Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 208, Numéro 1, 2014
Page(s) 77 - 88
Section La vitamine D, une hormone stéroïde méconnue
DOI https://doi.org/10.1051/jbio/20140007
Publié en ligne 23 juin 2014
  • Acheson E.D., Bachrach C.A., Wright F.M., Some comments on the relationship of the distribution of multiple sclerosis to latitude, solar radiation, and other variables. Acta Psychiatr Scand Suppl, 1960, 35, 132–147. [CrossRef] [PubMed] [Google Scholar]
  • Adzemovic M.Z., Zeitelhofer M., Hochmeister S., Gustafsson S.A., Jagodic M., Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage. Exp Neurol, 2013, 249, 39–48. [CrossRef] [PubMed] [Google Scholar]
  • Agranoff B.W., Goldberg D., Diet and the geographical distribution of multiple sclerosis. Lancet, 1974, 2, 1061–1066. [CrossRef] [PubMed] [Google Scholar]
  • Ajdacic-Gross V., Wang J., Gutzwiller F., Season of birth in amyotrophic lateral sclerosis. Eur J Epidemiol, 1998, 14, 359–361. [CrossRef] [PubMed] [Google Scholar]
  • Almeras L., Eyles D., Benech P., Laffite D., Villard C., Patatian A., Boucraut J., Mackay-Sim A., McGrath J., Féron F., Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics, 2007, 7, 769–780. [CrossRef] [PubMed] [Google Scholar]
  • Annweiler C., Souberbielle J.C., Schott A.M., de Decker L., Berrut G., Beauchet O., [Vitamin D in the elderly: 5 points to remember]. Geriatr Psychol Neuropsychiatr Vieil, 2011, 9, 259–267. [PubMed] [Google Scholar]
  • Annweiler C., Herrmann F.R., Fantino B., Brugg B., Beauchet O., Effectiveness of the combination of memantine plus vitamin D on cognition in patients with Alzheimer disease: a pre-post pilot study. Cogn Behav Neurol, 2012a, 25, 121–127. [CrossRef] [PubMed] [Google Scholar]
  • Annweiler C., Rolland Y., Schott A.M., Blain H., Vellas B., Beauchet O., Serum vitamin D deficiency as a predictor of incident non-Alzheimer dementias: a 7-year longitudinal study. Dement Geriatr Cogn Disord, 2012b, 32, 273–278. [Google Scholar]
  • Annweiler C., Fantino B., Schott A.M., Krolak-Salmon P., Allali G., Beauchet O., Vitamin D insufficiency and mild cognitive impairment: cross-sectional association. Eur J Neurol, 2012c, 19, 1023–1029. [CrossRef] [PubMed] [Google Scholar]
  • Annweiler C., Brugg B., Peyrin J.M., Bartha R., Beauchet O., Combination of memantine and vitamin D prevents axon degeneration induced by amyloid-beta and glutamate. Neurobiol Aging, 2013, 35, 331–335. [Google Scholar]
  • Auer D.P., Schumann E.M., Kumpfel T., Gossl C., Trenkwalder C., Seasonal fluctuations of gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol, 2000, 47, 276–277. [CrossRef] [PubMed] [Google Scholar]
  • Baas D., Prufer K., Ittel M.E., Kuchler-Bopp S., Labourdette G., Sarliève L.L., Brachet P., Rat oligodendrocytes express the vitamin D(3) receptor and respond to 1,25-dihydroxyvitamin D(3). Glia, 2000, 31, 59–68. [CrossRef] [PubMed] [Google Scholar]
  • Banwell B., Bar-Or A., Arnold D.L., Sadovnick D., Narayanan S., McGowan M., O’Mahony J., Magalhaes S., Hanwell H., Vieth R., Tellier R., Vincent T., Disanto G., Ebers G., Wambera K., Connolly M.B., Yager J., Mah J.K., Booth F., Sebire G., Callen D., Meaney B., Dilenge M.E., Lortie A., Pohl D., Doja A., Venketaswaran S., Levin S., Macdonald E.A., Meek D., Wood E., Lowry N., Buckley D., Yim C., Awuku M., Cooper P., Grand’maison F., Baird J.B., Bhan V., Marrie R.A., Clinical, environmental, and genetic determinants of multiple sclerosis in children with acute demyelination: a prospective national cohort study. Lancet Neurol, 2011, 10, 436–445. [CrossRef] [PubMed] [Google Scholar]
  • Baxter A.G., Smyth M.J., The role of NK cells in autoimmune disease. Autoimmunity, 2002, 35, 1–14. [CrossRef] [PubMed] [Google Scholar]
  • Beecham G.W., Martin E.R., Li Y.J., Slifer M.A., Gilbert J.R., Haines J.L., Pericak-Vance M.A., Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am J Hum Genet, 2009, 84, 35–43. [CrossRef] [PubMed] [Google Scholar]
  • Betemps E.J., Buncher C.R., Birthplace as a risk factor in motor neurone disease and Parkinson’s disease. Int J Epidemiol, 1993, 22, 898–904. [CrossRef] [PubMed] [Google Scholar]
