Scholar]
  • Faury G., Role of the elastin-laminin receptor in the cardiovascular system. Pathol Biol, 1998, 46, 517–526. [PubMed] [Google Scholar]
  • Faury G., Role of elastin in the development of vascular function. Knock-out study of the elastin gene in mice. J Soc Biol, 2001a, 195, 151–156. [PubMed] [Google Scholar]
  • Faury G., Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres. Pathol Biol (Paris), 2001b, 49, 310–325. [CrossRef] [PubMed] [Google Scholar]
  • Faury G., Ristori M.T., Verdetti J., Jacob M.P., Robert L., Role of the elastin-laminin receptor in the vasoregulation. C R Acad Sci III, 1994, 317, 807–811. [PubMed] [Google Scholar]
  • Faury G., Ristori M.T., Verdetti J., Jacob M.P., Robert L., Effect of elastin peptides on vascular tone. J Vasc Res, 1995, 32, 112–119. [CrossRef] [PubMed] [Google Scholar]
  • Faury G., Chabaud A., Ristori M.T., Robert L., Verdetti J., Effect of age on the vasodilatory action of elastin peptides. Mech Ageing Dev, 1997, 95, 31–42. [CrossRef] [PubMed] [Google Scholar]
  • Faury G., Usson Y., Robert-Nicoud M., Robert L., Verdetti J., Nuclear and cytoplasmic free calcium level changes induced by elastin peptides in human endothelial cells. Proc Natl Acad Sci USA, 1998a, 95, 2967–2972. [CrossRef] [Google Scholar]
  • Faury G., Garnier S., Weiss A.S., Wallach J., Fulop T. Jr., Jacob M.P., Mecham R.P., Robert L., Verdetti J., Action of tropoelastin and synthetic elastin sequences on vascular tone and on free Ca2+ level in human vascular endothelial cells. Circ Res, 1998b, 82, 328–336. [CrossRef] [PubMed] [Google Scholar]
  • Faury G., Maher G.M., Li D.Y., Keating M.T., Mecham R.P., Boyle W.A., Relation between outer and luminal diameter in cannulated arteries. Am J Physiol, 1999, 277, 1745–1753. [Google Scholar]
  • Faury G., Pezet M., Knutsen R.H., Boyle W.A., Heximer S.P., McLean S.E., Minkes R.K., Blumer K.J., Kovacs A., Kelly D.P., Li D.Y., Starcher B., Mecham R.P., Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency. J Clin Invest, 2003, 112, 1419–1428. [PubMed] [Google Scholar]
  • Fazio M.J., Mattei M.G., Passage E., Chu M.L., Black D., Solomon E., Davidson J.M., Uitto J., Human elastin gene: new evidence for localization to the long arm of chromosome 7. Am J Hum Genet, 1991, 48, 696–703. [PubMed] [Google Scholar]
  • Francke U., Williams-Beuren syndrome: genes and mechanisms. Hum Mol Genet, 1999, 8, 1947–1954. [CrossRef] [PubMed] [Google Scholar]
  • Fulop T. Jr., Jacob M.P., Khalil A., Wallach J., Robert L., Biological effects of elastin peptides. Pathol Biol (Paris), 1998, 46, 497–506. [PubMed] [Google Scholar]
  • Fulop T., Jacob M.P., Wallach J., Hauck M., Seres I., Varga Z., Robert L., The elastin-laminin receptor. J Soc Biol, 2001, 195, 157–164. [Google Scholar]
  • Gibbons C.A., Shadwick R.E., Functional similarities in the mechanical design of the aorta in lower vertebrates and mammals. Experientia, 1989, 45, 1083–1088. [CrossRef] [PubMed] [Google Scholar]
  • Gibson M.A., Leavesley D.I., Ashman L.K., Microfibril-associated glycoprotein-2 specifically interacts with a range of bovine and human cell types via alphaVbeta3 integrin. J Biol Chem, 1999, 274, 13060–13065. [CrossRef] [PubMed] [Google Scholar]
