Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 207, Numéro 2, 2013
Journée Claude Bernard 2012
Page(s) 123 - 132
DOI https://doi.org/10.1051/jbio/2013008
Publié en ligne 10 octobre 2013
  • Amedi A., Raz N., Azulay H., Malach R., Zohary E., Cortical activity during tactile exploration of objects in blind and sighted humans. Restor Neurol Neurosci, 2010, 28, 143–156. [PubMed] [Google Scholar]
  • Bendali A., Hess L.H., Seifert M., Forster V., Stephan A.F., Garrido J.A., Picaud S., Purified neurons can survive on peptide-free graphene layers. Adv Healthcare Mater, 2013, 2, 929–933. [CrossRef] [Google Scholar]
  • Bergonzo P., Bongrain A., Scorsone E., Bendali A., Rousseau L., Lissorgues G., Mailley P., Li Y., Kauffmann T., Goy F., Yvert B., Sahel J.A., Picaud S., 3D shaped mechanically flexible diamond microelectrode arrays for eye implant applications: The MEDINAS project. IRBM, 2012, 32, 91–94. [CrossRef] [Google Scholar]
  • Besch D., Sachs H., Szurman P., Gulicher D., Wilke R., Reinert S., Zrenner E., Bartz-Schmidt K.U., Gekeler F., Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: feasibility and outcome in seven patients. Brit J Ophthalmol, 2008, 92, 1361–1368. [CrossRef] [Google Scholar]
  • Butterwick A., Huie P., Jones B.W., Marc R., Marmor M., Palanker D., Effect of shape and coating of a subretinal prosthesis on its integration with the retina. Exp Eye Res, 2009, 88, 22–29. [CrossRef] [PubMed] [Google Scholar]
  • Caspi A., Dorn J.D., McClure K.H., Humayun M.S., Greenberg R.J., McMahon M.J., Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. Arch Ophthalmol, 2009, 127, 398–401. [CrossRef] [PubMed] [Google Scholar]
  • Cha K., Horch K.W., Normann R.A., Mobility performance with a pixelized vision system. Vision Res, 1992a, 32, 1367–1372. [CrossRef] [PubMed] [Google Scholar]
  • Cha K., Horch K.W., Normann R.A., Boman D.K., Reading speed with a pixelized vision system. J Opt Soc Am A, 1992b, 9, 673–677. [CrossRef] [PubMed] [Google Scholar]
  • Chow A.Y., Chow V.Y., Packo K.H., Pollack J.S., Peyman G.A., Schuchard R., The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol, 2004, 122, 460–469. [CrossRef] [PubMed] [Google Scholar]
  • Cogan S.F., Neural stimulation and recording electrodes. Ann Rev Biomedl Eng, 2008, 10, 275–309. [CrossRef] [Google Scholar]
  • Cohen L.G., Celnik P., Pascual-Leone A., Corwell B., Falz L., Dambrosia J., Honda M., Sadato N., Gerloff C., Catala M.D., Hallett M., Functional relevance of cross-modal plasticity in blind humans. Nature, 1997, 389, 180–183. [CrossRef] [PubMed] [Google Scholar]
  • Djilas M., Oles C., Lorach H., Bendali A., Degardin J., Dubus E., Lissorgues-Bazin G., Rousseau L., Benosman R., Ieng S.H., Joucla S., Yvert B., Bergonzo P., Sahel J., Picaud S., Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation. J Neural Eng, 2011, 8, 046020. [CrossRef] [PubMed] [Google Scholar]
  • Dobelle W.H., Artificial vision for the blind by connecting a television camera to the visual cortex. Asaio J, 2000, 46, 3–9. [CrossRef] [PubMed] [Google Scholar]
  • Dobelle W.H., Mladejovsky M.G., Girvin J.P., Artifical vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science, 1974, 183, 440–444. [CrossRef] [PubMed] [Google Scholar]
  • Froger N., Cadetti L., Lorach H., Martins J., Bemelmans A.P., Dubus E., Degardin J., Pain D., Forster V., Chicaud L., Ivkovic I., Simonutti M., Fouquet S., Jammoul F., Leveillard T., Benosman R., Sahel J.A., Picaud S., Taurine provides neuroprotection against retinal ganglion cell degeneration. PloS One, 2012, 7, e42017. [CrossRef] [PubMed] [Google Scholar]
  • Gollisch T., Meister M., Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron, 2010, 65, 150–164. [CrossRef] [PubMed] [Google Scholar]
  • Guenther E., Troger B., Schlosshauer B., Zrenner E., Long-term survival of retinal cell cultures on retinal implant materials. Vision Res, 1999, 39, 3988–3994. [CrossRef] [PubMed] [Google Scholar]