  • Broess M., Riva A., Gerstenfeld L.C., Inhibitory effects of 1,25(OH)2 vitamin D3 on collagen type I, osteopontin, and osteocalcin gene expression in chicken osteoblasts. J Cell Biochem, 1995, 57, 440–451. [CrossRef] [PubMed] [Google Scholar]
  • Buell J.S., Dawson-Hughes B., Vitamin D and neurocognitive dysfunction: preventing “D”ecline? Mol Aspects Med, 2008, 29, 415–422. [CrossRef] [PubMed] [Google Scholar]
  • Butler M.W., Burt A., Edwards T.L., Zuchner S., Scott W.K., Martin E. R., Vance J.M., Wang L., Vitamin D receptor gene as a candidate gene for Parkinson disease. Ann Hum Genet, 2011, 75, 201-210. [CrossRef] [PubMed] [Google Scholar]
  • Camu W., Tremblier B., Plassot C., Alphandery S., Salsac C., Pageot N., Juntas-Morales R., Scamps F., Daurès J.P., Raoul C., Vitamin D confers protection to motoneurons and is a prognostic factor of amyotrophic lateral sclerosis. Neurobiol Aging, 2014, 35, 1198–1205. [CrossRef] [PubMed] [Google Scholar]
  • Cantorna M.T., Hayes C.E., DeLuca H.F., 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci USA, 1996, 93, 7861–7864. [CrossRef] [Google Scholar]
  • Cantorna M.T., Woodward W.D., Hayes C.E., DeLuca H.F., 1,25-dihydroxyvitamin D3 is a positive regulator for the two anti-encephalitogenic cytokines TGF-beta 1 and IL-4. J Immunol, 1998, 160, 5314–5319. [PubMed] [Google Scholar]
  • Cantorna M.T., Zhao J., Yang L., Vitamin D, invariant natural killer T-cells and experimental autoimmune disease. Proc Nutr Soc, 2011, 71, 62–66. [CrossRef] [Google Scholar]
  • Chabas D., Baranzini S.E., Mitchell D., Bernard C.C., Rittling S.R., Denhardt D.T., Sobel R.A., Lock C., Karpuj M., Pedotti R., Heller R., Oksenberg J.R., Steinman L., The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science, 2001, 294, 1731–1735. [CrossRef] [PubMed] [Google Scholar]
  • Chang J.H., Cha H.R., Lee D.S., Seo K.Y., Kweon M.N., 1,25-Dihydroxyvitamin D3 inhibits the differentiation and migration of T(H)17 cells to protect against experimental autoimmune encephalomyelitis. PLoS One, 2010, 5, e12925. [CrossRef] [PubMed] [Google Scholar]
  • Chio A., Cucatto A., Calvo A., Terreni A.A., Magnani C., Schiffer D., Amyotrophic lateral sclerosis among the migrant population to Piemonte, northwestern Italy. J Neurol, 1999, 246, 175–180. [CrossRef] [PubMed] [Google Scholar]
  • Constans T., Mondon K., Annweiler C., Hommet C., [Vitamin D and cognition in the elderly]. Psychol Neuropsychiatr Vieil, 2010, 8, 255–262. [PubMed] [Google Scholar]
  • Cui X., Pelekanos M., Liu P.Y., Burne T.H., McGrath J.J., Eyles D.W., The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience, 2013, 236, 77–87. [CrossRef] [PubMed] [Google Scholar]
  • DeLuca G.C., Kimball S.M., Kolasinski J., Ramagopalan S.V., Ebers G.C., Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol, 2013, 39, 458–484. [CrossRef] [PubMed] [Google Scholar]
  • Desjardins M., ER-mediated phagocytosis: a new membrane for new functions. Nat Rev Immunol, 2003, 3, 280–291. [CrossRef] [PubMed] [Google Scholar]
  • Disanto G., Berlanga A.J., Handel A.E., Para A.E., Burrell A.M., Fries A., Handunnetthi L., De Luca G.C., Morahan J.M., Heterogeneity in multiple sclerosis: scratching the surface of a complex disease. Autoimmune Dis, 2010, 2011, 932351. [PubMed] [Google Scholar]
  • Dobson R., Giovannoni G., Ramagopalan S., The month of birth effect in multiple sclerosis: systematic review, meta-analysis and effect of latitude. J Neurol Neurosurg Psychiatry, 2012, 84, 427–432. [CrossRef] [PubMed] [Google Scholar]
  • Dursun E., Gezen-Ak D., Yilmazer S., A novel perspective for Alzheimer’s disease: vitamin D receptor suppression by amyloid-beta and preventing the amyloid-beta induced alterations by vitamin D in cortical neurons. J Alzheimers Dis, 2010, 23, 207–219. [Google Scholar]
  • Dursun E., Gezen-Ak D., Yilmazer S., Beta amyloid suppresses the expression of the vitamin D receptor gene and induces the expression of the vitamin D catabolic enzyme gene in hippocampal neurons. Dement Geriatr Cogn Disord, 2013, 36, 76–86. [CrossRef] [PubMed] [Google Scholar]
  • Esparza M.L., Sasaki S., Kesteloot H., Nutrition, latitude, and multiple sclerosis mortality: an ecologic study. Am J Epidemiol, 1995, 142, 733–737. [PubMed] [Google Scholar]
