Accès gratuit
Biologie Aujourd'hui
Volume 207, Numéro 3, 2013
Page(s) 191 - 200
Publié en ligne 13 décembre 2013
  • Allen L.F., Lefkowitz R.J., Caron M.G., Cotecchia S., G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci USA, 1991, 88, 11354−11358. [CrossRef] [Google Scholar]
  • Archbold J.K., Flanagan J.U., Watkins H.A., Gingell J.J., Hay D.L., Structural insights into RAMP modification of secretin family G protein-coupled receptors: implications for drug development. Trends Pharmacol Sci, 2011, 32, 591–600. [CrossRef] [PubMed] [Google Scholar]
  • Audet M., Bouvier M., Restructuring G-protein- coupled receptor activation. Cell, 2012, 151, 14–23. [CrossRef] [PubMed] [Google Scholar]
  • Beets I., Lindemans M., Janssen T., Verleyen P., Deorphanizing G protein-coupled receptors by a calcium mobilization assay. Methods Mol Biol, 2011, 789, 377–391. [CrossRef] [PubMed] [Google Scholar]
  • Bonnefond A., Clément N., Fawcett K., Yengo L., Vaillant E., Guillaume J. L., Dechaume A., Payne F., Roussel R., Czernichow S., Hercberg S., Hadjadj S., Balkau B., Marre M., Lantieri O., Langenberg C., Bouatia-Naji N., Charpentier G., Vaxillaire M., Rocheleau G., Wareham N.J., Sladek R., McCarthy M.I., Dina C., Barroso I., Jockers R., Froguel P., Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet, 2012, 44, 297–301. [CrossRef] [PubMed] [Google Scholar]
  • Calebiro D., Rieken F., Wagner J., Sungkaworn T., Zabel U., Borzi A., Cocucci E., Zurn A., Lohse M.J., Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci USA, 2013, 110, 743–748. [CrossRef] [Google Scholar]
  • Civelli O., Orphan GPCRs and neuromodulation. Neuron, 2012, 76, 12–21. [CrossRef] [PubMed] [Google Scholar]
  • Civelli O., Reinscheid R.K., Zhang Y., Wang Z., Fredriksson R., Schioth H.B., G protein-coupled receptor deorphanizations. Annu Rev Pharmacol Toxicol, 2013, 53, 127–146. [CrossRef] [PubMed] [Google Scholar]
  • Costa T., Herz A., Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA, 1989, 86, 7321–7325. [CrossRef] [Google Scholar]
  • Davies J.Q., Chang G.W., Yona S., Gordon S., Stacey M., Lin H.H., The role of receptor oligomerization in modulating the expression and function of leukocyte adhesion-G protein-coupled receptors. J Biol Chem, 2007, 282, 27343–27353. [CrossRef] [PubMed] [Google Scholar]
  • Dixon R.A.F., Kobilka B.K., Strader D.J., Benovic J.L., Dohlman H.G., Frielle T., Bolanowski M.A., Bennett C.D., Rands E., Diehl R.E., Mumford R.A., Slater E.E., Sigal I.S., Caron M.G., Lefkowitz R.J., Strader C.D., Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature, 1986, 321, 75–79. [CrossRef] [PubMed] [Google Scholar]
  • El Moustaine D., Granier S., Doumazane E., Scholler P., Rahmeh R., Bron P., Mouillac B., Banères J.L., Rondard P., Pin J.P., Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc Natl Acad Sci USA, 2012, 109, 16342–16347. [CrossRef] [Google Scholar]
  • Fredriksson R., Lagerstrom M.C., Lundin L.G., Schioth H.B., The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol, 2003, 63, 1256–1272. [CrossRef] [PubMed] [Google Scholar]
  • Gloriam D.E., Wellendorph P., Johansen L.D., Thomsen A.R., Phonekeo K., Pedersen D.S., Brauner-Osborne H., Chemogenomic discovery of allosteric antagonists at the GPRC6A receptor. Chem Biol, 2011, 18, 1489−1498. [CrossRef] [PubMed] [Google Scholar]
