Accès gratuit
Biologie Aujourd'hui
Volume 206, Numéro 2, 2012
Page(s) 111 - 123
Section Célébration du cinquantenaire de la fondation de la Société Française du Tissu Conjonctif
Publié en ligne 4 juillet 2012
  • Amenta P.S., Hadad S., Lee M.T., Barnard N., Li D., Myers J.C., Loss of types XV and XIX collagen precedes basement membrane invasion in ductal carcinoma of the female breast. J Pathol, 2003, 199, 298–308. [CrossRef] [PubMed] [Google Scholar]
  • Borza C.M., Pozzi A., Borza D.B., Pedchenko V., Hellmark T., Hudson B.G., Rent Z., Integrin α3β1, a novel receptor for α3(IV) noncollagenous domain and a trans-dominant inhibitor for integrin αVβ3. J Biol Chem, 2006, 281, 20932–20939. [CrossRef] [PubMed] [Google Scholar]
  • Boosani C.S., Mannam A.P., Cosgrove D., Silva R., Hodivala-Dilke K.M., Sudhakar A., Regulation of COX-2 mediated signaling by α3 type IV noncollagenous domain in tumor angiogenesis. Blood, 2007, 110, 1168–1177. [CrossRef] [PubMed] [Google Scholar]
  • Boosani C.S., Varma A.K., Sudhakar A., Validation of different systems for tumstatin expression and its in vitro and in vivo activities. J Cancer Sci Ther, 2010, 2009, 8–18. [PubMed] [Google Scholar]
  • Brassart-Pasco S., Thevenard J., Senechal K., Ramont L., Devy J., Di Stefano L., Dupont-Deshorgue A., Brezillon S., Jazeron J.F., Ricard-Blum S., Maquart F.X., Monboisse J.C., A novel anti-tumor matrikine: the NC1 domain of the a4 (IV) collagen chain. PlosOne, sous presse. [Google Scholar]
  • Caudroy S., Cucherousset J., Lorenato M., Zahm J.M., Martinella-Catusse C., Polette M., Birembaut P., Implication of tumstatin in tumor progression of human bronchopulmonary carcinomas. Hum Pathol, 2004, 35, 1218–1222. [CrossRef] [PubMed] [Google Scholar]
  • Chelberg M.K., Mc Carthy J.B., Skubitz A.P.N., Furcht L.T., Tsilibary E.C., Characterization of a synthetic peptide from type IV collagen that promotes melanoma cell adhesion, spreading and motility. J Cell Biol, 1990, 111, 262–270. [CrossRef] [Google Scholar]
  • Chung I.S., Son Y.I., Ko Y.J., Baek C.H., Cho J.K., Jeong H.S., Peritumor injections of purified tumstatin delay tumor growth and lymphatic metastasis in an orthotopic oral squamous cell carcinoma model. Oral Oncol, 2008, 44, 11118–1126. [CrossRef] [Google Scholar]
  • Colorado P.C., Torre A., Kamphaus G., Maeshima Y., Hopfer H., Takahashi K., Volk R., Zamborsky E.D., Herman S., Sarkar P.K., Ericksen M.B., Dhanabal M., Simons M., Post M., Kufe D.W., Weichselbaum R.R., Sukhatme V.P., Kalluri R., Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res, 2000, 60, 2520–2526. [PubMed] [Google Scholar]
  • Davis G.E., Bayless K.J., Davis M.J., Meininger G.A., Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am J Pathol, 2000, 156, 1489–1498. [Google Scholar]
  • Desgrollier J.S., Cheresh D.A., Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 2010, 10, 9–23. [CrossRef] [PubMed] [Google Scholar]
  • Eikesdal H.P., Sugimoto H., Birrane G., Maeshima Y., Cooke V.G., Kieran M., Kalluri R., Identification of amino acids essential for the antiangiogenic activity of tumstatin and its use in combination antitumor activity. Proc Natl Acad Sci USA, 2008, 105, 15040–15045. [CrossRef] [Google Scholar]
