Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 206, Numéro 2, 2012
Page(s) 125 - 134
Section Célébration du cinquantenaire de la fondation de la Société Française du Tissu Conjonctif
DOI https://doi.org/10.1051/jbio/2012016
Publié en ligne 4 juillet 2012
  • Ando K., Mori K., Rédini F., Heymann D., RANKL/RANK/OPG: key therapeutic target in bone oncology. Curr Drug Discov Technol, 2008, 5, 263–268. [CrossRef] [PubMed] [Google Scholar]
  • Batra N., Kar R., Jiang J.X., Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim Biophys Acta, 2011 (in press). [Google Scholar]
  • Baud’huin M., Lamoureux F., Duplomb L., Rédini, F., Heymann, D., RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cell Mol Life Sci, 2007, 64, 2334–2350. [CrossRef] [PubMed] [Google Scholar]
  • Bevans C.G., Harris A.L., Regulation of connexin channels by pH. Direct action of the protonated form of taurine and other aminosulfonates. J Biol Chem, 1999, 274, 3711–3719. [CrossRef] [PubMed] [Google Scholar]
  • Blanchard F., Duplomb L., Baud’huin M., Brounais B., The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev, 2009, 20, 19–28. [CrossRef] [PubMed] [Google Scholar]
  • Cancedda R., Castagnola P., Cancedda F.D., Dozin B., Quarto R., Developmental control of chondrogenesis and osteogenesis. Int J Dev Biol, 2000, 44, 707–714. [PubMed] [Google Scholar]
  • Chambers T.J., The regulation of osteoclastic development and function. Ciba Found Symp, 1988, 136, 92–107. [PubMed] [Google Scholar]
  • Cherian P.P., Siller-Jackson A.J., Gu S., Wang X., Bonewald, L.F., Sprague, E., Jiang, J.X., Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell, 2005, 16, 3100–3106. [CrossRef] [PubMed] [Google Scholar]
  • Civitelli R., Cell-cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys, 2008, 473, 188–192. [CrossRef] [PubMed] [Google Scholar]
  • Civitelli R., Beyer E.C., Warlow P.M., Robertson A.J., Geist S.T., Steinberg T.H., Connexin 43 mediates direct intercellular communication in human osteoblastic cell networks. J Clin Invest, 1993, 91, 1888–1896. [CrossRef] [PubMed] [Google Scholar]
  • Cremer M., In Zum kernleiterproblem. Z Biol, 1898, 37, 550–553. [Google Scholar]
  • Délèze J., The site of healing over after a local injury in the heart. Recent Adv Stud Cardiac Struct Metab, 1975, 5, 223–225. [PubMed] [Google Scholar]
  • Duthe F., Dupont E., Verrecchia F., Plaisance I., Severs N.J., Sarrouilhe D., Hervé J.C., Dephosphorylation agents depress gap junctional communication between rat cardiac cells without modifying the connexin 43 phosphorylation degree. Gen Physiol Biophys, 2000, 19, 441–449. [PubMed] [Google Scholar]
  • Furshpan E.J., Potter D.D., Transmission at the giant motor synapses of the crayfish. J Physiol, 1959, 145, 289–325. [PubMed] [Google Scholar]
  • Genetos D.C., Kephart C.J., Zhang Y., Yellowley C.E., Donahue H.J., Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol, 2007, 212, 207–214. [CrossRef] [PubMed] [Google Scholar]
  • Hervé J.C., Pluciennik F., Verrecchia F., Bastide B., Delage B., Joffre M., Délèze J., Influence of the molecular structure of steroids on their ability to interrupt gap junctional communication. J Membr Biol, 1996, 149, 179–187. [CrossRef] [PubMed] [Google Scholar]
  • Hervé J.C., Bourmeyster N., Sarrouilhe D., Diversity in protein-protein interactions of connexins: emerging roles. Biochim Biophys Acta, 2004, 1662, 22–41. [CrossRef] [PubMed] [Google Scholar]
  • Höber R., The permeability of red blood corpuscules to organic anions. J Cell Comp Physiol, 1936, 7, 367–391. [CrossRef] [Google Scholar]