  • Gupte J., Swaminath G., Danao J., Tian H., Li Y., Wu X., Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett, 2012, 586, 1214–1219. [CrossRef] [PubMed] [Google Scholar]
  • Huang J., Chen S., Zhang J.J., Huang X.Y., Crystal structure of oligomeric beta1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat Struct Mol Biol, 2013, 20, 419–425. [CrossRef] [PubMed] [Google Scholar]
  • Inoue A., Ishiguro J., Kitamura H., Arima N., Okutani M., Shuto A., Higashiyama S., Ohwada T., Arai H., Makide K., Aoki J., TGF alpha shedding assay: an accurate and versatile method for detecting GPCR activation. Nat Methods, 2012, 9, 1021–1029. [CrossRef] [PubMed] [Google Scholar]
  • Jastrzebska B., Orban T., Golczak M., Engel A., Palczewski K., Asymmetry of the rhodopsin dimer in complex with transducin. FASEB J, 2013, 27, 1572−1584. [CrossRef] [PubMed] [Google Scholar]
  • Karamitri A., Renault N., Clément N., Guillaume J.L., Jockers R., Towards the establishment of a link between melatonin and glucose homeostasis: association of melatonin MT2 receptor variants with type 2 diabetes. Mol Endocrinol, 2013, in press, [Google Scholar]
  • Kasai R.S., Suzuki K.G., Prossnitz E.R., Koyama-Honda I., Nakada C., Fujiwara T.K., Kusumi A., Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol, 2011, 192, 463–480. [CrossRef] [PubMed] [Google Scholar]
  • Kern A., Albarran-Zeckler R., Walsh H.E., Smith R.G., Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron, 2012, 73, 317–332. [CrossRef] [PubMed] [Google Scholar]
  • Kim Y.J., Hofmann K.P., Ernst O.P., Scheerer P., Choe H.W., Sommer M. E., Crystal structure of pre-activated arrestin p44. Nature, 2013, 497, 142–146. [CrossRef] [PubMed] [Google Scholar]
  • Kniazeff J., Pin J.P., G-protein-coupled receptors dimers and oligomers: for which purpose? The GABA(B) receptor under investigation. Med Sci (Paris), 2012, 28, 858–863. [Google Scholar]
  • Koirala S., Jin Z., Piao X., Corfas G., GPR56-regulated granule cell adhesion is essential for rostral cerebellar development. J Neurosci, 2009, 29, 7439–7449. [CrossRef] [PubMed] [Google Scholar]
  • Koth C.M., Murray J.M., Mukund S., Madjidi A., Minn A., Clarke H.J., Wong T., Chiang V., Luis E., Estevez A., Rondon J., Zhang Y., Hotzel I., Allan B.B., Molecular basis for negative regulation of the glucagon receptor. Proc Natl Acad Sci USA, 2012, 109, 14393−14398. [CrossRef] [Google Scholar]
  • Lagerstrom M.C., Schioth H.B., Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov, 2008, 7, 339–357. [CrossRef] [PubMed] [Google Scholar]
  • Lefkowitz R.J., Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci, 2004, 25, 413–422. [CrossRef] [PubMed] [Google Scholar]
  • Levoye A., Dam J., Ayoub M.A., Guillaume J.L., Couturier C., Delagrange P., Jockers R., The orphan GPR50 receptor specifically inhibits MT(1) melatonin receptor function through heterodimerization. EMBO J, 2006, 25, 3012–3023. [CrossRef] [PubMed] [Google Scholar]
  • Levoye A., Jockers R., GPCRs heterodimerization: a new way towards the discovery of function for the orphan receptors? Med Sci (Paris), 2007, 23, 746–750. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Li J., Hand L.E., Meng Q.J., Loudon A.S., Bechtold D.A., GPR50 interacts with TIP60 to modulate glucocorticoid receptor signalling. PLoS One, 2011, 6, e23725. [CrossRef] [PubMed] [Google Scholar]
