Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 206, Numéro 2, 2012
Page(s) 135 - 143
Section Célébration du cinquantenaire de la fondation de la Société Française du Tissu Conjonctif
DOI https://doi.org/10.1051/jbio/2012015
Publié en ligne 4 juillet 2012
  • Aikawa E., Aikawa M., Libby P., Figueiredo J.L., Rusanescu G., Iwamoto Y., Fukuda D., Kohler R.H., Shi G.P., Jaffer F.A., Weissleder R., Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation, 2009, 119, 1785–1794. [CrossRef] [PubMed] [Google Scholar]
  • Barrett A.J., Proteolytic enzymes: serine and cysteine peptidases. Methods in Enzymology, 1994, Academic Press, Toronto, 244. [Google Scholar]
  • Barrett A.J., Proteolytic enzymes: aspartic and metallo peptidases. Methods in Enzymology, 1995, Academic Press, Toronto, 248. [Google Scholar]
  • Bobik A., Tkachuk V., Metalloproteinases and plasminogen activators in vessel remodeling. Curr Hypertens Rep, 2003, 5, 466–472. [CrossRef] [PubMed] [Google Scholar]
  • Bonnefoy A., Legrand C., Proteolysis of subendothelial adhesive glycoproteins (fibronectin, thrombospondin, and von Willebrand factor) by plasmin, leukocyte cathepsin G, and elastase. Thromb Res, 2000, 98, 323–332. [CrossRef] [PubMed] [Google Scholar]
  • Castellino F.J., Ploplis V.A., Structure and function of the plasminogen/plasmin system. Thromb Haemost, 2005, 93, 647–654. [PubMed] [Google Scholar]
  • Chain D., Kreizman T., Shapira H., Shaltiel S., Plasmin cleavage of vitronectin. Identification of the site and consequent attenuation in binding plasminogen activator inhibitor-1. FEBS Lett, 1991, 285, 251–256. [CrossRef] [PubMed] [Google Scholar]
  • Chan K.L., Is aortic stenosis a preventable disease? J Am Coll Cardiol, 2003, 42, 593–599. [CrossRef] [PubMed] [Google Scholar]
  • Chen J.H., Simmons C.A., Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ Res, 2011, 108, 1510–1524. [CrossRef] [PubMed] [Google Scholar]
  • Cornelius L.A., Nehring L.C., Harding E., Bolanowski M., Welgus H.G., Kobayashi D.K., Pierce R.A., Shapiro S.D., Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol, 1998, 161, 6845–6852. [PubMed] [Google Scholar]
  • Cowell S.J., Newby D.E., Boon N.A., Elder A.T., Calcific aortic stenosis: same old story? Age Ageing, 2004, 33, 538–544. [CrossRef] [PubMed] [Google Scholar]
  • Dzwonek J., Rylski M., Kaczmarek L., Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Lett, 2004, 567, 129–135. [CrossRef] [PubMed] [Google Scholar]
  • Edep M.E., Shirani J., Wolf P., Brown D.L., Matrix metalloproteinase expression in nonrheumatic aortic stenosis. Cardiovasc Pathol, 2000, 9, 281–286. [CrossRef] [PubMed] [Google Scholar]
  • Ellis V., Murphy G., Cellular strategies for proteolytic targeting during migration and invasion. FEBS Lett, 2001, 506, 1–5. [CrossRef] [PubMed] [Google Scholar]
  • Eriksen H.A., Satta J., Risteli J., Veijola M., Vare P., Soini Y., Type I and type III collagen synthesis and composition in the valve matrix in aortic valve stenosis. Atherosclerosis, 2006, 189, 91–98. [CrossRef] [PubMed] [Google Scholar]
  • Fernandez-Monreal M., Lopez-Atalaya J.P., Benchenane K., Cacquevel M., Dulin F., Le Caer J.P., Rossier J., Jarrige A.C., Mackenzie E.T., Colloc’h N., Ali C., Vivien D., Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling. J Biol Chem, 2004, 279, 50850–50856. [CrossRef] [PubMed] [Google Scholar]
  • Fondard O., Detaint D., Iung B., Choqueux C., Adle-Biassette H., Jarraya M., Hvass U., Couetil J.P., Henin D., Michel J.B., Vahanian A., Jacob M.P., Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur Heart J, 2005, 26, 1333–1341. [CrossRef] [PubMed] [Google Scholar]
  • Fontaine V., Jacob M.P., Houard X., Rossignol P., Plissonnier D., Angles-Cano E., Michel J.B., Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol, 2002, 161, 1701–1710. [CrossRef] [PubMed] [Google Scholar]