  • Floquet N., Pasco S., Ramont L., Derreumaux P., Laronze J.Y., Nuzillard J.M., Maquart F.X., Alix A.J., Monboisse J.C., The antitumor properties of the α3 (IV)-(185–203) peptide from the NC1 domain of type IV collagen (tumstatin) are conformation-dependent. J Biol Chem, 2004, 279, 2091–2100. [CrossRef] [PubMed] [Google Scholar]
  • Folkman J., Antiangiogenesis in cancer therapy – Endostatin and its mechanisms of action. Exp Cell Res, 2006, 312, 594–607. [CrossRef] [PubMed] [Google Scholar]
  • Goto T., Ishikawa H., Matsumoto K., Nishimura D., Kusaba N., Taura N., Shibata H.Miyaaki H., Ichikawa T., Hamasaki K., Nakao K., Maeshima Y., Eguchi K., Tum-1, a tumstatin fragment, gene delivery into hepatocellular carcinoma suppresses tumor growth through inhibiting angiogenesis. Int J Oncol, 2008, 33, 33–40. [PubMed] [Google Scholar]
  • Hamano Y., Zeisberg M., Sugimoto H., Lively J.C., Maeshima Y., Yang C., Hynes R.O., Werb Z., Sudhakar A., Kalluri R., Physiological levels of tumstatin, a fragment of collagen IV α3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via αVβ3 integrin. Cancer Cell, 2003, 3, 589–601. [CrossRef] [PubMed] [Google Scholar]
  • Han J., Ohno N., Pasco S., Monboisse J.C., Borel J.P., Kefalides N.A., A cell binding domain from the α3 chain of type IV collagen inhibits proliferation of melanoma cells. J Biol Chem, 1997, 272, 20395–20401. [CrossRef] [PubMed] [Google Scholar]
  • He G.A., Luo J.X., Zhang T.Y., Wang F.Y., Li R.F., Canstatin-N inhibits in vitro endothelial cell proliferation and suppresses in vivo tumor growth. Biochem Biophys Res Commun, 2003, 312, 801–805. [CrossRef] [PubMed] [Google Scholar]
  • He G.A., Luo J.X., Zhang T.Y., Hu Z.S., Wang F.Y., The C-terminal domain of canstatin suppresses in vivo tumor growth associated with proliferation of endothelial cells. Biochem Biophys Res Commun, 2004, 318, 354–360. [CrossRef] [PubMed] [Google Scholar]
  • He X.P., Li Z.S., Zhu R.M., Tu Z.X., Gao J., Pan X., Gong Y.F., Jin J., Man X.H., Wu H.Y., Xu A.F., Effects of recombinant human canstatin protein in the treatment of pancreatic cancer. World J Gastroenterol, 2006, 12, 6652–6657. [PubMed] [Google Scholar]
  • He Y., Jiang Y., Li Y.J., Liu X.H., Zhang L., Liu J.J., Shi H., Li H.N., Ma Y.C., Jin X.M., 19-peptide, a fragment of tumstatin, inhibits the growth of poorly differentiated gastric carcinoma cells in vitro and in vivo. J Gastroenterol Hepatol, 2010, 25, 935–941. [CrossRef] [PubMed] [Google Scholar]
  • Hwang-Bo J., Yoo K.H., Jeong H.S., Chung I.S., Recombinant canstatin inhibits angiopoeitin-1 induced angiogenesis and lymphangiogenesis. Int J Cancer, 2011, doi: 10.1002/ijc.26353. [Google Scholar]
  • Kalluri R., Basement membranes: structure. Nat Rev Cancer, 2003, 3, 422–433. [CrossRef] [PubMed] [Google Scholar]
  • Kamphaus G.D., Colorado P.C., Panka D.J., Hopfer H., Ramchandran R., Torre A., Maeshima Y., Mier J.W., Sukhatme V.P., Kalluri R., Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem, 2000, 275, 1209–1215. [CrossRef] [PubMed] [Google Scholar]
