Accès gratuit
Biologie Aujourd'hui
Volume 206, Numéro 2, 2012
Page(s) 103 - 109
Section Célébration du cinquantenaire de la fondation de la Société Française du Tissu Conjonctif
Publié en ligne 4 juillet 2012
  • Barczyk M., Carracedo S., Gullberg D., Integrins. Cell Tissue Res, 2010, 339, 269–280. [CrossRef] [PubMed] [Google Scholar]
  • Blanpain N., 15 000 centenaires en 2010 en France, 200 000 en 2060 ? INSEE Première. 2010, n° 1319. [Google Scholar]
  • Boyer B., Kern P., Fourtanier A., Labat-Robert J., Age-dependent variations of the biosynthesis of fibronectin and fibrous collagens in mouse skin. Exp Gerontol, 1991, 26, 375–383. [CrossRef] [PubMed] [Google Scholar]
  • Boyer B., Fourtanier A., Kern P., Labat-Robert J., UVA- and UVB-induced changes in collagen and fibronectin in the skin of hairless mice. J Photochem Photobiol B; Biol, 1992, 14, 247–159. [CrossRef] [Google Scholar]
  • Cawston T.E., Young D.A., Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res, 2010, 339, 221–235. [Google Scholar]
  • Colombi M., Zoppi N., de Petro G., Marchina E., Gardella R., Tavian D., Ferraboli S., Barlati S., Matrix assembly induction and cell migration and invasion inhibition by a 13-amino acid fibronectin peptide. J Biol Chem, 2003, 16, 14346–14355. [CrossRef] [Google Scholar]
  • Davis G.E., Bayless K.J., Davis M.J., Meininger G.A., Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Amer J Pathol, 2000, 156, 1489–1498. [CrossRef] [Google Scholar]
  • Ding L., Guo D., Homandberg G.A., The cartilage chondrolytic mechanism of fibronectin-fragments involves MAP kinases: comparison of three fragments and native fibronectin. Osteoarthritis Cartilage, 2008, 10, 1253–1262. [CrossRef] [Google Scholar]
  • Ding L., Guo D., Homandberg G.A., Fibronectin-fragments mediate matrix metalloproteinases up-regulation and cartilage damage through proline-rich tyrosine kinase 2, c-src, NF-kB and protein kinase C delta. Osteoarthritis Cartilage, 2009, 10, 1378–1382. [Google Scholar]
  • de Petro G., Barlati S., Vatio T., Vaheri A., Transformation-enhancing activity of gelatin-binding fragments of fibronectin. Proc Natl Acad Sci USA, 1981, 78, 4965–4969. [CrossRef] [Google Scholar]
  • de Petro G., Tavian D., Copeta A., Fortolani N., Giulini S.M., Barlati S., Expression of urokinase-type plasminogen activator (u-PA), u-PA receptor and tissue-type pA messenger RNA in human hepatocellular carcinoma. Cancer Res, 1998, 58, 2234–2239. [PubMed] [Google Scholar]
  • Emod I., Lafaye P., Planchenault T., Lambert-Vidmar S., Imhoff J.M., Keil-Dlouha V., Potential proteolytic activity of fibronectin: fibronectin laminase and its substrate specificity. Biol Chem Hoppe-Seyler, 1990, 371, 117–128. [CrossRef] [PubMed] [Google Scholar]
  • Guan J.L., Hynes R.O., Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor a4β1. Cell, 1990, 60, 53–61. [CrossRef] [PubMed] [Google Scholar]
  • Homandberg G.A., Potential regulation of cartilage metabolims in osteoarthritis by fibronectin-fragments. Front Biosci, 1999, 4D, 13–30. [Google Scholar]
  • Homandberg G.A., Cartilage damage by matrix degradation products: fibronectin-fragments. Clin Orthop Relat Res, 2001, 391S, 100–107. [CrossRef] [Google Scholar]
