Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 207, Numéro 2, 2013
Journée Claude Bernard 2012
Page(s) 109 - 121
DOI https://doi.org/10.1051/jbio/2013011
Publié en ligne 10 octobre 2013
  • Amado D., Mingozzi F., Hui D., Bennicelli J.L., Wei Z., Chen Y., Bote E., Grant R.L., Golden J.A., Narfstrom K., Syed N.A., Orlin S.E., High K.A., Maguire A.M., Bennett J.F., Kirby M., Safety and efficacy of subretinal readministration of a viral vector in large animals to treat congenital blindness. Sci Transl Med, 2010, 2, 21ra16. [CrossRef] [Google Scholar]
  • Bainbridge J.W., Smith A.J., Barker S.S., Robbie S., Henderson R., Balaggan K., Viswanathan A., Holder G.E., Stockman A., Tyler N., Petersen-Jones S., Bhattacharya S.S., Thrasher A.J., Fitzke F.W., Carter B.J., Rubin G.S., Moore A.T., Ali R.R., Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med, 2008, 358, 2231–2239. [CrossRef] [PubMed] [Google Scholar]
  • Bamann C., Nagel G., Bamberg E., Microbial rhodopsins in the spotlight. Curr Opin Neurobiol, 2010, 20, 610–616. [CrossRef] [PubMed] [Google Scholar]
  • Berndt A., Yizhar O., Gunaydin L.A., Hegemann P., Deisseroth K., Bi-stable neural state switches. Nat Neurosci, 2009, 12, 229–234. [CrossRef] [PubMed] [Google Scholar]
  • Bi A., Cui J., Ma Y.P., Olshevskaya E., Pu M., Dizhoor A.M., Pan Z.H., Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron, 2006, 50, 23–33. [CrossRef] [PubMed] [Google Scholar]
  • Boyden E.S., Zhang F., Bamberg E., Nagel G., Deisseroth K., Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 2005, 8, 1263–1268. [Google Scholar]
  • Busskamp V., Duebel J., Balya D., Fradot M., Viney T.J., Siegert S., Groner A.C., Cabuy E., Forster V., Seeliger M., Biel M., Humphries P., Paques M., Mohand-Said S., Trono D., Deisseroth K., Sahel J.A., Picaud S., Roska B., Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science, 2010, 329, 413–417. [CrossRef] [PubMed] [Google Scholar]
  • Caporale N., Kolstad K.D., Lee T., Tochitsky I., Dalkara D., Trauner D., Kramer R., Dan Y., Isacoff E.Y., Flannery J.G., LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther, 2011, 19, 1212–1219. [Google Scholar]
  • Chader G.J., Weiland J., Humayun M.S., Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res, 2009, 175, 317–332. [Google Scholar]
  • Cideciyan A.V., Aleman T.S., Boye S.L, Schwartz S.B., Kaushal S., Roman A.J., Pang J.J., Sumaroka A., Windsor E.A., Wilson J.M., Flotte T.R., Fishman G.A., Heon E., Stone E.M., Byrne B.J., Jacobson S.G., Hauswirth W.W., Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA, 2008, 105, 15112–15117. [CrossRef] [Google Scholar]
  • Cremers F.P., van den Hurk J.A., den Hollander A.I., Molecular genetics of Leber congenital amaurosis. Hum Mol Genet, 2002, 11, 1169–1176. [CrossRef] [PubMed] [Google Scholar]
  • Dahlmann-Noor A., Vijay S., Jayaram H., Limb A., Khaw P.T., Current approaches and future prospects for stem cell rescue and regeneration of the retina and optic nerve. Can J Ophthalmol, 2010, 45, 333–341. [CrossRef] [PubMed] [Google Scholar]
  • Degenaar P., Grossman N., Memon M.A., Burrone J., Dawson M., Drakakis E., Neil M., Nikolic K., Optobionic vision – a new genetically enhanced light on retinal prosthesis. J Neural Eng, 2009, 6, 035007. [CrossRef] [PubMed] [Google Scholar]
  • da Cruz L., Coley B.F., Dorn J., Merlini F., Filley E., Christopher P., Chen F.K., Wuyyuru V., Sahel J., Stanga P., Humayun M., Greenberg R.J., Dagnelie G., The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Brit J Ophthalmol, 2013, 97, 632–636. [Google Scholar]
  • de Vries S.H., Baylor D.A., An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. Proc Natl Acad Sci USA, 1995, 92, 10658–10662. [CrossRef] [Google Scholar]
  • Doroudchi M.M., Greenberg K.P., Liu J., Silka K.A., Boyden E.S., Lockridge J.A., Arman A.C., Janani R., Boye S.E., Boye S.L., Gordon G.M., Matteo B.C., Sampath A.P., Hauswirth W.W., Horsager A., Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther, 2011, 19, 1220–1229. [CrossRef] [PubMed] [Google Scholar]