  • Karagiannis E.D., Popel A.S., Identification of novel short peptides derived from the α4, α5, and α6 fibrils of type IV collagen with anti-angiogenic properties. Biochem Biophys Res Commun, 2007, 354, 434–439. [CrossRef] [PubMed] [Google Scholar]
  • Koskimaki J.E., Karagiannis E.D., Rosca E.V., Vesuna F., Winnard P.T. Jr., Raman V., Bhujwalla Z.M., Popel A.S., Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain containing proteins inhibit neovascularization and suppress tumor growth in MBA-MB-231 breast cancer xenografts. Neoplasia, 2009, 11, 1285–1291. [PubMed] [Google Scholar]
  • Koskimaki J.E., Karagiannis E.D., Tang B.C., Hammers H., Watkins D.N., Pili R., Popel A.S., Pentastatin-1, a collagen IV-derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model. BMC Cancer, 2010, 10, 29–35. [CrossRef] [PubMed] [Google Scholar]
  • Kruegel J., Miosge N., Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci, 2010, 67, 2879–2895. [CrossRef] [PubMed] [Google Scholar]
  • LeBleu V., Sund M., Sugimoto H., Birrane G., Kanasaki K., Finan E., Miller C.A., Gattone V.H. 2nd, McLaughlin H., Shield C.F. 3rd, Kalluri R., Identification of the NC1 domain of α3 chain as critical for α3α4α5 type IV collagen network assembly. J Biol Chem, 2010, 285, 41874–41885. [CrossRef] [PubMed] [Google Scholar]
  • Li D., Clark C.C., Myers J.C., Basement membrane zone type XV collagen is a disulfide-bonded chondroitin-sulfate proteoglycan in human tissues and cultured cells. J Biol Chem, 2000, 275, 22339–22347. [CrossRef] [PubMed] [Google Scholar]
  • Li Y.J., Sun L.C., He Y., Liu X.H., Wang Q.M., Jin X.M., The anti-tumor properties of two tumstatin peptide fragments in human gastric carcinoma. Acta Pharmacol Sin, 2009, 30, 1307–1315. [CrossRef] [PubMed] [Google Scholar]
  • Liu H., Chen B., Lilly B., Fibroblasts potentiate blood vessel formation partially through secreted factor TIMP-1. Angiogenesis, 2008, 11, 223–234. [CrossRef] [PubMed] [Google Scholar]
  • Long M.Y., Li H.H., Xu J.Y., Lai D.M., Weng Z.H., Inhibitory effects of transfection of arresten gene on liver metastasis from colorectal cancer in nude mice. Chin J Cancer, 2008, 27, 312–315. [Google Scholar]
  • Luo Y.Q., Yao L.J., Zhao L., Sun A.Y., Dong H., Du J.P., Wu S.Z., Hu W., Development of an ELISA for quantification of tumstatin in serum samples and tissue extracts of patients with lung carcinomas. Clin Chim Acta, 2010, 411, 510–515. [CrossRef] [PubMed] [Google Scholar]
  • Maeshima Y., Colorado P.C., Torre A., Holthaus K.A., Grunkemeyer J.A., Ericksen M.B., Hopfer H., Xiao Y., Stillman I.E., Kalluri R., Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J Biol Chem, 2000, 275, 21340–21348. [CrossRef] [PubMed] [Google Scholar]
  • Maeshima Y., Yerramalla U.L., Dhanabal M., Holthaus K.A., Barbashov S., Kharbanda S., Reimer C., Manfredi M., Dickerson W.M., Kalluri R., Extracellular matrix-derived peptide binds to αVβ3 integrin and inhibits angiogenesis. J Biol Chem, 2001, 276, 31959–31968. [CrossRef] [PubMed] [Google Scholar]
  • Maeshima Y., Sudhakar A., Lively J.C., Ueki K., Kharbanda S., Kahn C.R., Sonenberg N., Hynes R.O., Kalluri R., Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science, 2002, 295, 140–143. [CrossRef] [PubMed] [Google Scholar]