  • Hodgkin A.L., Rushton W.A.H., The electrical constants of a crustacean nerve fibre. Proc Roy Soc Lond, 1946, 133, 444–479. [CrossRef] [Google Scholar]
  • Holtrop M.E., King G.J., The ultrastructure of the osteoclast and its functional implications. Clin Orthop Relat Res, 1977, 123, 177–196. [PubMed] [Google Scholar]
  • Ilvesaro J., Vããnãnen K., Tuukkanen J., Bone-resorbing osteoclasts contain gap junctional connexin-43. J Bone Miner Res, 2000, 15, 919–926. [CrossRef] [PubMed] [Google Scholar]
  • Ilvesaro J., Tavi P., Tuukkanen J., Connexin-mimetic peptide Gap27 decreases osteoclast activity. BMC Musculoskelet Disord, 2001, 2, 10. [CrossRef] [PubMed] [Google Scholar]
  • Kanno Y., Loewenstein WR., Intercellular diffusion. Science, 1964, 143, 959–960. [CrossRef] [PubMed] [Google Scholar]
  • Koga T., Matsui Y., Asagiri M., Kodama T., de Crombrugghe B., Nakashima K., Takayanagi H., NFAT and Osterix cooperatively regulate bone formation. Nat Med, 2005, 11, 880–885. [CrossRef] [PubMed] [Google Scholar]
  • Komori T., Yagi H., Nomura S., Yamaguchi A., Sasaki K., Deguchi K., Shimizu Y., Bronson R.T., Gao Y.H., Inada M., Sato M., Okamoto R., Kitamura Y., Yoshiki S., Kishimoto T., Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997, 89, 755–764. [CrossRef] [PubMed] [Google Scholar]
  • Koval M., Harley J.E., Hick E., Steinberg T.H., Connexin 46 is retained as monomers in a trans-Golgi compartment of osteoblastic cells. J Cell Biol, 1997, 19, 847–857. [CrossRef] [Google Scholar]
  • Laird D.W., The life cycle of a connexin: gap junction formation, removal, and degradation. J Bioenerg Biomembr, 1996, 28, 311–318. [CrossRef] [PubMed] [Google Scholar]
  • Laird D.W., Life cycle of connexins in health and disease. Biochem J, 2006, 394, 527–43. [CrossRef] [PubMed] [Google Scholar]
  • Laird D.W., Revel J.P., Biochemical and immunochemical analysis of the arrangement of connexin 43 in rat heart gap junction membranes. J Cell Sci, 1990, 97, 109–117. [PubMed] [Google Scholar]
  • Lampe P.D., Lau A.F., The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol, 2004, 36, 1171–1186. [CrossRef] [PubMed] [Google Scholar]
  • Lecanda F., Towler D.A., Ziambaras K., Cheng S.L., Koval M., Steinberg T.H., Civitelli R., Gap junctional communication modulates gene expression in osteoblastic cells. Mol Biol Cell, 1998, 9, 2249–2258. [CrossRef] [PubMed] [Google Scholar]
  • Lecanda F., Warlow P.M., Sheikh S., Furlan F., Steinberg T.H., Civitelli R., Connexin 43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol, 2000, 151, 931–944. [CrossRef] [PubMed] [Google Scholar]
  • Li Z., Zhou Z., Yellowley C.E., Donahue H.J., Inhibiting gap junctional intercellular communication alters expression of differentiation markers in osteoblastic cells. Bone, 1999, 25, 661–666. [CrossRef] [PubMed] [Google Scholar]
  • Lian J.B., Stein G.S., Javed A., van Wijnen A.J., Stein J.L., Montecino M., Hassan M.Q., Gaur T., Lengner C.J., Young D.W., Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord, 2006, 7, 1–16. [CrossRef] [PubMed] [Google Scholar]
  • Loewenstein W.R., Permeability of membrane junctions. Ann N Y Acad Sci, 1966, 137, 441–472. [CrossRef] [PubMed] [Google Scholar]
  • Loewenstein W.R., Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev, 1981, 61, 829–913. [PubMed] [Google Scholar]
  • Makowski L., Caspar D.L., Phillips W.C., Goodenough D.A., Gap junction structures. II. Analysis of the X-ray diffraction data. J Cell Biol, 1977, 74, 629–645. [CrossRef] [PubMed] [Google Scholar]
  • Manolagas S.C., Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev, 2000, 21, 115–137. [CrossRef] [PubMed] [Google Scholar]