  • Evatt M.L., Delong M.R., Khazai N., Rosen A., Triche S., Tangpricha V., Prevalence of vitamin d insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol, 2008, 65, 1348–1352. [CrossRef] [PubMed] [Google Scholar]
  • Eyles D.W., Smith S., Kinobe R., Hewison M., McGrath J.J., Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat, 2005, 29, 21–30. [CrossRef] [PubMed] [Google Scholar]
  • Eyles D., Almeras L., Benech P., Patatian A., Mackay-Sim A., McGrath J., Féron F., Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J Steroid Biochem Mol Biol, 2007, 103, 538–545. [CrossRef] [PubMed] [Google Scholar]
  • Fang F., Valdimarsdottir U., Bellocco R., Ronnevi L.O., Sparen P., Fall K., Ye W., Amyotrophic lateral sclerosis in Sweden, 1991-2005. Arch Neurol, 2009, 66, 515–519. [CrossRef] [PubMed] [Google Scholar]
  • Fawcett J., Skegg D.C., Geographic distribution of MS in New Zealand: evidence from hospital admissions and deaths. Neurology, 1988, 38, 416–418. [CrossRef] [PubMed] [Google Scholar]
  • Fernandes de Abreu D.A., Babron M.C., Rebeix I., Fontenille C., Yaouanq J., Brassat D., Fontaine B., Clerget-Darpoux F., Jehan F., Féron F., Season of birth and not vitamin D receptor promoter polymorphisms is a risk factor for multiple sclerosis. Mult Scler, 2009, 15, 1146–1152. [CrossRef] [PubMed] [Google Scholar]
  • Fernandes de Abreu D.A., Landel V., Barnett A.G., McGrath, J., Eyles D., Féron F., Prenatal vitamin d deficiency induces an early and more severe experimental autoimmune encephalomyelitis in the second generation. Int J Mol Sci, 2012, 13, 10911–10919. [CrossRef] [PubMed] [Google Scholar]
  • Fukazawa T., Kikuchi S., Niino M., Yabe I., Miyagishi R., Fukaura H., Hamada T., Tashiro K., [Susceptibility genes for multiple sclerosis]. Nihon Rinsho, 2003, 61, 1311–1316. [PubMed] [Google Scholar]
  • Garcion E., Nataf S., Bérod A., Darcy F., Brachet P., 1,25-Dihydroxyvitamin D3 inhibits the expression of inducible nitric oxide synthase in rat central nervous system during experimental allergic encephalomyelitis. Brain Res Mol Brain Res, 1997, 45, 255–267. [CrossRef] [PubMed] [Google Scholar]
  • Garcion E., Sindji L., Montero-Menei C., André C., Brachet P., Darcy F., Expression of inducible nitric oxide synthase during rat brain inflammation: regulation by 1,25-dihydroxyvitamin D3. Glia, 1998, 22, 282–294. [CrossRef] [PubMed] [Google Scholar]
  • Garcion E., Wion-Barbot N., Montero-Menei C.N., Berger F., Wion D., New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab, 2002, 13, 100–105. [CrossRef] [PubMed] [Google Scholar]
  • Garcion E., Sindji L., Nataf S., Brachet P., Darcy F., Montero-Menei C.N., Treatment of experimental autoimmune encephalomyelitis in rat by 1,25-dihydroxyvitamin D3 leads to early effects within the central nervous system. Acta Neuropathol, 2003, 105, 438–448. [PubMed] [Google Scholar]
  • Gezen-Ak D., Dursun E., Ertan T., Hanagasi H., Gurvit H., Emre M., Eker E., Ozturk M., Engin F., Yilmazer S., Association between vitamin D receptor gene polymorphism and Alzheimer’s disease. Tohoku J Exp Med, 2007, 212, 275–282. [CrossRef] [PubMed] [Google Scholar]
  • Gezen-Ak D., Dursun E., Bilgic B., Hanagasi H., Ertan T., Gurvit H., Emre M., Eker E., Ulutin T., Uysal O., Yilmazer S., Vitamin D receptor gene haplotype is associated with late-onset Alzheimer’s disease. Tohoku J Exp Med, 2012a, 228, 189–196. [CrossRef] [PubMed] [Google Scholar]
  • Gezen-Ak D., Dursun E., Yilmazer S., Vitamin D inquiry in hippocampal neurons: consequences of vitamin D-VDR pathway disruption on calcium channel and the vitamin D requirement. Neurol Sci, 2012b, 34, 1453–1458. [CrossRef] [PubMed] [Google Scholar]
  • Gezen-Ak D., Yilmazer S., Dursun E., Why Vitamin D in Alzheimer’s Disease? The Hypothesis. J Alzheimers Dis, 2014, 40, 257–269. [PubMed] [Google Scholar]
  • Giovannoni G., Ebers G., Multiple sclerosis: the environment and causation. Curr Opin Neurol, 2007, 20, 261–268. [CrossRef] [PubMed] [Google Scholar]
  • Goldberg P., Fleming M.C., Picard E.H., Multiple sclerosis: decreased relapse rate through dietary supplementation with calcium, magnesium and vitamin D. Med Hypotheses, 1986, 21, 193–200. [CrossRef] [PubMed] [Google Scholar]