  • Lin H.H., Adhesion family of G protein-coupled receptors and cancer. Chang Gung Med J, 2012, 35, 15–27. [PubMed] [Google Scholar]
  • Liu J.J., Horst R., Katritch V., Stevens R.C., Wuthrich K., Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science, 2012, 335, 1106–1110. [CrossRef] [PubMed] [Google Scholar]
  • Manglik A., Kruse A.C., Kobilka T.S., Thian F.S., Mathiesen J.M., Sunahara R.K., Pardo L., Weis W.I., Kobilka B.K., Granier S., Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature, 2012, 485, 321–326. [CrossRef] [PubMed] [Google Scholar]
  • Maurice P., Daulat A.M., Turecek R., Ivankova-Susankova K., Zamponi F., Kamal M., Clément N., Guillaume J.L., Bettler B., Galès C., Delagrange P., Jockers R., Molecular organization and dynamics of the melatonin MT receptor/RGS20/G(i) protein complex reveal asymmetry of receptor dimers for RGS and G(i) coupling. EMBO J, 2010, 29, 3646-3659. [CrossRef] [PubMed] [Google Scholar]
  • Maurice P., Kamal M., Jockers R., Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol Sci, 2011, 32, 514–520. [CrossRef] [PubMed] [Google Scholar]
  • Milligan G., The Prevalence, Maintenance and Relevance of GPCR Oligomerization. Mol Pharmacol, 2013, 84, 158–169. [CrossRef] [PubMed] [Google Scholar]
  • Muto T., Tsuchiya D., Morikawa K., Jingami H., Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci USA, 2007, 104, 3759–3764. [CrossRef] [Google Scholar]
  • Nelson M.R., Wegmann D., Ehm M.G., Kessner D., St Jean P., Verzilli C., Shen J., Tang Z., Bacanu S.A., Fraser D., Warren L., Aponte J., Zawistowski M., Liu X., Zhang H., Zhang Y., Li J., Li Y., Li L., Woollard P., Topp S., Hall M.D., Nangle K., Wang J., Abecasis G., Cardon L.R., Zollner S., Whittaker J.C., Chissoe S.L., Novembre J., Mooser V., An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science, 2012, 337, 100–104. [CrossRef] [PubMed] [Google Scholar]
  • Oakley R.H., Hudson C.C., Sjaastad M.D., Loomis C.R., The ligand-independent translocation assay: an enabling technology for screening orphan G protein-coupled receptors by arrestin recruitment. Methods Enzymol, 2006, 414, 50–63. [CrossRef] [PubMed] [Google Scholar]
  • Palczewski K., Kumasaka T., Hori T., Behnke C.A., Motoshima H., Fox B.A., Le Trong I., Teller D.C., Okada T., Stenkamp R.E., Yamamoto M., Miyano M., Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 2000, 289, 739–745. [CrossRef] [PubMed] [Google Scholar]
  • Park D., Tosello-Trampont A.C., Elliott M.R., Lu M., Haney L.B., Ma Z., Klibanov A.L., Mandell J.W., Ravichandran K.S., BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature, 2007, 450, 430–434. [CrossRef] [PubMed] [Google Scholar]
  • Piao X., Hill R.S., Bodell A., Chang B.S., Basel-Vanagaite L., Straussberg R., Dobyns W.B., Qasrawi B., Winter R.M., Innes A.M., Voit T., Ross M. E., Michaud J.L., Descarie J.C., Barkovich A.J., Walsh C.A., G protein-coupled receptor-dependent development of human frontal cortex. Science, 2004, 303, 2033–2036. [CrossRef] [PubMed] [Google Scholar]