  • Freeman R.V., Otto C.M., Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation, 2005, 111, 3316–3326. [CrossRef] [PubMed] [Google Scholar]
  • Goldbarg S.H., Elmariah S., Miller M.A., Fuster V., Insights into degenerative aortic valve disease. J Am Coll Cardiol, 2007, 50, 1205–1213. [CrossRef] [PubMed] [Google Scholar]
  • Grande-Allen K.J., Osman N., Ballinger M.L., Dadlani H., Marasco S., Little P.J., Glycosaminoglycan synthesis and structure as targets for the prevention of calcific aortic valve disease. Cardiovasc Res, 2007, 76, 19–28. [CrossRef] [PubMed] [Google Scholar]
  • Hakuno D., Kimura N., Yoshioka M., Mukai M., Kimura T., Okada Y., Yozu R., Shukunami C., Hiraki Y., Kudo A., Ogawa S., Fukuda K., Periostin advances atherosclerotic and rheumatic cardiac valve degeneration by inducing angiogenesis and MMP production in humans and rodents. J Clin Invest, 2010, 120, 2292–2306. [CrossRef] [PubMed] [Google Scholar]
  • Helske S., Syvaranta S., Kupari M., Lappalainen J., Laine M., Lommi J., Turto H., Mayranpaa M., Werkkala K., Kovanen P.T., Lindstedt K.A., Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves. Eur Heart J, 2006a, 27, 1495–1504. [CrossRef] [PubMed] [Google Scholar]
  • Helske S., Syvaranta S., Lindstedt K.A., Lappalainen J., Oorni K., Mayranpaa M.I., Lommi J., Turto H., Werkkala K., Kupari M., Kovanen P.T., Increased expression of elastolytic cathepsins S, K, and V and their inhibitor cystatin C in stenotic aortic valves. Arterioscler Thromb Vasc Biol, 2006b, 26, 1791–1798. [CrossRef] [PubMed] [Google Scholar]
  • Hinton R.B., Jr., Lincoln J., Deutsch G.H., Osinska H., Manning P.B., Benson D.W., Yutzey K.E., Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res, 2006, 98, 1431–1438. [CrossRef] [PubMed] [Google Scholar]
  • Hynes R.O., Zhao Q., The evolution of cell adhesion. J Cell Biol, 2000, 150, F89–96. [CrossRef] [PubMed] [Google Scholar]
  • Iung B., Baron G., Butchart E.G., Delahaye F., Gohlke-Barwolf C., Levang O.W., Tornos P., Vanoverschelde J.L., Vermeer F., Boersma E., Ravaud P., Vahanian A., A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J, 2003, 24, 1231–1243. [CrossRef] [PubMed] [Google Scholar]
  • Jacob M.P., Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomed Pharmacother, 2003, 57, 195–202. [CrossRef] [PubMed] [Google Scholar]
  • Jian B., Jones P.L., Li Q., Mohler E.R., 3rd, Schoen F.J., Levy R.J., Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am J Pathol, 2001, 159, 321–327. [CrossRef] [PubMed] [Google Scholar]
  • Jian B., Narula N., Li Q.Y., Mohler E.R., 3rd, Levy R.J., Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann Thorac Surg, 2003, 75, 457–465; discussion 465–466. [CrossRef] [PubMed] [Google Scholar]
  • Jiang Y., Goldberg I.D., Shi Y.E., Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 2002, 21, 2245–2252. [CrossRef] [PubMed] [Google Scholar]
  • Jourquin J., Tremblay E., Decanis N., Charton G., Hanessian S., Chollet A.M., Le Diguardher T., Khrestchatisky M., Rivera S., Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate. Eur J Neurosci, 2003, 18, 1507–1517. [CrossRef] [PubMed] [Google Scholar]
  • Kaden J.J., Vocke D.C., Fischer C.S., Grobholz R., Brueckmann M., Vahl C.F., Hagl S., Haase K.K., Dempfle C.E., Borggrefe, M., Expression and activity of matrix metalloproteinase-2 in calcific aortic stenosis. Z Kardiol, 2004, 93, 124–130. [CrossRef] [PubMed] [Google Scholar]
  • Kaden J.J., Dempfle C.E., Grobholz R., Fischer C.S., Vocke D.C., Kilic R., Sarikoc A., Pinol R., Hagl S., Lang S., Brueckmann M., Borggrefe M., Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis. Cardiovasc Pathol, 2005, 14, 80–87. [CrossRef] [PubMed] [Google Scholar]