  • Grimm M.O., Lehmann J., Mett J., Zimmer V.C., Grosgen S., Stahlmann C.P., Hundsdorfer B., Haupenthal V.J., Rothhaar T.L., Herr C., Bals R., Grimm H.S., Hartmann T., Impact of Vitamin D on Amyloid Precursor Protein Processing and Amyloid-beta Peptide Degradation in Alzheimer’s Disease. Neurodegener Dis, 2013, 13, 75–81. [CrossRef] [PubMed] [Google Scholar]
  • Grishkan I.V., Fairchild A.N., Calabresi P.A., Gocke A.R., 1,25-Dihydroxyvitamin D3 selectively and reversibly impairs T helper-cell CNS localization. Proc Natl Acad Sci USA, 2013, 110, 21101–21106. [CrossRef] [Google Scholar]
  • Hammond S.R., McLeod J.G., Macaskill P., English D.R., Multiple sclerosis in Australia: prognostic factors. J Clin Neurosci, 2000, 7, 16–19. [CrossRef] [PubMed] [Google Scholar]
  • Handunnetthi L., Ramagopalan S.V., Ebers G.C., Multiple sclerosis, vitamin D, and HLA-DRB1*15. Neurology, 2010, 74, 1905–1910. [CrossRef] [PubMed] [Google Scholar]
  • Hayes C.E., Cantorna M.T., DeLuca H.F., Vitamin D and multiple sclerosis. Proc Soc Exp Biol Med, 1997, 216, 21–27. [CrossRef] [PubMed] [Google Scholar]
  • Hernan M.A., Olek M.J., Ascherio A., Geographic variation of MS incidence in two prospective studies of US women. Neurology, 1999, 53, 1711–1718. [CrossRef] [PubMed] [Google Scholar]
  • Ibi M., Sawada H., Nakanishi M., Kume T., Katsuki H., Kaneko S., Shimohama S., Akaike A., Protective effects of 1 alpha,25-(OH)(2)D(3) against the neurotoxicity of glutamate and reactive oxygen species in mesencephalic culture. Neuropharmacology, 2001, 40, 761–771. [CrossRef] [PubMed] [Google Scholar]
  • Ito S., Ohtsuki S., Nezu Y., Koitabashi Y., Murata S., Terasaki T., 1alpha,25-Dihydroxyvitamin D3 enhances cerebral clearance of human amyloid-beta peptide(1-40) from mouse brain across the blood-brain barrier. Fluids Barriers CNS, 2011, 8, 20. [CrossRef] [PubMed] [Google Scholar]
  • Joshi S., Pantalena C., Liu X.K., Gaffen S.L., Liu H., Rohowsky-Kochan C., Ichiyama K., Yoshimura, L., Steinman L., Christakos S., Youssef S., 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol, 2011, 31, 3653–3669. [CrossRef] [PubMed] [Google Scholar]
  • Kalueff A.V., Tuohimaa P., Neurosteroid hormone vitamin D and its utility in clinical nutrition. Curr Opin Clin Nutr Metab Care, 2007, 10, 12–19. [CrossRef] [PubMed] [Google Scholar]
  • Kampman M.T., Wilsgaard T., Mellgren S.I., Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic Circle. J Neurol, 2007, 254, 471–477. [CrossRef] [PubMed] [Google Scholar]
  • Keeney J.T., Forster S., Sultana R., Brewer L.D., Latimer C.S., Cai J., Klein J.B., Porter N.M., Allan D., Butterfield Dietary vitamin D deficiency in rats from middle to old age leads to elevated tyrosine nitration and proteomics changes in levels of key proteins in brain: implications for low vitamin D-dependent age-related cognitive decline. Free Radic Biol Med, 2013, 65, 324–334. [CrossRef] [PubMed] [Google Scholar]
  • Kim J.S., Kim Y.I., Song C., Yoon I., Park J.W., Choi Y.B., Kim H.T., Lee K.S., Association of vitamin D receptor gene polymorphism and Parkinson’s disease in Koreans. J Korean Med Sci, 2005, 20, 495–498. [CrossRef] [PubMed] [Google Scholar]
  • King H., Rosenheim O., Webster T.A., Vitamin D from sterols of mummified Egyptian brain. Biochem J, 1929, 23, 166–167. [PubMed] [Google Scholar]
  • Kurtzke J.F., Hyllested K., Arbuckle J.D., Bronnum-Hansen H., Wallin M.T., Heltberg A., Jacobsen H., Olsen A., Eriksen L.S., Multiple sclerosis in the Faroe Islands. 7. Results of a case control questionnaire with multiple controls. Acta Neurol Scand, 1997, 96, 149–157. [CrossRef] [PubMed] [Google Scholar]
  • Lehmann D.J., Refsum H., Warden D.R., Medway C., Wilcock G.K., Smith A.D., The vitamin D receptor gene is associated with Alzheimer’s disease. Neurosci Lett, 2011, 504, 79–82. [CrossRef] [PubMed] [Google Scholar]
  • Leibowitz U., Sharon D., Alter M., Geographical considerations in multiple sclerosis. Brain, 1968, 91, 37–52. [CrossRef] [PubMed] [Google Scholar]
  • Li B., Baylink D.J., Deb C., Zannetti C., Rajaallah F., Xing W., Walter M.H., Lau K.H., Qin X., 1,25-Dihydroxyvitamin D3 suppresses TLR8 expression and TLR8-mediated inflammatory responses in monocytes in vitro and experimental autoimmune encephalomyelitis in vivo. PLoS One, 2013, 8, e58808. [CrossRef] [PubMed] [Google Scholar]