  • Greenwald S.E., Ageing of the conduit arteries. J Pathol, 2007, 211, 157–172. [CrossRef] [PubMed] [Google Scholar]
  • Gregory K.E., Ono R.N., Charbonneau N.L., Kuo C.L., Keene D.R., Bachinger H.P., Sakai L.Y., The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem, 2005, 280, 27970–27980. [CrossRef] [PubMed] [Google Scholar]
  • Gualandris A., Annes J.P., Arese M., Noguera I., Jurukovski V., Rifkin D.B., The latent transforming growth factor-beta-binding protein-1 promotes in vitro differentiation of embryonic stem cells into endothelium. Mol Biol Cell, 2000, 11, 4295–4308. [CrossRef] [PubMed] [Google Scholar]
  • Guo G., Booms P., Halushka M., Dietz H.C., Ney A., Stricker S., Hecht J., Mundlos S., Robinson P.N., Induction of macrophage chemotaxis by aortic extracts of the mgR Marfan mouse model and a GxxPG-containing fibrillin-1 fragment. Circulation, 2006, 114, 1855–1862. [CrossRef] [PubMed] [Google Scholar]
  • Habashi J.P., Judge D.P., Holm T.M., Cohn R.D., Loeys B.L., Cooper T.K., Myers L., Klein E.C., Liu G., Calvi C., Podowski M., Neptune E.R., Halushka M.K., Bedja D., Gabrielson K., Rifkin D.B., Carta L., Ramirez F., Huso D.L., Dietz H.C., Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science, 2006, 312, 117–121. [CrossRef] [PubMed] [Google Scholar]
  • Hinek A., Nature and the multiple functions of the 67-kD elastin-/laminin binding protein. Cell Adhes Commun, 1994a, 2, 185–193. [CrossRef] [PubMed] [Google Scholar]
  • Hinek A., Rabinovitch M., 67-kD elastin-binding protein is a protective “companion” of extracellular insoluble elastin and intracellular tropoelastin. J Cell Biol, 1994b, 126, 563–574. [CrossRef] [PubMed] [Google Scholar]
  • Hinek A., Smith A.C., Cutiongco E.M., Callahan J.W., Gripp K.W., Weksberg R., Decreased elastin deposition and high proliferation of fibroblasts from Costello syndrome are related to functional deficiency in the 67-kD elastin-binding protein. Am J Hum Genet, 2000, 66, 859–872. [CrossRef] [PubMed] [Google Scholar]
  • Hornebeck W., Tixier J.M., Robert L., Inducible adhesion of mesenchymal cells to elastic fibers: elastonectin. Proc Natl Acad Sci USA, 1986, 83, 5517–5520. [CrossRef] [Google Scholar]
  • Hubmacher D., Tiedemann K., Reinhardt D.P., Fibrillins: from biogenesis of microfibrils to signaling functions. Curr Top Dev Biol, 2006, 75, 93–123. [CrossRef] [PubMed] [Google Scholar]
  • Jacob M.P., Fulop T. Jr., Foris G., Robert L., Effect of elastin peptides on ion fluxes in mononuclear cells, fibroblasts, and smooth muscle cells. Proc Natl Acad Sci USA, 1987, 84, 995–999. [CrossRef] [Google Scholar]
  • Judge D.P., Biery N.J., Keene D.R., Geubtner J., Myers L., Huso D.L., Sakai L.Y., Dietz H.C., Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest, 2004, 114, 172–181. [PubMed] [Google Scholar]
  • Kanzaki T., Otabe M., Latent transforming growth factor-beta binding protein-1, a component of latent transforming growth factor-beta complex, accelerates the migration of aortic smooth muscle cells in diabetic rats through integrin-beta3. Diabetes, 2003, 52, 824–828. [CrossRef] [PubMed] [Google Scholar]
  • Karnik S.K., Brooke B.S., Bayes-Genis A., Sorensen L., Wythe J.D., Schwartz R.S., Keating M.T., Li D.Y., A critical role for elastin signaling in vascular morphogenesis and disease. Development, 2003, 130, 411–423. [CrossRef] [PubMed] [Google Scholar]