  • Farah N., Reutsky I., Shoham S., Patterned optical activation of retinal ganglion cells. Conf Proc IEEE Eng Med Biol Soc, 2007, 2007, 6368–6370. [PubMed] [Google Scholar]
  • Farrar G.J., Kenna P.F., Humphries P., On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J, 2002, 21, 857–864. [CrossRef] [PubMed] [Google Scholar]
  • Fernandez-Sanchez L., Lax P., Pinilla I., Martin-Nieto J., Cuenca N., Tauroursodeoxycholic acid prevents retinal degeneration in transgenic P23H rats. Invest Ophthalmol Vis Sci, 2011, 52, 4998-5008. [CrossRef] [PubMed] [Google Scholar]
  • Foster R.G., Hankins M.W., Non-rod, non-cone photoreception in the vertebrates. Prog Retin Eye Res, 2002, 21, 507–527. [CrossRef] [PubMed] [Google Scholar]
  • Fradot M., Busskamp V., Forster V., Cronin T., Leveillard T., Bennett J., Sahel J.A., Roska B., Picaud S., Gene therapy in ophthalmology: validation on cultured retinal cells and explants from post-mortem human eyes. Hum Gene Ther, 2011, 22, 587–593. [CrossRef] [PubMed] [Google Scholar]
  • Frasson M., Sahel J.A., Fabre M., Simonutti M., Dreyfus H., Picaud S., Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med, 1999a, 5, 1183–1187. [CrossRef] [PubMed] [Google Scholar]
  • Frasson M., Picaud S., Leveillard T., Simonutti M., Mohand-Said S., Dreyfus H., Hicks D., Sahel J., Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest. Ophthalmol Vis Sci, 1999b, 40, 2724–2734. [PubMed] [Google Scholar]
  • Gollisch T., Meister M., Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron, 2010, 65, 150–164. [CrossRef] [PubMed] [Google Scholar]
  • Greenberg K.P., Pham A., Werblin F.S., Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron, 2011, 69, 713–720. [CrossRef] [PubMed] [Google Scholar]
  • Hamel C., Retinitis pigmentosa. Orphanet J Rare Dis, 2006, 1, 40. [CrossRef] [PubMed] [Google Scholar]
  • Han X., Boyden E.S., Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One, 2007, 2, e299. [CrossRef] [PubMed] [Google Scholar]
  • Hauswirth W.W., Aleman T.S., Kaushal S., Cideciyan A.V., Schwartz S.B., Wang L., Conlon T.J., Boye S.L., Flotte T.R., Byrne B.J., Jacobson S.G., Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther, 2008, 19, 979–990. [CrossRef] [PubMed] [Google Scholar]
  • Humayun M.S., Prince M., de Juan Jr. E., Barron Y., Moskowitz M., Klock I.B., Milam A.H., Morphometric analysis of the extramacular retina from post-mortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci, 1999, 40, 143–148. [PubMed] [Google Scholar]
  • Humayun M.S., Dorn J.D., da Cruz L., Dagnelie G., Sahel J.A., Stanga P.E., Cideciyan A.V., Duncan J.L., Eliott D., Filley E., Ho A.C., Santos A., Safran A.B., Arditi A., Del Priore L.V., Greenberg R.J., Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology, 2012, 119, 779-788. [CrossRef] [PubMed] [Google Scholar]
  • Jacobson S.G., Cideciyan A.V., Treatment possibilities for retinitis pigmentosa. N Engl J Med, 2010, 363, 1669–1671. [CrossRef] [PubMed] [Google Scholar]
  • Jacobson S.G., Roman A.J., Aleman T.S., Sumaroka A., Herrera W., Windsor E.A., Atkinson L.A., Schwartz S.B., Steinberg J.D., Cideciyan A.V., Normal central retinal function and structure preserved in retinitis pigmentosa. Invest Ophthalmol Vis Sci, 2010, 51, 1079–1085. [CrossRef] [PubMed] [Google Scholar]
  • Jones B.W., Marc R.E., Retinal remodeling during retinal degeneration. Exp Eye Res, 2005, 81, 123–137. [CrossRef] [PubMed] [Google Scholar]
  • Kauper K., McGovern C., Sherman S., Heatherton P., Rapoza R., Stabila P., Dean B., Lee A., Borges S., Bouchard B., Tao W., Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Invest Ophthalmol Vis Sci, 2012, 53, 7484–7491. [CrossRef] [PubMed] [Google Scholar]
  • Kennan A., Aherne A., Humphries P., Light in retinitis pigmentosa. Trends Genet, 2005, 21, 103–110. [CrossRef] [PubMed] [Google Scholar]
