Accès gratuit
Biologie Aujourd'hui
Volume 207, Numéro 3, 2013
Page(s) 181 - 190
Publié en ligne 13 décembre 2013
  • Alemayehu D., Casey P.G., McAuliffe O., Guinane C.M., Martin J.G., Shanahan F., Coffey A., Ross R.P., Hill C., Bacteriophages phiMR299-2 and phiNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. M Bio, 2012, 3, e00029–00012. [Google Scholar]
  • Breitbart M., Rohwer F., Here a virus, there a virus, everywhere the same virus? Trends in Microbiology, 2005, 13, 278–284. [CrossRef] [PubMed] [Google Scholar]
  • Brenner S., Jacob F., Meselson M., An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 1961, 190, 576–581. [CrossRef] [PubMed] [Google Scholar]
  • Brüssow H., What is needed for phage therapy to become a reality in Western medicine? Virology, 2012, 434, 138–142. [CrossRef] [PubMed] [Google Scholar]
  • Clokie M.R.J., Millard A.D., Letarov A.V., Heaphy S., Phages in nature. Bacteriophage, 2011, 1, 31–45. [CrossRef] [PubMed] [Google Scholar]
  • Crick F.H., Barnett L., Brenner S., Watts-Tobin R.J., General nature of the genetic code for proteins. Nature, 1961, 192, 1227–1232. [CrossRef] [PubMed] [Google Scholar]
  • d’Herelle F., Essai de traitement de la peste bubonique par le bactériophage. Press Med, 1925, 1393–1394. [Google Scholar]
  • d’Herelle F., Le bactériophage et son comportement. 1926, Masson et Cie, Paris. [Google Scholar]
  • Da Costa Cruz J., Le traitement des dysenteries bacillaires par le bactériophage. CR Soc Biol, 1924, 91, 845. [Google Scholar]
  • Dang X., Yi H., Ham M.H., Qi J., Yun D.S., Ladewski R., Strano M.S., Hammond P.T., Belcher A.M., Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat Nanotechnol, 2011, 6, 377–384. [CrossRef] [PubMed] [Google Scholar]
  • Debarbieux L., Leduc D., Maura D., Morello E., Criscuolo A., Grossi O., Balloy V., Touqui L., Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis, 2010, 201, 1096–1104. [CrossRef] [PubMed] [Google Scholar]
  • Denou E., Bruttin A., Barretto C., Ngom-Bru C., Brüssow H., Zuber S., T4 phages against Escherichia coli diarrhea: potential and problems. Virology, 2009, 388, 21–30. [CrossRef] [PubMed] [Google Scholar]
  • Dublanchet A., Fruciano E., A short history of phage therapy. Méd Mal Infect, 2008, 38, 415–420. [Google Scholar]
  • Duerkop B.A., Clements C.V., Rollins D., Rodrigues J.L., Hooper L.V., A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc Natl Acad Sci USA, 2012, 109, 17621–17626. [CrossRef] [Google Scholar]
  • Faruque S.M., Islam M.J., Ahmad Q.S., Faruque A.S., Sack D.A., Nair G.B., Mekalanos J.J., Self-limiting nature of seasonal cholera epidemics: Role of host-mediated amplification of phage. Proc Natl Acad Sci USA, 2005a, 102, 6119–6124. [CrossRef] [Google Scholar]
  • Faruque S.M., Naser I.B., Islam M.J., Faruque A.S., Ghosh A.N., Nair G.B., Sack D.A., Mekalanos J.J., Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci USA, 2005b, 102, 1702–1707. [CrossRef] [Google Scholar]
  • Gorski A., Miedzybrodzki R., Borysowski J., Dąbrowska K., Wierzbicki P., Ohams M., Korczak-Kowalska G., Olszowska-Zaremba N., Łusiak-Szelachowska M., Kłak M., Joñczyk E., Kaniuga E., Goła A., Purchla S., Weber-Dąbrowska B., Letkiewicz S., Fortuna W., Szufnarowski K., Pawełczyk Z., Rogóż P., Kłosowska D., Phage as a modulator of immune responses: practical implications for phage therapy. Adv Virus Res, 2012, 83, 41–71. [CrossRef] [PubMed] [Google Scholar]