  • Llewellyn D.J., Langa K.M., Lang I.A., Serum 25-hydroxyvitamin D concentration and cognitive impairment. J Geriatr Psychiatry Neurol, 2009, 22, 188–195. [CrossRef] [PubMed] [Google Scholar]
  • Lux W.E., Kurtzke J.F., Is Parkinson’s disease acquired? Evidence from a geographic comparison with multiple sclerosis. Neurology, 1987, 37, 467–471. [CrossRef] [PubMed] [Google Scholar]
  • Mattner F., Smiroldo S., Galbiati F., Muller M., Di Lucia P., Poliani P.L., Martino G., Panina-Bordignon P., Adorini L., Inhibition of Th1 development and treatment of chronic-relapsing experimental allergic encephalomyelitis by a non-hypercalcemic analogue of 1,25-dihydroxyvitamin D(3). Eur J Immunol, 2000, 30, 498–508. [CrossRef] [PubMed] [Google Scholar]
  • Mattock C., Marmot M., Stern G., Could Parkinson’s disease follow intra-uterine influenza? A speculative hypothesis. J Neurol Neurosurg Psychiatry, 1988, 51, 753–756. [CrossRef] [PubMed] [Google Scholar]
  • Mayne C.G., Spanier J.A., Relland L.M., Williams C.B., Hayes C.E., 1,25-Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. Eur J Immunol, 2011, 41, 822–832. [CrossRef] [PubMed] [Google Scholar]
  • McCann J.C., Ames B.N., Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB J, 2008, 22, 982–1001. [CrossRef] [PubMed] [Google Scholar]
  • McGuigan C., McCarthy A., Quigley C., Bannan L., Hawkins S.A., Hutchinson M., Latitudinal variation in the prevalence of multiple sclerosis in Ireland, an effect of genetic diversity. J Neurol Neurosurg Psychiatry, 2004, 75, 572–576. [CrossRef] [PubMed] [Google Scholar]
  • McLeod J.G., Hammond S.R., Hallpike J.F., Epidemiology of multiple sclerosis in Australia. With NSW and SA survey results. Med J Aust, 1994, 160, 117–122. [PubMed] [Google Scholar]
  • Meehan T.F., DeLuca H.F., The vitamin D receptor is necessary for 1alpha,25-dihydroxyvitamin D(3) to suppress experimental autoimmune encephalomyelitis in mice. Arch Biochem Biophys, 2002, 408, 200–204. [CrossRef] [PubMed] [Google Scholar]
  • Mizwicki M.T., Menegaz D., Zhang J., Barrientos-Duran A., Tse S., Cashman J.R., Griffin P.R., Fiala M., Genomic and nongenomic signaling induced by 1alpha,25(OH)2-vitamin D3 promotes the recovery of amyloid-beta phagocytosis by Alzheimer’s disease macrophages. J Alzheimers Dis, 2011, 29, 51–62. [Google Scholar]
  • Munger K.L., Levin L.I., Hollis B.W., Howard N.S., Ascherio A., Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA, 2006, 296, 2832–2838. [CrossRef] [PubMed] [Google Scholar]
  • Muthian G., Raikwar H.P., Rajasingh J., Bright J.J., 1,25 Dihydroxyvitamin-D3 modulates JAK-STAT pathway in IL-12/IFNgamma axis leading to Th1 response in experimental allergic encephalomyelitis. J Neurosci Res, 2006, 83, 1299–1309. [CrossRef] [PubMed] [Google Scholar]
  • Nashold F.E., Hoag K.A., Goverman J., Hayes C.E., Rag-1-dependent cells are necessary for 1,25-dihydroxyvitamin D(3) prevention of experimental autoimmune encephalomyelitis. J Neuroimmunol, 2001, 119, 16–29. [CrossRef] [PubMed] [Google Scholar]
  • Nashold F.E., Spach K.M., Spanier J.A., Hayes C.E., Estrogen controls vitamin D3-mediated resistance to experimental autoimmune encephalomyelitis by controlling vitamin D3 metabolism and receptor expression. J Immunol, 2009, 183, 3672–3681. [CrossRef] [PubMed] [Google Scholar]
  • Nashold F.E., Nelson C.D., Brown L.M., Hayes C.E., One calcitriol dose transiently increases Helios+ FoxP3+ T cells and ameliorates autoimmune demyelinating disease. J Neuroimmunol, 2013, 263, 64–74. [CrossRef] [PubMed] [Google Scholar]
  • Nataf S., Garcion E., Darcy F., Chabannes D., Muller J.Y., Brachet P., 1,25-Dihydroxyvitamin D3 exerts regional effects in the central nervous system during experimental allergic encephalomyelitis. J Neuropathol Exp Neurol, 1996, 55, 904–914. [CrossRef] [PubMed] [Google Scholar]
  • Naveilhan P., Neveu I., Baudet C., Ohyama K.Y., Brachet P., Wion D., Expression of 25(OH) vitamin D3 24-hydroxylase gene in glial cells. Neuroreport, 1993, 5, 255–257. [CrossRef] [PubMed] [Google Scholar]