  • Magnon C., Galaup A., Mullan B., Rouffiac V., Bouquet C., Bidart J.M., Griscelli F., Opolon P., Perricaudet M., Canstatin acts on endothelial and tumor cells via mitochondrial damage initiated through interaction with αvβ3 and αvβ5 integrins. Cancer Res, 2005, 15, 4353–4361. [CrossRef] [Google Scholar]
  • Magnon C., Opolon P., Ricard M., Connault E., Ardouin P., Galaup A., Métivier D., Bidart J.M., Germain S., Perricaudet M., Schlumberger M., Radiation and inhibition of angiogenesis by canstatin synergize to induce HIF-1α-mediated tumor apoptotic switch. J Clin Invest, 2007, 117, 1844–1855. [CrossRef] [PubMed] [Google Scholar]
  • Magnon C., Opolon P., Connault E., Mir L.M., Perricaudet M., Martel-Renoir D., Canstatin gene electrotransfer combined with radiotherapy: preclinical trials for cancer treatment. Gene Ther, 2008, 15, 1436–1445. [CrossRef] [PubMed] [Google Scholar]
  • Maquart F.X., Siméon A., Pasco S., Monboisse J.C., Régulation de l’activité cellulaire par la matrice extracellulaire : le concept de matrikine. J Soc Biol, 1999, 193, 423–428. [PubMed] [Google Scholar]
  • Miles A.J., Skubitz A.P., Furcht L.T., Fields G.B., Promotion of cell adhesion by single-stranded and triple-helical peptide models of basement membrane collagen α1(IV)531–543. Evidence for conformationally dependent and conformationally independent type IV collagen cell adhesion sites. J Biol Chem, 1994, 269, 30939–30945. [PubMed] [Google Scholar]
  • Mundel T.M., Yliniemi A.M., Maeshima Y., Sugimoto H., Kieran M.K., Kalluri R., Type IV collagen α6 chain-derived noncollagenous domain 1 (α6(IV) NC1) inhibits angiogenesis and tumor growth. Int J Cancer, 2008, 122, 1738–1744. [CrossRef] [PubMed] [Google Scholar]
  • Myers J.C., Li D., Bageris A., Abraham V., Dion A.S., Amenta P.S., Biochemical and immunohistochemical characterization of human type XIX defines a novel class of basement membrane zone collagens. Am J Pathol, 1997, 151, 1729–1740. [PubMed] [Google Scholar]
  • Myers J.C., Li D., Amenta P.S., Clark C.C., Nagaswami C., Weisel J.W., Type XIX collagen purified from human umbilical cord is characterized by multiple sharp kinks delineating collagenous subdomains and by intermolecular aggregates via globular, disulfide-linked, and heparin-binding amino termini. J Biol Chem, 2003, 278, 32047–32057. [CrossRef] [PubMed] [Google Scholar]
  • O’Reilly M.S., Boehm T., Shing Y., Fukai N., Vasios G., Lane W.S., Flynn E., Birkhead J.R., Olsen B.R., Folkman J., Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 1997, 88, 277–285. [CrossRef] [PubMed] [Google Scholar]
  • Panka D.J., Mier J.W., Canstatin inhibits Akt activation and induces Fas dependent apoptosis in endothelial cells. J Biol Chem, 2003, 278, 37632–37636. [CrossRef] [PubMed] [Google Scholar]
  • Pasco S., Han J., Gillery P., Bellon G., Maquart F.X., Borel J.P., Kefalides N.A., Monboisse J.C., A specific sequence of the noncollagenous domain of the α3(IV) chain of type IV collagen inhibits expression and activation of matrix metalloproteinases by tumor cells. Cancer Res, 2000a, 60, 467–473. [PubMed] [Google Scholar]