  • Homandberg A., Davis G., Maniglia C., Shridhande A., Cartilage chondrolysis by fibronectin-fragments causes cleavage of aggrecan at the same site as found in osteoarthritic cartilage. Osteoarthritic Cartilage, 1997, 6, 450–453. [CrossRef] [Google Scholar]
  • Hu Q., Moerman E.J., Goldstein S., Altered expression and regulation of the a5b1 integrin-fibronectin receptor lead to reduced amounts of functional a5b1 heterodimer on the plasma membrane of senescent human diploid fibroblasts. Exp Cell Res, 1996, 224, 251–263. [CrossRef] [PubMed] [Google Scholar]
  • Huynh Q.N., Wang S., Tafolla E., Gansky S.A., Kapila S., Armitage G.C., Kapila Y.L., Specific fibronectin fragments as markers of periodontal disease status. J Periondotol, 2002, 73, 1101–1110. [CrossRef] [Google Scholar]
  • Hynes R.O., Fibronectins. 1990, Springer-Verlag, New York. [Google Scholar]
  • Hynes R.O., The dynamic dialogue between cells and matrices: implications of fibronectin’s elasticity. Proc Natl Acad Sci USA, 1999, 96, 2588–2590. [CrossRef] [Google Scholar]
  • Hynes R.O., Integrins: bidirectional, allosteric signaling machines. Cell, 2002, 110, 673–687. [CrossRef] [PubMed] [Google Scholar]
  • Hynes R.O., The emergence of integrins: a personal and historical perspective. Matrix Biol, 2004, 23, 333–340. [CrossRef] [PubMed] [Google Scholar]
  • Imhoff J.M., Blondeau X., Planchenault T., Emod I., Keil-Dlouha V., Collagenase activation of latent matrix-degrading proteinases from human plasma fibronectin. Biol Chem Hoppe Seyler, 1990, 37, 137–144 [CrossRef] [Google Scholar]
  • Keil-Dlouha V., Planchenault T., Imhoff J.M., Emod I., Blondeau X., Lambert-Vidmar S., Proteolytic potential of fibronectin and degradation of extracellular matrix. Path Biol, 1990, 38, 993–998. [Google Scholar]
  • Kornblihtt A.R., Vibe-Petersen K., Baralle F.E., Human fibronectin: molecular cloning evidence for two mRNA species differing by an internal segment coding for a structural domain. EMBO J, 1984, 3, 221–226. [PubMed] [Google Scholar]
  • Labat-Robert J., Fourtanier A., Boyer-Lafargue B., Robert L., Age dependent increase of elastase-type protease activity in mouse skin. Effect of UV irradiation. J Photochem Phytobiol B; Biol, 2000, 57, 113–118. [CrossRef] [Google Scholar]
  • Liao Y.F., Gotwals P.J., Koteliansky V.E., Sheppard D., Van de Water L., The EIIIA segment of fibronectin is a ligand for integrins a9β1 and a4β1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem, 2002, 277, 14467–14474. [CrossRef] [PubMed] [Google Scholar]
  • Ohashi T., Kiehart D.P., Erickson H.P., Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. Proc Natl Acad Sci USA, 1999, 96, 2153–2158. [CrossRef] [Google Scholar]
  • Planchenault R.T., Lambert-Vidmar S., Imhoff J.M., Blondeau C., Emod I., Lottspeich F., Keil-Dlouha V., Potential proteolytic activity of human plasma fibronectin: fibronectin gelatinase. Biol Chem Hoppe Seyler, 1990, 371, 117–135. [Google Scholar]
  • Moretti F.A.,Chauhan A.L., Iaconcig A., Porro F., Baralle F.A., Muro A.F., A major fraction of fibronectin present in the extracellular matrix of tissues is plasma derived. J Biol Chem, 2007, 282, 28057–28062. [CrossRef] [PubMed] [Google Scholar]
  • Moser M., Nieswandt B., Ussar S., Pozgajova M., Fassler R., Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med, 2008, 14, 325–330. [CrossRef] [PubMed] [Google Scholar]