  • Gratia A., Studies on the D’Herelle Phenomenon. J Exp Med, 1921, 34, 115–126. [CrossRef] [PubMed] [Google Scholar]
  • Gratia A., La lyse transmissible du staphylocoque. Sa production, ses applications thérapeutiques. CR Acad Biol, 1922, 86, 276–278. [Google Scholar]
  • Henry M., Debarbieux L., Tools from viruses: bacteriophage successes and beyond. Virology, 2012, 434, 151–161. [CrossRef] [PubMed] [Google Scholar]
  • Jensen M.A., Faruque S.M., Mekalanos J.J., Levin B.R., Modeling the role of bacteriophage in the control of cholera outbreaks. Proc Natl Acad Sci USA, 2006, 103, 4652–4657. [CrossRef] [Google Scholar]
  • Kutateladze M., Adamia R., Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol, 2010, 28, 591–595. [CrossRef] [PubMed] [Google Scholar]
  • Kvachadze L., Balarjishvili N., Meskhi T., Tevdoradze E., Skhirtladze N., Pataridze T., Adamia R., Topuria T., Kutter E., Rohde C., Kutateladze M., Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol, 2011, 4, 643–650. [CrossRef] [PubMed] [Google Scholar]
  • Labrie, S.J., Samson J.E., Moineau S., Bacteriophage resistance mechanisms. Nat Rev Microbiol, 2010, 8, 317–327. [CrossRef] [PubMed] [Google Scholar]
  • Lepage P., Colombet J., Marteau P., Sime-Ngando T., Doré J., Leclerc M., Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut, 2008, 57, 424–425. [CrossRef] [PubMed] [Google Scholar]
  • Lodder W.J., van den Berg H.H., Rutjes S.A., de Roda Husman A.M., Presence of enteric viruses in source waters for drinking water production in The Netherlands. Appl Environ Microbiol, 2010, 76, 5965–5971. [CrossRef] [PubMed] [Google Scholar]
  • Luria S.E., Delbruck M., Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 1943, 28, 491–511. [PubMed] [Google Scholar]
  • Luria S.E., Human M.L., A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol, 1952, 64, 557–569. [PubMed] [Google Scholar]
  • Luria S.E., Delbruck M., Anderson T.F., Electron microscope studies of bacterial viruses. J Bacteriol, 1943, 46, 57–77. [PubMed] [Google Scholar]
  • Maura D., Debarbieux L., Bacteriophages as twenty-first century antibacterial tools for food and medicine. Appl Microbiol Biotechnol, 2011, 90, 851–859. [CrossRef] [PubMed] [Google Scholar]
  • Maura D., Galtier M., Le Bouguénec C., Debarbieux L., Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob Agents Chemother, 2012a, 56, 6235–6242. [CrossRef] [PubMed] [Google Scholar]
  • Maura D., Morello E., du Merle L., Bomme P., Le Bouguénec C., Debarbieux L., Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ Microbiol, 2012b, 14, 1844–1854. [CrossRef] [PubMed] [Google Scholar]
  • Meitert E., Petrovici M., Sima F., Costache G., Savulian C., Investigation on the therapeutical efficiency of some adapted bacteriophages in experimental infection with Pseudomonas aeruginosa. Arch Roum Pathol Exp Microbiol, 1987, 46, 17–26. [PubMed] [Google Scholar]
  • Miedzybrodzki R., Borysowski J., Weber-Dąbrowska B., Fortuna W., Letkiewicz S., Szufnarowski K., Pawełczyk Z., Rogóż P., Kłak M., Wojtasik E., Górski A., Clinical aspects of phage therapy. Adv Virus Res, 2012, 83, 73–121. [CrossRef] [PubMed] [Google Scholar]