  • Rahmeh R., Damian M., Cottet M., Orcel H., Mendre C., Durroux T., Sharma K. S., Durand G., Pucci B., Trinquet E., Zwier J.M., Deupi X., Bron P., Banères J.L., Mouillac B., Granier S., Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc Natl Acad Sci USA, 2012, 109, 6733–6738. [CrossRef] [Google Scholar]
  • Rasmussen S.G., Choi H.J., Rosenbaum D.M., Kobilka T.S., Thian F.S., Edwards P.C., Burghammer M., Ratnala V.R., Sanishvili R., Fischetti R.F., Schertler G.F., Weis W.I., Kobilka B.K., Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature, 2007, 450, 383–387. [CrossRef] [PubMed] [Google Scholar]
  • Rasmussen S.G., DeVree B.T., Zou Y., Kruse A.C., Chung K.Y., Kobilka T.S., Thian F.S., Chae P.S., Pardon E., Calinski D., Mathiesen J.M., Shah S.T., Lyons J.A., Caffrey M., Gellman S.H., Steyaert J., Skiniotis G., Weis W.I., Sunahara R.K., Kobilka B.K., Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature, 2011, 477, 549–555. [CrossRef] [PubMed] [Google Scholar]
  • Reiter E., Ahn S., Shukla A.K., Lefkowitz R.J., Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol, 2012, 52, 179–197. [CrossRef] [PubMed] [Google Scholar]
  • Rosenbaum D.M., Rasmussen S.G., Kobilka B.K., The structure and function of G-protein-coupled receptors. Nature, 2009, 459, 356–363. [CrossRef] [PubMed] [Google Scholar]
  • Semple G., Skinner P.J., Gharbaoui T., Shin Y.J., Jung J.K., Cherrier M.C., Webb P.J., Tamura S.Y., Boatman P.D., Sage C.R., Schrader T.O., Chen R., Colletti S.L., Tata J.R., Waters M.G., Cheng K., Taggart A.K., Cai T.Q., Carballo-Jane E., Behan D.P., Connolly D.T., Richman J.G., 3-(1H-tetrazol-5-yl)-1,4,5,6-tetrahydro-cyclopentapyrazole (MK-0354): a partial agonist of the nicotinic acid receptor, G-protein coupled receptor 109a, with antilipolytic but no vasodilatory activity in mice. J Med Chem, 2008, 51, 5101–5108. [CrossRef] [PubMed] [Google Scholar]
  • Sheffler D.J., Gregory K.J., Rook J.M., Conn P.J., Allosteric modulation of metabotropic glutamate receptors. Adv Pharmacol, 2011, 62, 37–77. [CrossRef] [PubMed] [Google Scholar]
  • Shukla A.K., Manglik A., Kruse A.C., Xiao K., Reis R.I., Tseng W.C., Staus D.P., Hilger D., Uysal S., Huang L.Y., Paduch M., Tripathi-Shukla P., Koide A., Koide S., Weis W.I., Kossiakoff A.A., Kobilka B.K., Lefkowitz R.J., Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature, 2013, 497, 137–141. [CrossRef] [PubMed] [Google Scholar]
  • Sommer M.E., Hofmann K.P., Heck M., Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors. J Biol Chem, 2011, 286, 7359–7369. [CrossRef] [PubMed] [Google Scholar]
  • Southern C., Cook J.M., Neetoo-Isseljee Z., Taylor D.L., Kettleborough C. A., Merritt A., Bassoni D.L., Raab W.J., Quinn E., Wehrman T.S., Davenport A.P., Brown A.J., Green A., Wigglesworth M.J., Rees S., Screening beta-Arrestin Recruitment for the Identification of Natural Ligands for Orphan G-Protein-Coupled Receptors. J Biomol Screen, 2013, 18, 599–609. [CrossRef] [PubMed] [Google Scholar]
  • Stacey M., Chang G.W., Davies J.Q., Kwakkenbos M.J., Sanderson R.D., Hamann J., Gordon S., Lin H.H., The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood, 2003, 102, 2916–2924. [CrossRef] [PubMed] [Google Scholar]
  • Standfuss J., Edwards P.C., D’Antona A., Fransen M., Xie G., Oprian D.D., Schertler G.F., The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature, 2011, 471, 656–660. [CrossRef] [PubMed] [Google Scholar]