  • Kochtebane N., Choqueux C., Passefort S., Nataf P., Messika-Zeitoun D., Bartagi A., Michel J.B., Angles-Cano E., Jacob M. P., Plasmin induces apoptosis of aortic valvular myofibroblasts. J Pathol, 2010, 221, 37–48. [CrossRef] [PubMed] [Google Scholar]
  • Latif N., Sarathchandra P., Taylor P.M., Antoniw J., Yacoub M.H., Localization and pattern of expression of extracellular matrix components in human heart valves. J Heart Valve Dis, 2005, 14, 218–227. [PubMed] [Google Scholar]
  • Liberman M., Bassi E., Martinatti M.K., Lario F.C., Wosniak J. Jr., Pomerantzeff P.M., Laurindo F.R., Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler Thromb Vasc Biol, 2008, 28, 463–470. [CrossRef] [PubMed] [Google Scholar]
  • Lijnen H.R., Ugwu F., Bini A., Collen D., Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry, 1998, 37, 4699–4702. [CrossRef] [PubMed] [Google Scholar]
  • Lijnen H.R., Elements of the fibrinolytic system. Ann N Y Acad Sci. 2001a, 936, 226–236. [CrossRef] [PubMed] [Google Scholar]
  • Lijnen H.R., Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost, 2001b, 86, 324–333. [PubMed] [Google Scholar]
  • Liotta L.A., Goldfarb R.H., Terranova V.P., Cleavage of laminin by thrombin and plasmin: alpha thrombin selectively cleaves the beta chain of laminin. Thromb Res, 1981, 21, 663–673. [CrossRef] [PubMed] [Google Scholar]
  • Mazzone A., Epistolato M.C., De Caterina R., Storti S., Vittorini S., Sbrana S., Gianetti J., Bevilacqua S., Glauber M., Biagini A., Tanganelli P., Neoangiogenesis, T-lymphocyte infiltration, and heat shock protein-60 are biological hallmarks of an immunomediated inflammatory process in end-stage calcified aortic valve stenosis. J Am Coll Cardiol, 2004, 43, 1670–1676. [CrossRef] [PubMed] [Google Scholar]
  • McCawley L.J., Matrisian L.M., Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol, 2001, 13, 534–540. [CrossRef] [PubMed] [Google Scholar]
  • McDonald P.C., Wilson J.E., McNeill S., Gao M., Spinelli J.J., Rosenberg F., Wiebe H., McManus B.M., The challenge of defining normality for human mitral and aortic valves: geometrical and compositional analysis. Cardiovasc Pathol, 2002, 11, 193–209. [CrossRef] [PubMed] [Google Scholar]
  • Meilhac O., Ho-Tin-Noe B., Houard X., Philippe M., Michel J.B., Angles-Cano E., Pericellular plasmin induces smooth muscle cell anoikis. FASEB J, 2003, 17, 1301–1303. [Google Scholar]
  • Michel J.B., Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler Thromb Vasc Biol, 2003, 23, 2146–2154. [CrossRef] [PubMed] [Google Scholar]
  • Miller J.D., Chu Y., Brooks R.M., Richenbacher W.E., Pena-Silva R., Heistad D.D., Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J Am Coll Cardiol, 2008, 52, 843–850. [CrossRef] [PubMed] [Google Scholar]
  • Mohler E.R., 3rd, Gannon F., Reynolds C., Zimmerman R., Keane M.G., Kaplan F.S., Bone formation and inflammation in cardiac valves. Circulation, 2001, 103, 1522–1528. [CrossRef] [PubMed] [Google Scholar]
  • Mondino A., Blasi F., uPA and uPAR in fibrinolysis, immunity and pathology. Trends Immunol, 2004, 25, 450–455. [CrossRef] [PubMed] [Google Scholar]
  • Montgomery A.M., Sabzevari H., Reisfeld R.A., Production and regulation of gelatinase B by human T-cells. Biochim Biophys Acta, 1993, 1176, 265–268. [CrossRef] [PubMed] [Google Scholar]
  • Nagase H., Woessner J.F. Jr., Matrix metalloproteinases. J Biol Chem, 1999, 274, 21491–21494. [CrossRef] [PubMed] [Google Scholar]
  • Nelson A.R., Fingleton B., Rothenberg M.L., Matrisian L.M., Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol, 2000, 18, 1135–1149. [PubMed] [Google Scholar]
  • Nkomo V.T., Gardin J.M., Skelton T.N., Gottdiener J.S., Scott C.G., Enriquez-Sarano M., Burden of valvular heart diseases: a population-based study. Lancet, 2006, 368, 1005–1011. [CrossRef] [PubMed] [Google Scholar]