  • Pasco S., Monboisse J.C., Kieffer N., The α3(IV) 185–5203 peptide from noncollagenous domain 1 of type IV collagen interacts with a novel binding site on the β3 subunit of integrin αVβ3 and stimulates focal adhesion kinase and phosphatidylinositol 3-kinase phosphorylation. J Biol Chem, 2000b, 275, 32999–33007. [CrossRef] [PubMed] [Google Scholar]
  • Pasco S., Ramont L., Venteo L., Pluot M., Maquart F.X., Monboisse J.C., In vivo overexpression of tumstatin domains by tumor cells inhibits their invasive properties in a mouse melanoma model. Exp Cell Res, 2004, 301, 251–265. [CrossRef] [PubMed] [Google Scholar]
  • Petitclerc E., Boutaud A., Prestayko A., Xu J., Sado Y., Ninomiya Y., Sarras M.P. Jr., Hudson B.G., Brooks P.C., New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J Biol Chem, 2000, 275, 8051–8061. [CrossRef] [PubMed] [Google Scholar]
  • Polette M., Thiblet J., Ploton D., Buisson A.C., Monboisse J.C., Tournier J.M., Birembaut P., Distribution of α1(IV) and α3(IV) chains of type IV collagen in lung tumors. J Pathol, 1997, 182, 185–191. [CrossRef] [PubMed] [Google Scholar]
  • Ramchandran R., Dhanabal M., Volk R., Waterman M.J.F., Segal M., Lu H., Knebelmann B., Sukhatme V.P., Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem Biophys Res Commun, 1999, 255, 735–739. [CrossRef] [PubMed] [Google Scholar]
  • Ramont L., Brassart-Pasco S., Thevenard J., Deshorgue A., Venteo L., Laronze J.Y., Pluot M., Monboisse J.C., Maquart F.X., The NC1 domain of type XIX collagen inhibits in vivo melanoma growth. Mol Cancer Ther, 2007, 6, 506–514. [CrossRef] [PubMed] [Google Scholar]
  • Rehn M., Pihlajaniemi T., α1(XVIII), a collagen with frequent interruptions in the collagenous sequence, a distinct tissue distribution, and homology with type XV collagen. Proc Natl Acad Sci USA, 1994, 91, 4234–4238. [CrossRef] [Google Scholar]
  • Ricard-Blum S., The collagen family. Cold Spring Harb Perspect Biol, 2011, 3, a004978. [Google Scholar]
  • Ricard-Blum S., Ballut L., Matricryptins derived from collagens and proteoglycans. Front Biosci, 2011, 16, 674–697. [CrossRef] [PubMed] [Google Scholar]
  • Rivera C.G., Rosca E.V., Pandey N.B., Koskimaki J.E., Bader J.S., Popel A.S., Novel peptide-specific quantitative structure-activity relationship (QSAR) analysis applied to collagen IV peptides with antiangiogenic activity. J Med Chem, 2011, 54, 6492–6500. [CrossRef] [PubMed] [Google Scholar]
  • Roth J.M., Akalu A., Zelmanovich A., Policarpio D., Ng B., MacDonald S., Formenti S., Liebes L., Brooks P.C., Recombinant α2(IV)NC1 domain inhibits tumor cell-extracellular matrix interactions, induces cellular senescence, and inhibits tumor growth in vivo. Am J Pathol, 2005, 166, 901–911. [CrossRef] [PubMed] [Google Scholar]
  • Shimoda M., Mellody K.T., Orimo A., Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Sem Cell Dev Biol, 2010, 21, 19–25. [CrossRef] [Google Scholar]
  • Sudhakar A., Nyberg P., Keshamouni V.G., Mannam A.P., Li J., Sugimoto H., Cosgrove D., Kalluri R., Human α1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by α1β1 integrin. J Clin Invest, 2005, 115, 2801–2810. [CrossRef] [PubMed] [Google Scholar]