  • Kleinlogel S., Feldbauer K., Dempski R.E., Fotis H., Wood P.G., Bamann C., Bamberg E., Ultra light sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci, 2011, 14, 513–518. [CrossRef] [PubMed] [Google Scholar]
  • Koenekoop R.K., Why do cone photoreceptors die in rod-specific forms of retinal degenerations? Ophthalmic Genet, 2009, 30, 152–154. [CrossRef] [PubMed] [Google Scholar]
  • Lagali P.S., Balya D., Awatramani G.B., Munch T.A., Kim D.S., Busskamp V., Cepko C.L., Roska B., Light activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci, 2008, 11, 667–675. [CrossRef] [PubMed] [Google Scholar]
  • Leveillard T., Sahel J.A., Rod-derived cone viability factor for treating blinding diseases: from clinic to redox signaling. Sci Transl Med, 2010, 2, 26ps16. [CrossRef] [PubMed] [Google Scholar]
  • Leveillard T., Mohand-Said S., Lorentz O., Hicks D., Fintz A.C., Clerin E., Simonutti M., Forster V., Cavusoglu N., Chalmel F., Dolle P., Poch O., Lambrou G., Sahel J.A., Identification and characterization of rod-derived cone viability factor. Nat Genet, 2004, 36, 755–759. [CrossRef] [PubMed] [Google Scholar]
  • Lin B., Koizumi A., Tanaka N., Panda S., Masland R.H., Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA, 2008, 105, 16009–16014. [CrossRef] [Google Scholar]
  • Lin B., Masland R.H., Strettoi E., Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp Eye Res, 2009, 88, 589–599. [CrossRef] [PubMed] [Google Scholar]
  • Maguire A.M., Simonelli F., Pierce E.A., Pugh Jr. E.N., Mingozzi F., Bennicelli J., Banfi S., Marshall K.A., Testa F., Surace E.M., Rossi S., Lyubarsky A., Arruda V.R., Konkle B., Stone E., Sun J., Jacobs J., Dell’Osso L., Hertle R., Ma J.X., Redmond T.M., Zhu X., Hauck B., Zelenaia O., Shindler K.S., Maguire M.G., Wright J.F., Volpe N.J., McDonnell J.W., Auricchio A., High K.A., Bennett J., Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med, 2008, 358, 2240–2248. [CrossRef] [PubMed] [Google Scholar]
  • Marc R.E., Jones B.W., Watt C.B., Strettoi E., Neural remodeling in retinal degeneration. Prog Retin Eye Res, 2003, 22, 607–655. [CrossRef] [PubMed] [Google Scholar]
  • Mancuso K., Hauswirth W.W., Li Q., Connor T.B., Kuchenbecker J.A., Mauck M.C., Neitz J., Neitz M., Gene therapy for red-green colour blindness in adult primates. Nature, 2009, 461, 784–787. [CrossRef] [PubMed] [Google Scholar]
  • Masland R.H., The fundamental plan of the retina. Nat Neurosci, 2001, 4, 877–886. [CrossRef] [PubMed] [Google Scholar]
  • Matsuda T., Cepko C.L., Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA, 2004, 101, 16–22. [CrossRef] [Google Scholar]
  • Miesenbock G., The optogenetic catechism. Science, 2009, 326, 395–399. [CrossRef] [PubMed] [Google Scholar]
  • Milam A.H., Li Z.Y., Fariss R.N., Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res, 1998, 17, 175–205. [CrossRef] [PubMed] [Google Scholar]
  • Mussolino C., Sanges D., Marrocco E., Bonetti C., Di Vicino U., Marigo V., Auricchio A., Meroni G., Surace E.M., Zinc-fingerbased transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol Med, 2011, 3, 118–128. [CrossRef] [PubMed] [Google Scholar]
  • Nagel G., Szellas T., Huhn W., Kateriya S., Adeishvili N., Berthold P., Berthold P., Ollig D., Hegemann P., Bamberg E., Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA, 2003, 100, 13940–13945. [CrossRef] [Google Scholar]
  • Nakazawa M., Ohguro H., Takeuchi K., Miyagawa Y., Ito T., Metoki T., Effect of nilvadipine on central visual field in retinitis pigmentosa: a 30-month clinical trial. Ophthalmologica, 2011, 225, 120–126. [CrossRef] [PubMed] [Google Scholar]
  • Punzo C., Kornacker K., Cepko C.L., Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci, 2009, 12, 44–52. [CrossRef] [PubMed] [Google Scholar]
  • Roska B., Werblin F., Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature, 2001, 410, 583–587. [CrossRef] [PubMed] [Google Scholar]