  • Hadjinicolaou A.E., Leung R.J., Garrett D.J., Ganesan K., Fox K., Nayagam D., Shivdasani M.N., Meffin H., Ibbotson M.R., Prawer S., O’Brien B.J., Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials, 2012, 33, 5812–5820. [CrossRef] [PubMed] [Google Scholar]
  • Humayun M.S., de Juan Jr. E., Dagnelie G., Greenberg R.J., Propst R.H., Phillips D.H., Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol, 1996, 114, 40–46. [CrossRef] [PubMed] [Google Scholar]
  • Humayun M.S., Prince M., de Juan Jr. E., Barron Y., Moskowitz M., Klock I.B., Milam A.H., Morphometric analysis of the extramacular retina from post-mortem eyes with retinitis pigmentosa. Invest Ophtalmol Vis Sci, 1999, 40, 143–148. [Google Scholar]
  • Humayun M.S., Weiland J.D., Fujii G.Y., Greenberg R., Williamson R., Little J., Mech B., Cimmarusti V., Van Boemel G., Dagnelie G., de Juan E., Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res, 2003, 43, 2573–2581. [CrossRef] [PubMed] [Google Scholar]
  • Humayun M.S., Dorn J.D., da Cruz L., Dagnelie G., Sahel J.A., Stanga P.E., Cideciyan A.V., Duncan J.L., Eliott D., Filley E., Ho A.C., Santos A., Safran A.B., Arditi A., Del Priore L.V., Greenberg R.J., Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology, 2012, 119, 779–788. [CrossRef] [PubMed] [Google Scholar]
  • Joucla S., Yvert B., Improved focalization of electrical microstimulation using microelectrode arrays: a modeling study. PloS One, 2009, 4, e4828. [Google Scholar]
  • Kiran R., Rousseau L., Lissorgues G., Scorsone E., Bongrain A., Yvert B., Picaud S., Mailley P., Bergonzo P., Multichannel boron doped nanocrystalline diamond ultramicroelectrode arrays: Design, fabrication and characterization. Sensors, 2012, 12, 7669–7681. [CrossRef] [Google Scholar]
  • Klauke S., Goertz M., Rein S., Hoehl D., Thomas U., Eckhorn R., Bremmer F., Wachtler T., Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Invest Ophthalmol Vis Sci, 2011, 52, 449–455. [CrossRef] [PubMed] [Google Scholar]
  • Lichtsteiner P., Posch C., Delbruck T., A 128 times, 128 120 db 15 us latency asynchronous temporal contrast vision sensor. Solid-State Circuits, IEEE Journal, 2008, 43, 566–576. [CrossRef] [Google Scholar]
  • Lorach H., Benosman R., Marre O., Ieng S.H., Sahel J.A., Picaud S., Artificial retina: The multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device. J Neural Eng, 2012, 9, 066004. [CrossRef] [PubMed] [Google Scholar]
  • Marc R.E., Jones B.W., Watt C.B., Strettoi E., Neural remodeling in retinal degeneration. Prog Retin Eye Res, 2003, 22, 607–655. [CrossRef] [PubMed] [Google Scholar]
  • Marc R.E., Jones B.W., Anderson J.R., Kinard K., Marshak D.W, Wilson J.H., Wensel T., Lucas R.J., Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci, 2007, 48, 3364–3371. [CrossRef] [PubMed] [Google Scholar]
  • Mathieson K., Loudin J., Goetz G., Huie P., Wang L., Kamins T., Smith R., Harris J.S., Sher A., Palanker D., Photovoltaic retinal prosthesis with high pixel density. Nat Photonics, 2012, 6, 391–397. [CrossRef] [PubMed] [Google Scholar]
  • Morimoto T., Kamei M., Nishida K., Sakaguchi H., Kanda H., Ikuno Y., Kishima H., Maruo T., Konoma K., Ozawa M., Nishida K., Fujikado T., Chronic implantation of newly developed suprachoroidal-transretinal stimulation prosthesis in dogs. Invest Ophtalmol Vis Sci, 2011, 52, 6785–6792. [CrossRef] [Google Scholar]
  • Nirenberg S., Pandarinath C., Retinal prosthetic strategy with the capacity to restore normal vision, Proc Natl Acad Sci USA, 2012, 109, 15012–15017. [CrossRef] [Google Scholar]
  • Palanker D., Huie P., Vankov A., Aramant R., Seiler M., Fishman H., Marmor M., Blumenkranz M., Migration of retinal cells through a perforated membrane: implications for a high-resolution prosthesis. Invest Ophthalmol Vis Sci, 2004, 45, 3266–3270. [CrossRef] [PubMed] [Google Scholar]