  • Kenagy R.D., Plaas A.H., Wight T.N., Versican degradation and vascular disease. Trends Cardiovasc Med, 2006, 16, 209–215. [CrossRef] [PubMed] [Google Scholar]
  • Kielty C.M., Elastic fibres in health and disease. Expert Rev Mol Med, 2006, 8, 1–23. [CrossRef] [Google Scholar]
  • Kielty C.M., Shuttleworth C.A., Fibrillin-containing microfibrils: structure and function in health and disease. Int J Biochem Cell Biol, 1995, 27, 747–760. [CrossRef] [PubMed] [Google Scholar]
  • Kielty C.M., Sherratt M.J., Shuttleworth C.A., Elastic fibres. J Cell Sci, 2002a, 115, 2817–2828. [PubMed] [Google Scholar]
  • Kielty C.M., Baldock C., Lee D., Rock M.J., Ashworth J.L., Shuttleworth C.A., Fibrillin: from microfibril assembly to biomechanical function. Philos Trans R Soc Lond B Biol Sci, 2002b, 357, 207–217. [CrossRef] [PubMed] [Google Scholar]
  • Koch A.E., Haines G.K., Rizzo R.J., Radosevich J.A., Pope R.M., Robinson P.G., Pearce W.H., Human abdominal aortic aneurysms. Immunophenotypic analysis suggesting an immune-mediated response. Am J Pathol, 1990, 137, 1199–1213. [PubMed] [Google Scholar]
  • Kuivaniemi H., Platsoucas C.D., Tilson M.D. 3rd., Aortic aneurysms: an immune disease with a strong genetic component. Circulation, 2008, 117, 242–252. [CrossRef] [PubMed] [Google Scholar]
  • Lee B., Godfrey M., Vitale E., Hori H., Mattei MG., Sarfarazi M., Tsipouras P., Ramirez F., Hollister D.W., Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature, 1991, 352, 330–334. [CrossRef] [PubMed] [Google Scholar]
  • Li D.Y., Brooke B., Davis E.C., Mecham R.P., Sorensen L.K., Boak B.B., Eichwald E., Keating M.T., Elastin is an essential determinant of arterial morphogenesis. Nature, 1998a, 393, 276–280. [CrossRef] [PubMed] [Google Scholar]
  • Li D.Y., Faury G., Taylor D.G., Davis E.C., Boyle W.A., Mecham R.P., Stenzel P., Boak B., Keating M.T., Novel arterial pathology in mice and humans hemizygous for elastin. J Clin Invest, 1998b, 102, 1783–1787. [CrossRef] [PubMed] [Google Scholar]
  • Lillie M.A., David G.J., Gosline J.M., Mechanical role of elastin-associated microfibrils in pig aortic elastic tissue. Connect Tissue Res, 1998, 37, 121–141. [CrossRef] [PubMed] [Google Scholar]
  • Long M.M., King V.J., Prasad K.U., Freeman B.A., Urry D.W., Elastin repeat peptides as chemoattractants for bovine aortic endothelial cells. J Cell Physiol, 1989, 140, 512–518. [CrossRef] [PubMed] [Google Scholar]
  • Mariko B., Ghandour Z., Raveaud S., Quentin M., Usson Y., Verdetti J., Huber P., Kielty C., Faury G., Microfibrils and fibrillin-1 induce integrin-mediated signaling, proliferation and migration in human endothelial cells. Am J Physiol Cell Physiol, 2010, 299, C977–C987. [CrossRef] [PubMed] [Google Scholar]
  • Mariko B., Pezet M., Escoubet B., Bouillot S., Andrieu J.P., Starcher B., Quaglino D., Jacob M.P., Huber P., Ramirez F., Faury G., Fibrillin-1 genetic deficiency leads to pathological aging of arteries in mice. J Pathol, 2011, 224, 33–44. [CrossRef] [PubMed] [Google Scholar]
  • Marque V., Kieffer P., Gayraud B., Lartaud-Idjouadiene I., Ramirez F., Atkinson J., Aortic wall mechanics and composition in a transgenic mouse model of Marfan syndrome. Arterioscler Thromb Vasc Biol, 2001, 21, 1184–1189. [CrossRef] [PubMed] [Google Scholar]