  • Sahel J.A., Mohand-Said S., Leveillard T., Hicks D., Picaud S., Dreyfus H., Rod-cone interdependence : implications for therapy of photoreceptor cell diseases. Prog Brain Res, 2001, 131, 649-661. [CrossRef] [PubMed] [Google Scholar]
  • Sancho-Pelluz J., Arango-Gonzalez B., Kustermann S., Romero F.J., van Veen T., Zrenner E., Ekström P., Paquet-Durand F., Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol, 2008, 38, 253–269. [CrossRef] [PubMed] [Google Scholar]
  • Schobert B., Lanyi J.K., Halorhodopsin is a light-driven chloride pump. J Biol Chem, 1982, 257, 10306–10313. [PubMed] [Google Scholar]
  • Sieving P.A., Caruso R.C., Tao W., Coleman H.R., Thompson D.J., Fullmer K.R., Bush R.A., Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci USA, 2006, 103, 3896–3901 [CrossRef] [Google Scholar]
  • Simonelli F., Maguire A.M., Testa F., Pierce E.A., Mingozzi F., Bennicelli J.L., Rossi S., Marshall K., Banfi S., Surace E.M., Sun J., Redmond T.M., Zhu X., Shindler K.S., Ying G.S., Ziviello C., Acerra C., Wright J.F., McDonnell J.W., High K.A., Bennett J., Auricchio A., Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther, 2010, 18, 643–650. [CrossRef] [PubMed] [Google Scholar]
  • Smith A.J., Bainbridge J.W., Ali R.R., Prospects for retinal gene replacement therapy. Trends Genet, 2009, 25, 156–165. [CrossRef] [PubMed] [Google Scholar]
  • Soucy E., Wang Y., Nirenberg S., Nathans J., Meister M., A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron, 1998, 21, 481–493. [CrossRef] [PubMed] [Google Scholar]
  • Thyagarajan S., van Wyk M., Lehmann K., Lowel S., Feng G., Wassle H., Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci, 2010, 30, 8745–8758. [CrossRef] [PubMed] [Google Scholar]
  • Tomita H., Sugano E., Fukazawa Y., Isago H., Sugiyama Y., Hiroi T., Ishizuka T., Mushiake H., Kato M., Hirabayashi M., Shigemoto R., Yawo H., Tamai M., Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One, 2009, 4, e7679. [CrossRef] [PubMed] [Google Scholar]
  • Tomita H., Sugano E., Isago H., Hiroi T., Wang Z., Ohta E., Tamai M., Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res, 2010, 90, 429–436. [CrossRef] [PubMed] [Google Scholar]
  • Vugler A.A., Progress toward the maintenance and repair of degenerating retinal circuitry. Retina, 2010, 30, 983–1001. [CrossRef] [PubMed] [Google Scholar]
  • Wässle H., Parallel processing in the mammalian retina. Nat Rev Neurosci, 2004, 5, 747–757. [CrossRef] [PubMed] [Google Scholar]
  • Wright A.F., Chakarova C.F., Abd El-Aziz M.M., Bhattacharya S.S., Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet, 2010, 11, 273–284. [CrossRef] [PubMed] [Google Scholar]
  • Yin L., Greenberg K., Hunter J.J., Dalkara D., Kolstad K.D., Masella B.D., Wolfe R., Visel M., Stone D., Libby R.T., Diloreto D., Jr., Schaffer D., Flannery J., Williams D.R., Merigan W.H., Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmol Vis Sci, 2011, 52, 2775–2783. [CrossRef] [PubMed] [Google Scholar]
  • Zhang F., Aravanis A.M., Adamantidis A., de Lecea L., Deisseroth K., Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci, 2007a, 8, 577–581. [CrossRef] [PubMed] [Google Scholar]
  • Zhang F., Wang L.P., Brauner M., Liewald J.F., Kay K., Watzke N., Wood P.G., Bamberg E., Nagel G., Gottschalk A., Deisseroth K., Multimodal fast optical interrogation of neural circuitry. Nature, 2007b, 446, 633–639. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y., Ivanova E., Bi A., Pan Z.H., Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci, 2009, 29, 9186–9196. [CrossRef] [PubMed] [Google Scholar]
  • Zrenner E., Will retinal implants restore vision? Science, 2002, 295, 1022–1025. [CrossRef] [PubMed] [Google Scholar]
  • Zrenner E., Bartz-Schmidt K.U., Benav H., Besch D., Bruckmann A., Gabel V.P., Gekeler F., Greppmaier U., Harscher A., Kibbel S., Koch J., Kusnyerik A., Peters T., Stingl K., Sachs H., Stett A., Szurman P., Wilhelm B., Wilke R., Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci, 2011, 278, 1489–1497. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.