  • Tadagaki K., Tudor D., Gbahou F., Tschische P., Waldhoer M., Bomsel M., Jockers R., Kamal M., Human cytomegalovirus-encoded UL33 and UL78 heteromerize with host CCR5 and CXCR4 impairing their HIV coreceptor activity. Blood, 2012, [Google Scholar]
  • Tissir F., Bar I., Jossin Y., De Backer O., Goffinet A.M., Protocadherin Celsr3 is crucial in axonal tract development. Nat Neurosci, 2005, 8, 451–457. [PubMed] [Google Scholar]
  • van Rijn R.M., Harvey J.H., Brissett D.I., DeFriel J.N., Whistler J.L., Novel screening assay for the selective detection of G-protein-coupled receptor heteromer signaling. J Pharmacol Exp Ther, 2013, 344, 179–188. [CrossRef] [PubMed] [Google Scholar]
  • Wacker D., Wang C., Katritch V., Han G.W., Huang X.P., Vardy E., McCorvy J.D., Jiang Y., Chu M., Siu F.Y., Liu W., Xu H.E., Cherezov V., Roth B.L., Stevens R.C., Structural features for functional selectivity at serotonin receptors. Science, 2013, 340, 615–619. [CrossRef] [PubMed] [Google Scholar]
  • Waller-Evans H., Promel S., Langenhan T., Dixon J., Zahn D., Colledge W.H., Doran J., Carlton M.B., Davies B., Aparicio S.A., Grosse J., Russ A.P., The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse. PLoS One, 2010, 5, e14047. [CrossRef] [PubMed] [Google Scholar]
  • Walters R.W., Shukla A.K., Kovacs J.J., Violin J.D., DeWire S.M., Lam C.M., Chen J.R., Muehlbauer M.J., Whalen E.J., Lefkowitz R.J., beta-Arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J Clin Invest, 2009, 119, 1312–1321. [CrossRef] [PubMed] [Google Scholar]
  • Wang C., Wu H., Katritch V., Han G.W., Huang X.P., Liu W., Siu F.Y., Roth B.L., Cherezov V., Stevens R.C., Structure of the human smoothened receptor bound to an antitumour agent. Nature, 2013, 497, 338–343. [CrossRef] [PubMed] [Google Scholar]
  • Warne T., Serrano-Vega M.J., Baker J.G., Moukhametzianov R., Edwards P.C., Henderson R., Leslie A.G., Tate C.G., Schertler G.F., Structure of a beta1-adrenergic G-protein-coupled receptor. Nature, 2008, 454, 486–491. [CrossRef] [PubMed] [Google Scholar]
  • Weiss D.R., Ahn S., Sassano M.F., Kleist A., Zhu X., Strachan R., Roth B.L., Lefkowitz R.J., Shoichet B.K., Conformation Guides Molecular Efficacy in Docking Screens of Activated beta-2 Adrenergic G Protein Coupled Receptor. ACS Chem Biol, 2013, 8, 1018–1026. [CrossRef] [PubMed] [Google Scholar]
  • Wu B., Chien E.Y., Mol C.D., Fenalti G., Liu W., Katritch V., Abagyan R., Brooun A., Wells P., Bi F.C., Hamel D.J., Kuhn P., Handel T.M., Cherezov V., Stevens R.C., Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science, 2010, 330, 1066–1071. [CrossRef] [PubMed] [Google Scholar]
  • Wu H., Wacker D., Mileni M., Katritch V., Han G.W., Vardy E., Liu W., Thompson A.A., Huang X.P., Carroll F.I., Mascarella S.W., Westkaemper R.B., Mosier P.D., Roth B.L., Cherezov V., Stevens R.C., Structure of the human kappa-opioid receptor in complex with JDTic. Nature, 2012, 485, 327–332. [CrossRef] [PubMed] [Google Scholar]
  • Yona S., Lin H.H., Siu W.O., Gordon S., Stacey M., Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem Sci, 2008, 33, 491–500. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.