  • Marie P.J., Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys, 2008, 473, 98–105. [CrossRef] [PubMed] [Google Scholar]
  • Martinez A.D., Hayrapetyan V., Moreno A., Beyer E., Connexin 43 and connexin 45 form heteromeric gap junction channels in which individual components determine permeability and regulation. Circ Res, 2002, 90, 1100–1107. [CrossRef] [PubMed] [Google Scholar]
  • Mori K., Ando K., Heymann D., Rédini F., Receptor activator of nuclear factor-κB ligand (RANKL) stimulates bone-associated tumors through functional RANK expressed on bone-associated cancer cells. Histol Histopathol, 2009, 24, 235–242. [PubMed] [Google Scholar]
  • Mundy G.R., Peptides and growth regulatory factors in bone. Rheum Dis Clin North Am, 1994, 20, 577–588. [PubMed] [Google Scholar]
  • Nakashima K., Zhou X., Kunkel G., Zhang Z., Deng J.M., Behringer R.R., de Crombrugghe B., The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 2002, 108, 17–29. [CrossRef] [PubMed] [Google Scholar]
  • Owen M., Marrow stromal stem cells. J Cell Sci, 1988, 10, 63–76. [CrossRef] [Google Scholar]
  • Oyamada M., Oyamada Y., Takamatsu T., Regulation of connexin expression. Biochim Biophys Acta, 2005, 20, 6–23. [CrossRef] [Google Scholar]
  • Plotkin L.I., Manolagas S.C., Bellido T., Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem, 2002, 277, 8648–8657. [CrossRef] [PubMed] [Google Scholar]
  • Pluciennik F., Verrecchia F., Bastide B., Hervé J.C., Joffre M., Délèze J., Reversible interruption of gap junctional communication by testosterone propionate in cultured Sertoli cells and cardiac myocytes. J Membr Biol, 1996, 149, 169–177. [CrossRef] [PubMed] [Google Scholar]
  • Revel J.P., Karnovsky M.J., Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol, 1967, 33, C7–C12. [CrossRef] [PubMed] [Google Scholar]
  • Rousselle A.V., Heymann D., Osteoclastic acidification pathways during bone resorption. Bone, 2002, 30, 533–540. [CrossRef] [PubMed] [Google Scholar]
  • Schiller P.C., D’Ippolito G., Balkan W., Roos B.A., Howard G.A., Gap-junctional communication is required for the maturation process of osteoblastic cells in culture. Bone, 2001, 28, 362–369. [CrossRef] [PubMed] [Google Scholar]
  • Schilling A.F., Filke S., Lange T., Gebauer M., Brink S., Baranowsky A., Zustin J., Amling M., Gap junctional communication in human osteoclasts in vitro and in vivo. J Cell Mol Med, 2008, 12, 2497–2504. [CrossRef] [PubMed] [Google Scholar]
  • Schleiden M.J., Beitrage zur phytogenesis. In Muller Arch. Anat. Physiol. Wiss. Medic., 1938, pp. 137–176. [Google Scholar]
  • Segretain D., Falk M.M., Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta, 2004, 23, 3–21. [CrossRef] [Google Scholar]
  • Simionescu M., Simionescu N., Palade G.E., Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol, 1975, 67, 863–885. [CrossRef] [PubMed] [Google Scholar]
  • Söhl G., Willecke K., An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes, 2003, 10, 173–180. [PubMed] [Google Scholar]
  • Sotkis A., Wang X.G., Yasumura T., Peracchia L.L., Persechini A., Rash J.E., Peracchia C., Calmodulin colocalizes with connexins and plays a direct role in gap junction channel gating. Cell Commun Adhes, 2001, 8, 277–281. [CrossRef] [PubMed] [Google Scholar]
  • Stains J.P., Civitelli R., Gap junctions regulate extracellular signal-regulated kinase signaling to affect gene transcription. Mol Biol Cell, 2005, 16, 64–72. [CrossRef] [PubMed] [Google Scholar]
  • Suda T., Takahashi N., Martin T.J., Modulation of osteoclast differentiation. Endocr Rev, 1992, 13, 66–80. [PubMed] [Google Scholar]