  • McConnell C.J., DeMont M.E., Wright G.M., Microfibrils provide non-linear elastic behaviour in the abdominal artery of the lobster Homarus americanus. J Physiol, 1997, 499, 513–526. [PubMed] [Google Scholar]
  • Mecham R.P., Hinek A., Entwistle R., Wrenn D.S., Griffin G.L., Senior R.M., Elastin binds to a multifunctional 67-kilodalton peripheral membrane protein. Biochemistry, 1989, 28, 3716–3722. [CrossRef] [PubMed] [Google Scholar]
  • Nakamura T., Lozano P.R., Ikeda Y., Iwanaga Y., Hinek A., Minamisawa S., Cheng C.F., Kobuke K., Dalton N., Takada Y., Tashiro K., Ross Jr. J., Honjo T., Chien K.R., Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature, 2002, 415, 171–175. [CrossRef] [PubMed] [Google Scholar]
  • Nakanishi T., Iwasaki Y., Momma K., Imai Y., Supravalvular aortic stenosis, pulmonary artery stenosis, and coronary artery stenosis in twins. Pediatr Cardiol, 1996, 17, 125–128. [CrossRef] [PubMed] [Google Scholar]
  • Neptune E.R., Frischmeyer P.A., Arking D.E., Myers L., Bunton T.E., Gayraud B., Ramirez F., Sakai L.Y., Dietz H.C., Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet, 2003, 33, 407–411. [CrossRef] [PubMed] [Google Scholar]
  • Olson T.M., Michels V.V., Urban Z., Csiszar K., Christiano A.M., Driscoll D.J., Feldt R.H., Boyd C.D., Thibodeau S.N., A 30 kb deletion within the elastin gene results in familial supravalvular aortic stenosis. Hum Mol Genet, 1995, 4, 1677–1679. [CrossRef] [PubMed] [Google Scholar]
  • Ooyama T., Fukuda K., Oda H., Nakamura H., Hikita Y., Substratum-bound elastin peptide inhibits aortic smooth muscle cell migration in vitro. Arteriosclerosis, 1987, 7, 593–598. [CrossRef] [PubMed] [Google Scholar]
  • Pereira L., D’Alessio M., Ramirez F., Lynch J.R., Sykes B., Pangilinan T., Bonadio J., Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet, 1993, 2, 1762. [CrossRef] [PubMed] [Google Scholar]
  • Pereira L., Andrikopoulos K., Tian J., Lee S.Y., Keene D.R., Ono R., Reinhardt D.P., Sakai L.Y., Biery N.J., Bunton T., Dietz H.C., Ramirez F., Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet, 1997, 17, 218–222. [CrossRef] [PubMed] [Google Scholar]
  • Pereira L., Lee S.Y., Gayraud B., Andrikopoulos K., Shapiro S.D., Bunton T., Biery N.J., Dietz H.C., Sakai L.Y., Ramirez F., Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA, 1999, 96, 3819–3823. [CrossRef] [Google Scholar]
  • Pezet M., Jacob M.P., Escoubet B., Gheduzzi D., Tillet E., Perret P., Huber P., Quaglino D., Vranckx R., Li D.Y., Starcher B., Boyle W.A., Mecham R.P., Faury G., Elastin haploinsufficiency induces alternative aging processes in the aorta. Rejuvenation Res, 2008, 11, 97–112. [CrossRef] [PubMed] [Google Scholar]
  • Pfaff M., Reinhardt D.P., Sakai L.Y., Timpl R., Cell adhesion and integrin binding to recombinant human fibrillin-1. FEBS Lett, 1996, 384, 247–250. [CrossRef] [PubMed] [Google Scholar]
  • Porst M., Plank C., Bieritz B., Konik E., Fees H., Dotsch J., Hilgers K.F., Reinhardt D.P., Hartner A., Fibrillin-1 regulates mesangial cell attachment, spreading, migration and proliferation. Kidney Int, 2006, 69, 450–456. [CrossRef] [PubMed] [Google Scholar]