  • Neveu I., Naveilhan P., Menaa C., Wion D., Brachet P., Garabedian M., Synthesis of 1,25-dihydroxyvitamin D3 by rat brain macrophages in vitro. J Neurosci Res, 1994, 38, 214–220. [CrossRef] [PubMed] [Google Scholar]
  • Nissou M.F., Brocard J., El Atifi M., Guttin A., Andrieux A., Berger F., Issartel J.P., Wion D., The transcriptomic response of mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin D3 includes genes limiting the progression of neurodegenerative diseases. J Alzheimers Dis, 2013, 35, 553–564. [PubMed] [Google Scholar]
  • O’Garra A., Barrat F.J., In vitro generation of IL-10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by Th1- and Th2-inducing cytokines. Immunol Lett, 2003, 85, 135–139. [CrossRef] [PubMed] [Google Scholar]
  • Okuda Y., Nakatsuji Y., Fujimura H., Esumi H., Ogura T., Yanagihara T., Sakoda S., Expression of the inducible isoform of nitric oxide synthase in the central nervous system of mice correlates with the severity of actively induced experimental allergic encephalomyelitis. J Neuroimmunol, 1995, 62, 103–112. [CrossRef] [PubMed] [Google Scholar]
  • Orton S.M., Wald L., Confavreux C., Vukusic S., Krohn J.P., Ramagopalan S.V., Herrera B.M., Sadovnick A.D., Ebers G.C., Association of UV radiation with multiple sclerosis prevalence and sex ratio in France. Neurology, 2012, 76, 425–431. [CrossRef] [Google Scholar]
  • Oudshoorn C.F., Mattace-Raso U., van der Velde N., Colin E.M., van der Cammen T.J., Higher serum vitamin D3 levels are associated with better cognitive test performance in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord, 2008, 25, 539–543. [CrossRef] [PubMed] [Google Scholar]
  • Pedersen L.B., Nashold F.E., Spach K.M., Hayes C.E., 1,25-dihydroxyvitamin D3 reverses experimental autoimmune encephalomyelitis by inhibiting chemokine synthesis and monocyte trafficking. J Neurosci Res, 2007, 85, 2480–2490. [CrossRef] [PubMed] [Google Scholar]
  • Puchacz E., Stumpf W.E., Stachowiak E.K., Stachowiak M.K.,Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells. Brain Res Mol Brain Res, 1996, 36, 193–196. [CrossRef] [PubMed] [Google Scholar]
  • Querfurth H.W., LaFerla F.M., Alzheimer’s disease. N Engl J Med, 2010, 362, 329–344. [Google Scholar]
  • Ramagopalan S.V., Maugeri N.J., Handunnetthi L., Lincoln M.R., Orton S.M., Dyment D.A., Deluca G.C., Herrera B.M., Chao M.J., Sadovnick A.D., Ebers G.C., Knight J.C., Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet, 2009, 5, e1000369. [CrossRef] [PubMed] [Google Scholar]
  • Reinholt F.P., Hultenby K., Oldberg A., Heinegard D., Osteopontin–a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA, 1990, 87, 4473–4475. [CrossRef] [Google Scholar]
  • Rossom R.C., Espeland M.A., Manson J.E., Dysken M.W., Johnson K.C., Lane D.S., LeBlanc E.S., Lederle F.A., Masaki K.H., Margolis K.L., Calcium and vitamin D supplementation and cognitive impairment in the women’s health initiative. J Am Geriatr Soc, 2012, 60, 2197–2205. [CrossRef] [PubMed] [Google Scholar]
  • Sanchez B., Lopez-Martin E., Segura C., Labandeira-Garcia J.L., Perez-Fernandez R., 1,25-Dihydroxyvitamin D(3) increases striatal GDNF mRNA and protein expression in adult rats. Brain Res Mol Brain Res, 2002, 108, 143–146. [CrossRef] [PubMed] [Google Scholar]
  • Schmidt H., Williamson D., Ashley-Koch A., HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am J Epidemiol, 2007, 165, 1097–1109. [CrossRef] [PubMed] [Google Scholar]
  • Sejvar J.J., Holman R.C., Bresee J.S., Kochanek K.D., Schonberger L.B., Amyotrophic lateral sclerosis mortality in the United States, 1979–2001. Neuroepidemiology, 2005, 25, 144–152. [CrossRef] [PubMed] [Google Scholar]
  • Shinpo K., Kikuchi S., Sasaki H., Moriwaka F., Tashiro K., Effect of 1,25-dihydroxyvitamin D(3) on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by L-buthionine sulfoximine and 1-methyl-4-phenylpyridine. J Neurosci Res, 2000, 62, 374–382. [CrossRef] [PubMed] [Google Scholar]
  • Slinin Y., Paudel M.L., Taylor B.C., Fink H.A., Ishani A., Canales M. T., Yaffe K., Barrett-Connor E., Orwoll E.S., Shikany J.M., Leblanc E.S., Cauley J.A., Ensrud K.E., 25-Hydroxyvitamin D levels and cognitive performance and decline in elderly men. Neurology, 2009, 74, 33–41. [CrossRef] [PubMed] [Google Scholar]