  • Tacheau C., Fontaine J., Loy J., Mauviel A., Verrecchia F., TGF-β induces connexin 43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways. J Cell Physiol, 2008a, 217, 759–768. [CrossRef] [PubMed] [Google Scholar]
  • Tacheau C., Laboureau J., Mauviel A., Verrecchia F., TNF-α represses connexin 43 expression in HaCat keratinocytes via activation of JNK signaling. J Cell Physiol, 2008b, 216, 438–444. [CrossRef] [PubMed] [Google Scholar]
  • Teunissen, B.E., Bierhuizen, M.F., Transcriptional control of myocardial connexins. Cardiovasc Res, 2004, 62, 246–255. [CrossRef] [PubMed] [Google Scholar]
  • Theoleyre S., Wittrant Y., Tat S.K., Fortun Y., Rédini F., Heymann D., The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev, 2004, 15, 457–475. [CrossRef] [PubMed] [Google Scholar]
  • Thi M.M., Kojima T., Cowin S.C., Weinbaum S., Spray D.C., Fluid shear stress remodels expression and function of junctional proteins in cultured bone cells. Am J Physiol: Cell Physiol, 2003, 284, C389–C403. [CrossRef] [Google Scholar]
  • Verrecchia F., Hervé J.C., Reversible inhibition of gap junctional communication by tamoxifen in cultured cardiac myocytes. Pflugers Arch, 1997a, 434, 113–116. [CrossRef] [PubMed] [Google Scholar]
  • Verrecchia F., Hervé J.C., Reversible inhibition of gap junctional communication elicited by several classes of lipophilic compounds in cultured rat cardiomyocytes. Can J Cardiol, 1997b, 13, 1093–1100. [PubMed] [Google Scholar]
  • Verrecchia F., Mauviel A., Control of connective tissue gene expression by TGF-β: role of Smad proteins in fibrosis. Curr Rheumatol Rep, 2002a, 4, 143–149. [CrossRef] [PubMed] [Google Scholar]
  • Verrecchia F., Mauviel A., Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol, 2002b, 118, 211–215. [CrossRef] [PubMed] [Google Scholar]
  • Verrecchia F., Mauviel A., TGF-β and TNF-a: antagonistic cytokines controlling type I collagen gene expression. Cell Signal, 2004, 16, 873–880. [CrossRef] [PubMed] [Google Scholar]
  • Verrecchia F., Duthe F., Duval S., Duchatelle I., Sarrouilhe D., Hervé J.C., ATP counteracts the rundown of gap junctional channels of rat ventricular myocytes by promoting protein phosphorylation. J Physiol, 1999, 516, 447–459. [CrossRef] [PubMed] [Google Scholar]
  • Weidmann S., The electrical constants of Purkinje fibres. J Physiol, 1952, 118, 348–360. [PubMed] [Google Scholar]
  • Wennberg C., Hessle L., Lundberg P., Mauro S., Narisawa S., Lerner U.H., Millán J.L., Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res, 2000, 15, 1879–1888. [CrossRef] [PubMed] [Google Scholar]
  • Willecke K., Eiberger J., Degen J., Eckardt D., Romualdi A., Guldenagel M., Deutsch U., Sohl G., Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem, 2002, 383, 725–737. [CrossRef] [PubMed] [Google Scholar]
  • Wittrant Y., Theoleyre S., Chipoy C., Padrines M., Blanchard F., Heymann D., Rédini F., RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta, 2004, 1704, 49–57. [PubMed] [Google Scholar]
  • Yavropoulou M.P., Yovos J.G., Osteoclastogenesis-current knowledge and future perspectives. J Musculoskelet Neuronal Interact, 2008, 8, 204–216. [PubMed] [Google Scholar]
  • Zhang J.T., Nicholson B.J., The topological structure of connexin 26 and its distribution compared to connexin 32 in hepatic gap junctions. J Membr Biol, 1994, 139, 15–29. [PubMed] [Google Scholar]
  • Zimmer D.B., Green C.R., Evans W.H., Gilula N.B., Topological analysis of the major protein in isolated intact rat liver gap junctions and gap junction-derived single membrane structures. J Biol Chem, 1987, 262, 7751–7763. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.