  • Ramirez F., Pereira L., Zhang H., Lee B., The fibrillin-Marfan syndrome connection. Bioessays, 1993, 15, 589–594. [CrossRef] [PubMed] [Google Scholar]
  • Roach M.R., Burton A.C., The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol, 1957, 35, 681–690. [CrossRef] [PubMed] [Google Scholar]
  • Robinet A., Fahem A., Cauchard J.H., Huet E., Vincent L., Lorimier S., Antonicelli F., Soria C., Crepin M., Hornebeck W., Bellon G., Elastin-derived peptides enhance angiogenesis by promoting endothelial cell migration and tubulogenesis through upregulation of MT1-MMP. J Cell Sci, 2005, 118, 343–356. [CrossRef] [PubMed] [Google Scholar]
  • Robinson P.N., Booms P., The molecular pathogenesis of the Marfan syndrome. Cell Mol Life Sci, 2001, 58, 1698–1707. [CrossRef] [PubMed] [Google Scholar]
  • Robinson P.N., Godfrey M., The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet, 2000, 37, 9–25. [CrossRef] [PubMed] [Google Scholar]
  • Robinson P.N., Arteaga-Solis E., Baldock C., Collod-Beroud G., Booms P., De Paepe A., Dietz H.C., Guo G., Handford P.A., Judge D.P., Kielty C.M., Loeys B., Milewicz D.M., Ney A., Ramirez F., Reinhardt D.P., Tiedemann K., Whiteman P., Godfrey M., The molecular genetics of Marfan syndrome and related disorders. J Med Genet, 2006, 43, 769–787. [CrossRef] [PubMed] [Google Scholar]
  • Rodgers U.R., Weiss A.S., Integrin alpha v beta 3 binds a unique non-RGD site near the C-terminus of human tropoelastin. Biochimie, 2004, 86, 173-178. [CrossRef] [PubMed] [Google Scholar]
  • Rosenbloom J., Abrams W.R., Mecham R., Extracellular matrix 4: the elastic fiber. Faseb J, 1993, 7, 1208–1218. [PubMed] [Google Scholar]
  • Safar M.E., Boudier H.S., Vascular development, pulse pressure, and the mechanisms of hypertension. Hypertension, 200, 46, 205–209. [Google Scholar]
  • Sakai L.Y., Keene D.R., Engvall E., Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol, 1986, 103, 2499–2509. [CrossRef] [PubMed] [Google Scholar]
  • Sakamoto H., Broekelmann T., Cheresh D.A., Ramirez F., Rosenbloom J., Mecham R.P., Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1. J Biol Chem, 1996, 271, 4916–4922. [CrossRef] [PubMed] [Google Scholar]
  • Schrijver I., Liu W., Brenn T., Furthmayr H., Francke U., Cysteine substitutions in epidermal growth factor-like domains of fibrillin-1: distinct effects on biochemical and clinical phenotypes. Am J Hum Genet, 1999, 65, 1007–1020. [CrossRef] [PubMed] [Google Scholar]
  • Sherratt M.J., Wess T.J., Baldock C., Ashworth J., Purslow P.P., Shuttleworth C.A., Kielty C.M., Fibrillin-rich microfibrils of the extracellular matrix: ultrastructure and assembly. Micron, 2001, 32, 185–200. [CrossRef] [PubMed] [Google Scholar]
  • Sherratt M.J., Baldock C., Haston J.L., Holmes D.F., Jones C.J., Shuttleworth C.A., Wess T.J., Kielty C.M., Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J Mol Biol, 2003, 332, 183–193. [CrossRef] [PubMed] [Google Scholar]
  • Shifren A., Durmowicz A.G., Knutsen R.H., Faury G., Mecham R.P., Elastin insufficiency predisposes to elevated pulmonary circulatory pressures through changes in elastic artery structure. J Appl Physiol, 2008, 105, 1610–1619. [CrossRef] [PubMed] [Google Scholar]
  • Sood S., Eldadah Z.A., Krause W.L., McIntosh I., Dietz H.C., Mutation in fibrillin-1 and the Marfanoid-craniosynostosis (Shprintzen-Goldberg) syndrome. Nat Genet, 1996, 12, 209–211. [CrossRef] [PubMed] [Google Scholar]