  • Slinin Y., Paudel M., Taylor B.C., Ishani A., Rossom R., Yaffe K., Blackwell T., Lui L.Y., Hochberg M., Ensrud K.E., Association between serum 25(OH) vitamin D and the risk of cognitive decline in older women. J Gerontol A Biol Sci Med Sci, 2012, 67, 1092–1098. [CrossRef] [PubMed] [Google Scholar]
  • Smith M.P., Fletcher-Turner A., Yurek D.M., Cass W.A., Calcitriol protection against dopamine loss induced by intracerebroventricular administration of 6-hydroxydopamine. Neurochem Res, 2006, 31, 533–539. [CrossRef] [PubMed] [Google Scholar]
  • Smolders J., Hupperts R., Barkhof F., Grimaldi L.M., Holmoy T., Killestein J., Rieckmann P., Schluep M., Vieth R., Hostalek U., Ghazi-Visser L., M. Beelke and S. s. group., Efficacy of vitamin D3 as add-on therapy in patients with relapsing-remitting multiple sclerosis receiving subcutaneous interferon beta-1a: a Phase II, multicenter, double-blind, randomized, placebo-controlled trial. J Neurol Sci, 2011, 311, 44–49. [CrossRef] [PubMed] [Google Scholar]
  • Soilu-Hanninen M., Aivo J., Lindstrom B.M., Elovaara I., Sumelahti M.L., Farkkila M., Tienari P., Atula S., Sarasoja T., Herrala L., Keskinarkaus I., Kruger J., Kallio T., Rocca M.A., Filippi M., A randomised, double blind, placebo controlled trial with vitamin D3 as an add on treatment to interferon beta-1b in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry, 2012, 83, 565–571. [CrossRef] [PubMed] [Google Scholar]
  • Spach K.M., Hayes C.E., Vitamin D3 confers protection from autoimmune encephalomyelitis only in female mice. J Immunol, 2005, 175, 4119–4126. [CrossRef] [PubMed] [Google Scholar]
  • Spach K.M., Pedersen L.B., Nashold F.E., Kayo T., Yandell B.S., Prolla T.A., Hayes C.E., Gene expression analysis suggests that 1,25-dihydroxyvitamin D3 reverses experimental autoimmune encephalomyelitis by stimulating inflammatory cell apoptosis. Physiol Genomics, 2004, 18, 141–151. [CrossRef] [PubMed] [Google Scholar]
  • Spach K.M., Nashold F.E., Dittel B.N., Hayes C.E., IL-10 signaling is essential for 1,25-dihydroxyvitamin D3-mediated inhibition of experimental autoimmune encephalomyelitis. J Immunol, 2006, 177, 6030–6037. [CrossRef] [PubMed] [Google Scholar]
  • Stepkowski S.M., Molecular targets for existing and novel immunosuppressive drugs. Expert Rev Mol Med, 2000, 2, 1–23. [CrossRef] [Google Scholar]
  • Stromnes I.M., Goverman J.M., Osteopontin-induced survival of T cells. Nat Immunol, 2007, 8, 19–20. [CrossRef] [PubMed] [Google Scholar]
  • Stumpf W.E., Sar M., Clark S.A., DeLuca H.F., Brain target sites for 1,25-dihydroxyvitamin D3. Science, 1982, 215, 1403–1405. [CrossRef] [PubMed] [Google Scholar]
  • Sutherland J.M., Tyrer J.H., Eadie M.J., The prevalence of multiple sclerosis in Australia. Brain, 1962, 85, 149–164. [CrossRef] [PubMed] [Google Scholar]
  • Sutherland M.K., Somerville M.J., Yoong L.K., Bergeron C., Haussler M. R., McLachlan D.R., Reduction of vitamin D hormone receptor mRNA levels in Alzheimer as compared to Huntington hippocampus: correlation with calbindin-28k mRNA levels. Brain Res Mol Brain Res, 1992, 13, 239–250. [CrossRef] [PubMed] [Google Scholar]
  • Taghizadeh M., Djazayery A., Salami M., Eshraghian M.R., Zavareh S.A., Vitamin-D-free regimen intensifies the spatial learning deficit in Alzheimer’s disease. Int J Neurosci, 2010, 121, 16–24. [CrossRef] [PubMed] [Google Scholar]
  • Takahashi K., Miyake S., Kondo T., Terao K., Hatakenaka M., Hashimoto S., Yamamura T., Natural killer type 2 bias in remission of multiple sclerosis. J Clin Invest, 2001, 107, R23–29. [CrossRef] [PubMed] [Google Scholar]
  • Takahashi K., Aranami T., Endoh M., Miyake S., Yamamura T., The regulatory role of natural killer cells in multiple sclerosis. Brain, 2004, 127, 1917–1927. [CrossRef] [PubMed] [Google Scholar]
  • Templer D.I., Trent N.H., Spencer D.A., Trent A., Corgiat M.D., Mortensen P.B., Gorton M., Season of birth in multiple sclerosis. Acta Neurol Scand, 1992, 85, 107–109. [CrossRef] [PubMed] [Google Scholar]
  • Torrey E.F., Miller J., Rawlings R., Yolken R.H., Seasonal birth patterns of neurological disorders. Neuroepidemiology, 2000, 19, 177–185. [CrossRef] [PubMed] [Google Scholar]