  • O’Brien K.D., Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler Thromb Vasc Biol, 2006, 26, 1721–1728. [CrossRef] [PubMed] [Google Scholar]
  • O’Brien K.D., Reichenbach D.D., Marcovina S.M., Kuusisto J., Alpers C.E., Otto C.M., Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of “degenerative” valvular aortic stenosis. Arterioscler Thromb Vasc Biol, 1996, 16, 523–532. [CrossRef] [PubMed] [Google Scholar]
  • Olsson M., Thyberg J., Nilsson J., Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler Thromb Vasc Biol, 1999, 19, 1218–1222. [CrossRef] [PubMed] [Google Scholar]
  • Otto C.M., Kuusisto J., Reichenbach D.D., Gown A.M., O’Brien K.D., Characterization of the early lesion of “degenerative” valvular aortic stenosis. Histological and immunohistochemical studies. Circulation, 1994, 90, 844–853. [CrossRef] [PubMed] [Google Scholar]
  • Owen C.A., Campbell E.J., The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol, 1999, 65, 137–150. [PubMed] [Google Scholar]
  • Pepper M.S., Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol, 2001, 21, 1104–1117. [CrossRef] [PubMed] [Google Scholar]
  • Rajamannan N.M., Subramaniam M., Rickard D., Stock S.R., Donovan J., Springett M., Orszulak T., Fullerton D.A., Tajik A.J., Bonow R.O., Spelsberg T., Human aortic valve calcification is associated with an osteoblast phenotype. Circulation, 2003, 107, 2181–2184. [CrossRef] [PubMed] [Google Scholar]
  • Sacks M.S., David Merryman W., Schmidt D.E., On the biomechanics of heart valve function. J Biomech, 2009, 42, 1804–1824. [CrossRef] [PubMed] [Google Scholar]
  • Satta J., Melkko J., Pollanen R., Tuukkanen J., Paakko P., Ohtonen P., Mennander A., Soini Y., Progression of human aortic valve stenosis is associated with tenascin-C expression. J Am Coll Cardiol, 2002, 39, 96–101. [CrossRef] [PubMed] [Google Scholar]
  • Satta J., Oiva J., Salo T., Eriksen H., Ohtonen P., Biancari F., Juvonen T.S., Soini Y., Evidence for an altered balance between matrix metalloproteinase-9 and its inhibitors in calcific aortic stenosis. Ann Thorac Surg, 2003, 76, 681–688; discussion 688. [CrossRef] [PubMed] [Google Scholar]
  • Schedin P., Strange R., Mitrenga T., Wolfe P., Kaeck M., Fibronectin fragments induce MMP activity in mouse mammary epithelial cells: evidence for a role in mammary tissue remodeling. J Cell Sci, 2000, 113, 795–806. [PubMed] [Google Scholar]
  • Sidenius N., Blasi F., The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev, 2003, 22, 205–222. [CrossRef] [PubMed] [Google Scholar]
  • Soini Y., Satta J., Maatta M., Autio-Harmainen H., Expression of MMP2, MMP9, MT1-MMP, TIMP1, and TIMP2 mRNA in valvular lesions of the heart. J Pathol, 2001, 194, 225–231. [CrossRef] [PubMed] [Google Scholar]
  • Soini Y., Salo T., Satta J., Angiogenesis is involved in the pathogenesis of nonrheumatic aortic valve stenosis. Hum Pathol, 2003, 34, 756–763. [CrossRef] [PubMed] [Google Scholar]
  • Ugwu F., Van Hoef B., Bini A., Collen D., Lijnen H.R., Proteolytic cleavage of urokinase-type plasminogen activator by stromelysin-1 (MMP-3). Biochemistry, 1998, 37, 7231–7236. [CrossRef] [PubMed] [Google Scholar]
  • Visse R., Nagase H., Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res, 2003, 92, 827–839. [CrossRef] [PubMed] [Google Scholar]
  • Wei Y., Waltz D.A., Rao N., Drummond R.J., Rosenberg S., Chapman H.A., Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem, 1994, 269, 32380–32388. [PubMed] [Google Scholar]
  • Yepes M., Lawrence D.A., New functions for an old enzyme: nonhemostatic roles for tissue-type plasminogen activator in the central nervous system. Exp Biol Med (Maywood), 2004, 229, 1097–1104. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.