  • Spofford C.M., Chilian W.M., The elastin-laminin receptor functions as a mechanotransducer in vascular smooth muscle. Am J Physiol Heart Circ Physiol, 2001, 280, H1354–H1360. [PubMed] [Google Scholar]
  • Stheneur C., Collod-Beroud G., Faivre L., Gouya L., Sultan G., Le Parc J.M., Moura B., Attias D., Muti C., Sznajder M., Claustres M., Junien C., Baumann C., Cormier-Daire V., Rio M., Lyonnet S., Plauchu H., Lacombe D., Chevallier B., Jondeau G., Boileau C., Identification of 23 TGFBR2 and 6 TGFBR1 gene mutations and genotype-phenotype investigations in 457 patients with Marfan syndrome type I and II, Loeys-Dietz syndrome and related disorders. Hum Mutat, 2008, 29, E284–E295. [CrossRef] [PubMed] [Google Scholar]
  • Stupack D.G., Cheresh D.A., Integrins and angiogenesis. Curr Top Dev Biol, 2004, 64, 207–238. [CrossRef] [PubMed] [Google Scholar]
  • Tedgui A., Lévy B., Biologie de la paroi artérielle. 1997, Masson, Paris. [Google Scholar]
  • Urban Z., Riazi S., Seidl T.L., Katahira J., Smoot L.B., Chitayat D., Boyd C.D., Hinek A., Connection between elastin haploinsufficiency and increased cell proliferation in patients with supravalvular aortic stenosis and Williams-Beuren syndrome. Am J Hum Genet, 2002, 71, 30–44. [CrossRef] [PubMed] [Google Scholar]
  • Vaideeswar P., Shankar V., Deshpande J.R., Sivaraman A., Jain N., Pathology of the diffuse variant of supravalvar aortic stenosis. Cardiovasc Pathol, 2001, 10, 33–37. [CrossRef] [PubMed] [Google Scholar]
  • Wachi H., Seyama Y., Yamashita S., Suganami H., Uemura Y., Okamoto K., Yamada H., Tajima S., Stimulation of cell proliferation and autoregulation of elastin expression by elastin peptide VPGVG in cultured chick vascular smooth muscle cells. FEBS Lett, 1995, 368, 215–219. [CrossRef] [PubMed] [Google Scholar]
  • Wagenseil J.E., Mecham R.P., New insights into elastic fiber assembly. Birth Defects Res C Embryo Today, 2007, 81, 229–240. [CrossRef] [PubMed] [Google Scholar]
  • Wang M.C., Lu Y., Baldock C., Fibrillin Microfibrils: a key role for the interbead region in elasticity. J Mol Biol, 2009, 388, 168–179. [CrossRef] [PubMed] [Google Scholar]
  • Williams J.C., Barratt-Boyes B.G., Lowe J.B., Supravalvular aortic stenosis. Circulation, 1961, 24, 1311–1318. [CrossRef] [PubMed] [Google Scholar]
  • Williamson M.R., Shuttleworth A., Canfield A.E., Black R.A., Kielty C.M., The role of endothelial cell attachment to elastic fibre molecules in the enhancement of monolayer formation and retention, and the inhibition of smooth muscle cell recruitment. Biomaterials, 2007, 28, 5307–5318. [CrossRef] [PubMed] [Google Scholar]
  • Wise S.G., Weiss A.S., Tropoelastin. Int J Biochem Cell Biol, 2009, 41, 494–497. [CrossRef] [PubMed] [Google Scholar]
  • Zalzstein E., Moes C.A., Musewe N.N., Freedom R.M., Spectrum of cardiovascular anomalies in Williams-Beuren syndrome. Pediatr Cardiol, 1991, 12, 219–223. [CrossRef] [PubMed] [Google Scholar]
  • Zhang H., Apfelroth S.D., Hu W., Davis E.C., Sanguineti C., Bonadio J., Mecham R.P., Ramirez F., Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol, 1994, 124, 855–863. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.