  • Uccelli R., Binazzi A., Altavista P., Belli S., Comba P., Mastrantonio M., Vanacore N., Geographic distribution of amyotrophic lateral sclerosis through motor neuron disease mortality data. Eur J Epidemiol, 2007, 22, 781–790. [CrossRef] [PubMed] [Google Scholar]
  • van der Mei I.A., Ponsonby A.L., Dwyer T., Blizzard L., Simmons R., Taylor B.V., Butzkueven H., Kilpatrick T., Past exposure to sun, skin phenotype, and risk of multiple sclerosis: case-control study. BMJ, 2003, 327, 316. [CrossRef] [PubMed] [Google Scholar]
  • van Es M.A., Veldink J.H., Saris C.G., Blauw H.M., van Vught P.W., Birve A., Lemmens R., Schelhaas H.J., Groen E.J., Huisman M.H., van der Kooi A.J., de Visser M., Dahlberg C., Estrada K., Rivadeneira F., Hofman A., Zwarts M.J., van Doormaal P.T., Rujescu D., Strengman E., Giegling I., Muglia P., Tomik B., Slowik A., Uitterlinden A.G., Hendrich C., Waibel S., Meyer T., Ludolph A.C., Glass J.D., Purcell S., Cichon S., Nothen M.M., Wichmann H.E., Schreiber S., Vermeulen S.H., Kiemeney L.A., Wokke J.H., Cronin S., McLaughlin R.L., Hardiman O., Fumoto K., Pasterkamp R.J., Meininger V., Melki J., Leigh P.N., Shaw C.E., Landers J.E., Al-Chalabi A., Brown R.H., Jr., Robberecht W., Andersen P.M., Ophoff R.A., van den Berg L.H., Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet, 2009, 41, 1083–1087. [CrossRef] [PubMed] [Google Scholar]
  • Wang J.Y., Wu J.N., Cherng T.L., Hoffer B.J., Chen H.H., Borlongan C. V., Wang Y., Vitamin D(3) attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res, 2001, 904, 67–75. [CrossRef] [PubMed] [Google Scholar]
  • Wang L., Hara K., Van Baaren J.M., Price J.C., Beecham G.W., Gallins P.J., Whitehead P.L., Wang G., Lu C., Slifer M.A., Zuchner S., Martin E.R., Mash D., Haines J.L., Pericak-Vance M.A., Gilbert J.R., Vitamin D receptor and Alzheimer’s disease: a genetic and functional study. Neurobiol Aging, 2012, 33, 1841–1849. [CrossRef] [Google Scholar]
  • Wang T.T., Tavera-Mendoza L.E., Laperrière D., Libby E., MacLeod N.B., Nagai Y., Bourdeau V., Konstorum A., Lallemant B., Zhang R., Mader S., White J.H., Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol, 2005, 19, 2685–2695. [CrossRef] [PubMed] [Google Scholar]
  • Wang Y., Marling S.J., McKnight S.M., Danielson A.L., Severson K.S., DeLuca H.F., Suppression of experimental autoimmune encephalomyelitis by 300–315 nm ultraviolet light. Arch Biochem Biophys, 2013, 536, 81–86. [CrossRef] [PubMed] [Google Scholar]
  • Wermuth L., von Weitzel-Mudersbach P., Jeune B., A two-fold difference in the age-adjusted prevalences of Parkinson’s disease between the island of Als and the Faroe Islands. Eur J Neurol, 2000, 7, 655–660. [CrossRef] [PubMed] [Google Scholar]
  • Wermuth L., Pakkenberg H., Jeune B., High age-adjusted prevalence of Parkinson’s disease among Inuits in Greenland. Neurology, 2002, 58, 1422–1425. [CrossRef] [PubMed] [Google Scholar]
  • Wermuth L., Bech S., Petersen M.S., Joensen P., Weihe P., Grandjean P., Prevalence and incidence of Parkinson’s disease in The Faroe Islands. Acta Neurol Scand, 2008, 118, 126–131. [CrossRef] [PubMed] [Google Scholar]
  • Woolmore J.A., Stone M., Pye E.M., Partridge J.M., Boggild M., Young C., Jones P.W., Fryer A.A., Hawkins C.P., Strange R.C., Studies of associations between disability in multiple sclerosis, skin type, gender and ultraviolet radiation. Mult Scler, 2007, 13, 369–375. [CrossRef] [PubMed] [Google Scholar]
  • Yoon K., Buenaga R., Rodan G.A., Tissue specificity and developmental expression of rat osteopontin. Biochem Biophys Res Commun, 1987, 148, 1129–1136. [CrossRef] [PubMed] [Google Scholar]
  • Yu J., Gattoni-Celli M., Zhu H., Bhat N.R., Sambamurti K., Gattoni-Celli S., Kindy M.S., Vitamin D3-enriched diet correlates with a decrease of amyloid plaques in the brain of AbetaPP transgenic mice. J Alzheimers Dis, 2011, 25, 295–307. [PubMed] [Google Scholar]
  • Zhang J., Sokal I., Peskind E.R., Quinn J.F., Jankovic J., Kenney C., Chung K.A., Millard S.P., Nutt J.G., Montine T.J., CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am J Clin Pathol, 2008, 129, 526–529. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.