  • PerezFornos A., Pittard A, Safran A.B., Pelizzone M., Simulation of artificial vision: IV. Visual information required to achieve simple pointing and manipulation tasks. Vision Res, 2008, 48, 1705–1718. [CrossRef] [PubMed] [Google Scholar]
  • Rizzo J.F., 3rd, Wyatt J., Loewenstein J., Kelly S., Shire D., Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci, 2003a, 44, 5355–5361. [CrossRef] [PubMed] [Google Scholar]
  • Rizzo J.F., 3rd, Wyatt J., Loewenstein J., Kelly S., Shire D., Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci, 2003b, 44, 5362–5369. [CrossRef] [PubMed] [Google Scholar]
  • Roska B., Werblin F., Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature, 2001, 410, 583–587. [CrossRef] [PubMed] [Google Scholar]
  • Sommerhalder J., Oueghlani E., Bagnoud M., Leonards U., Safran A.B., Pelizzone M., Simulation of artificial vision: I. Eccentric reading of isolated words, and perceptual learning. Vision Res, 2003, 43, 269–283. [CrossRef] [PubMed] [Google Scholar]
  • Sommerhalder J., Rappaz B., de Haller R., Fornos A.P., Safran A.B., Pelizzone M., Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task. Vision Res, 2004, 44, 1693–1706. [CrossRef] [PubMed] [Google Scholar]
  • Striem-Amit E., Cohen L., Dehaene S., Amedi A., Reading with sounds: sensory substitution selectively activates the visual word form area in the blind. Neuron, 2012, 76, 640–652. [CrossRef] [PubMed] [Google Scholar]
  • Veraart C., Raftopoulos C., Mortimer J.T., Delbeke J., Pins D., Michaux G., Vanlierde A., Parrini S., Wanet-Defalque M.C., Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res, 1998, 813, 181–186. [CrossRef] [PubMed] [Google Scholar]
  • Victor J.D., The dynamics of the cat retinal X cell centre. J Physiol, 1987, 386, 219–246. [PubMed] [Google Scholar]
  • Victor J.D., The dynamics of the cat retinal Y cell subunit. J Physiol, 1988, 405, 289–320. [PubMed] [Google Scholar]
  • Villegas-Perez M.P., Lawrence J.M., Vidal-Sanz M., Lavail M.M., Lund R.D., Ganglion cell loss in RCS rat retina: a result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium. J Comp Neurol, 1998, 392, 58–77. [CrossRef] [PubMed] [Google Scholar]
  • Wang L., Mathieson K., Kamins T.I., Loudin J.D., Galambos L., Goetz G., Sher A., Mandel Y., Huie P., Lavinsky D., Harris J.S., Palanker D.V., Photovoltaic retinal prosthesis: implant fabrication and performance. J Neur Eng, 2012, 9, 046014. [Google Scholar]
  • Wang S., Villegas-Perez M.P., Vidal-Sanz M., Lund R.D., Progressive optic axon dystrophy and vascular changes in rd mice. Invest Ophthalmol Vis Sci, 2000, 41, 537−545. [PubMed] [Google Scholar]
  • Wilke R., Gabel V.P., Sachs H., Bartz Schmidt K.U., Gekeler F., Szurman P., Stett A., Wilhelm B., Peters T., Harscher A., Greppmaier U., Kibbel S., Benav H., Bruckmann A., Stingl K., Kusnyerik A., Zrenner E., Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies. Invest Ophthalmol Vis Sci, 2011, 52, 5995–6003. [CrossRef] [PubMed] [Google Scholar]
  • Wilms M., Eckhorn R., Spatiotemporal receptive field properties of epiretinally recorded spikes and local electroretinograms in cats. BMC Neurosci, 2005, 6, 50. [CrossRef] [PubMed] [Google Scholar]
  • Zeitz O., Keseru M., Hornig R., Richard G., Artificial sight: recent developments. Klin Monbl Augenheilkd, 2009, 226, 149–153. [CrossRef] [PubMed] [Google Scholar]
  • Zrenner E., Will retinal implants restore vision ? Science, 2002, 295, 1022–1025. [CrossRef] [PubMed] [Google Scholar]
  • Zrenner E., Bartz-Schmidt K.U., Benav H., Besch D., Bruckmann A., Gabel V.P., Gekeler F., Greppmaier U., Harscher A., Kibbel S., Koch J., Kusnyerik A., Peters T., Stingl K., Sachs H., Stett A., Szurman P., Wilhelm B., Wilke R., Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci, 2011, 278, 1489–1497. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.