  • Thevenard J., Floquet N., Ramont L., Prost E., Nuzillard J.M., Dauchez M., Yezid H., Alix A.J., Maquart F.X., Monboisse J.C., Brassart-Pasco S., Structural and antitumor properties of the YSNSG cyclopeptide derived from tumstatin. Chem Biol, 2006, 13, 1307–1315. [CrossRef] [PubMed] [Google Scholar]
  • Thevenard J., Ramont L., Devy J., Brassart B., Dupont-Deshorgue A., Floquet N., Schneider L., Ouchani F., Terryn C., Maquart F.X., Monboisse J.C., Brassart-Pasco S., The YSNSG cyclopeptide derived from tumstatin inhibits tumor angiogenesis by down-regulating endothelial cell migration. Int J Cancer, 2010, 126, 1055–1066. [PubMed] [Google Scholar]
  • Toubal A., Ramont L., Terryn C., Brassart-Pasco S., Patigny D., Sapi J., Monboisse J.C., Maquart F.X., The NC1 domain of type XIX collagen inhibits melanoma cell migration. Eur J Dermatol, 2010, 20, 712–718. [PubMed] [Google Scholar]
  • Wang W.B., Zhou Y.L., Heng D.F., Miao C.H., Cao Y.L., Combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and canstatin gene suppression therapy on breast tumor xenograft growth in mice. Breast Cancer Res Ther, 2008, 110, 283–295. [CrossRef] [Google Scholar]
  • Wang W., Chen P., Li J.L., Pei Y.F., Shuang Q.C., Liu C.H., Cai S., Liu S.K., Zhu L.Y., Zhou R., The effects of tumstatin 185–191 on lung adenocarcinoma cell lines and the association with protein kinase B and extracellular regulated protein kinase activation. Zhonghua Jie He He Hu Xi Za Zhi, 2010, 33, 123–127. [PubMed] [Google Scholar]
  • Weiss S.A., Cheresh D.A., Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med, 2011, 17, 1359–1370. [CrossRef] [PubMed] [Google Scholar]
  • Xu C.X., Liu X.X., Hou G.S., Yan Y.F., Chen S.M., Wang W., Jiang G.S., Liu B., Xin J.X., The expression of tumstatin is down-regulated in renal carcinoma. Mol Biol Rep, 2010, 37, 2273–2277. [CrossRef] [PubMed] [Google Scholar]
  • Yao B., He Q.M., Tian L., Xiao F., Jiang Y., Zhang R., Li G., Zhang L., Hou J.M., Cheng X.C., Wen Y.J., Kan B., Li J., Zhao X., Hu B., Zhou Q., Zhang L., Wei Y.Q., Enhanced antitumor effect of the combination of tumstatin gene therapy and gemcitabine in murine models. Hum Gene Ther, 2005, 16, 1075–1086. [CrossRef] [PubMed] [Google Scholar]
  • Zhang G.M., Zhang Y.M., Fu S.B., Liu X.H., Fu X., Yu Y., Zhang Z.Y., Effects of cloned tumstatin-related and angiogenesis-inhibitory peptides on proliferation and apoptosis of endothelial cells. Chin Med J, 2008, 121, 2324–2334. [PubMed] [Google Scholar]
  • Zhang X., Xu W., Qian H., Zhu W., Zhang R., Mesenchymal stem cells modified to express lentivirus TNF-α tumstatin (45–132) inhibit the growth of prostate cancer. J Cell Mol Med, 2011, 15, 433–444. [CrossRef] [PubMed] [Google Scholar]
  • Zheng X.W., Li Y., Tang F.A., Ma J., Zheng P.Y., Lu G.F., In vivo antitumor effect of canstatin gene on human œsophagal carcinoma xenografts in nude mice. Chin J Cancer, 2009, 28, 1–7. [PubMed] [Google Scholar]
  • Zhou J.F., Bai C.M., Wang Y.Z., Li X.Y., Cheng Y.J., Chen S.C., Endostar combined with chemotherapy for treatment of metastatic colorectal and gastric cancer: a pilot study. Chin Med J, 2011, 124, 4299–4303. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.