  • Motta M., Cardillo E., Vacante M., Malaguarnera M., Supercentenarians: the oldest people in the world. Indian J Med Res, 2010, 131, 4–6. [PubMed] [Google Scholar]
  • Rasoamanantena P., Thweatt R., Labat-Robert J., Goldstein S., Altered regulation of fibronectin gene expression in Werner syndrome fibroblasts. Exp Cell Res, 1994, 213, 121–127. [CrossRef] [PubMed] [Google Scholar]
  • Robert L., Mechanisms of aging of the extracellular matrix: role of the elastin-laminin receptor. Gerontology, 1998, 44, 307–317. [CrossRef] [PubMed] [Google Scholar]
  • Roth G.S., Change in tissue responsiveness to hormones and neurotransmitters during aging. Exp Gerontol, 1995, 30, 361–368. [CrossRef] [PubMed] [Google Scholar]
  • Ruoslahti E., Pierschbacher M., RGD, a versatile cell recognition signal. Cell, 1986, 44, 517–518. [CrossRef] [PubMed] [Google Scholar]
  • Schwarzbauer J.E., Tamkun J.W., Lemischka I.R., Hynes R.O., Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell, 1983, 35, 421–431. [CrossRef] [PubMed] [Google Scholar]
  • Schwarzbauer J.E., DeSimone D.W., Fibronectins, their fibrillogenesis, and in vivo functions. In Hynes R.O. & Yamada K.M. (Eds.), Extracellular Matrix Biology. Cold Spring Harb Perspect Biol, 2012, Cold Spring Harbor Laboratory Press, New York, pp. 149–168. [Google Scholar]
  • Shinde A.V., Bystroff C., Wang C., Vogelezang M.G., Vincent P.A., Hynes R.O., Van de Water L., Identification of the peptide sequence within the EIIIA (EDA) segment of fibronectin that mediate integrin a9β1-dependent cellular activities. J Biol Chem, 2008, 283, 2858–2870. [CrossRef] [PubMed] [Google Scholar]
  • Smith H.W., Marshall C.J., Regulation of cell signaling by uPAR. Nat Rev Mol Cell Biol, 2010, 11, 463–516. [CrossRef] [Google Scholar]
  • Stanley C.M., Wang Y., Pal S., Klebe R.J., Harkless L.B., Xu X., Chen Z., Steffensen B., Fibronectin fragmentation is a feature of both periodontal disease sites and diabetic foot and leg wounds and modifies cell behavior. J Periodontol, 2008, 79, 861–875. [CrossRef] [PubMed] [Google Scholar]
  • Vallin J., Meslée F., Vivre au delà de 100 ans. Populations et Sociétés, 2001, 365, 1–4. [Google Scholar]
  • Wegener K.L., Campbell I.D., Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions. Mol Membr Biol, 2008, 25, 376–387. [CrossRef] [PubMed] [Google Scholar]
  • Wierzbicka-Patynowski I., Schwarzbauer J.E., The ins and outs of fibronectin matrix assembly. J Cell Sci, 2007, 116, 3269–3276. [CrossRef] [PubMed] [Google Scholar]
  • Xie D., Homandberg G.A., Fibronectin-fragments bind to and penetrate cartilage tissue resulting in proteinase expression and cartilage damage. Biochem Biophys Acta, 1993, 1882, 189–196. [Google Scholar]
  • Yasuda T., Cartilage destruction by matrix degradation products. Mod Rheumatol, 2006, 16, 197–205. [CrossRef] [PubMed] [Google Scholar]
  • Yi M., Ruoslahti E., A fibronectin fragment inhibits tumor growth, angiogenesis and metastasis. Proc Natl Aad Sci USA, 2001, 98, 620–624. [CrossRef] [Google Scholar]
  • Zoppi N., Ritelli M., Salvi A., Colombi M., Barlati S., The FN13 peptide inhibits human tumor cells invasion through the modulation of avβ3 integrin organization and the inactivation of ILK pathway. Biochem Biophys Acta, 2007, 1773, 747–763. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.