  • Miernikiewicz P., Dąbrowska K., Piotrowicz A., Owczarek B., Wojas-Turek J., Kicieliñska J., Rossowska J., Pajtasz-Piasecka E., Hodyra K., Macegoniuk K., Rzewucka K., Kopciuch A., Majka T., Letarov A., Kulikov E., Maciejewski H., Górski A., T4 phage and its head surface proteins do not stimulate inflammatory mediator production. PLoS One, 2013, 8, e71036. [CrossRef] [PubMed] [Google Scholar]
  • Minot S., Bryson A., Chehoud C., Wu G.D., Lewis J.D., Bushman F.D., Rapid evolution of the human gut virome. Proc Natl Acad Sci USA, 2013, 110, 12450–12455. [CrossRef] [Google Scholar]
  • Modi S.R., Lee H.H., Spina C.S., Collins J.J., Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature, 2013, 499, 219–222. [CrossRef] [PubMed] [Google Scholar]
  • Morello E., Saussereau E., Maura D., Huerre M., Touqui L., Debarbieux L., Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS One, 2011, 6, e16963. [CrossRef] [PubMed] [Google Scholar]
  • Muniesa M., Hammerl J.A., Hertwig S., Appel B., Brüssow H., Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl Environ Microbiol, 2012, 78, 4065–4073. [CrossRef] [PubMed] [Google Scholar]
  • Prangishvili D., Forterre P., Garrett R.A., Viruses of the Archaea: a unifying view. Nat Rev Microbiol, 2006, 4, 837–848. [CrossRef] [PubMed] [Google Scholar]
  • Reyes A., Haynes M., Hanson N., Angly F.E., Heath A.C., Rohwer F., Gordon J.I., Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature, 2010, 466, 334–338. [CrossRef] [PubMed] [Google Scholar]
  • Sarker S.A., McCallin S., Barretto C., Berger B., Pittet A.C., Sultana S., Krause L., Huq S., Bibiloni R., Bruttin A., Reuteler G., Brüssow H., Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. Virology, 2012, 434, 222–232. [CrossRef] [PubMed] [Google Scholar]
  • Saussereau E., Debarbieux L., Bacteriophages in the experimental treatment of Pseudomonas aeruginosa infections in mice. Adv Virus Res, 2012, 83, 123-141. [CrossRef] [PubMed] [Google Scholar]
  • Spellberg B., Powers J.H., Brass E.P., Miller L.G., Edwards Jr. J.E., Trends in antimicrobial drug development: implications for the future. Clin Infect Dis, 2004, 38, 1279–1286. [CrossRef] [PubMed] [Google Scholar]
  • Sulakvelidze A., Alavidze Z., Morris Jr. J.G., Bacteriophage therapy. Antimicrob Agents Chemother, 2001, 45, 649–659. [CrossRef] [PubMed] [Google Scholar]
  • Summers W.C., Félix d’Herelle and the origins of molecular biology. 1999, Y. U. Press, Yale. [Google Scholar]
  • Summers W.C., The strange history of phage therapy. Bacteriophage, 2012, 2, 130–133. [CrossRef] [PubMed] [Google Scholar]
  • Tanji Y., Shimada T., Fukudomi H., Miyanaga K., Nakai Y., Unno H., Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. J Biosci Bioeng, 2005, 100, 280–287. [CrossRef] [PubMed] [Google Scholar]
  • Taubes G., The bacteria fight back. Science, 2008, 321, 356–361. [CrossRef] [PubMed] [Google Scholar]
  • Wommack K.E., Colwell R.R., Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev, 2000, 64, 69–114. [Google Scholar]
  • Wright A., Hawkins C.H., Anggård E.E., Harper D.R., A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol, 2009, 34, 349–357. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.