Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 208, Numéro 1, 2014
|
|
---|---|---|
Page(s) | 45 - 53 | |
Section | La vitamine D, une hormone stéroïde méconnue | |
DOI | https://doi.org/10.1051/jbio/2014009 | |
Publié en ligne | 23 juin 2014 |
- Ahn J., Yu K., Stolzenberg-Solomon R., Simon K.C., McCullough M.L., Gallicchio L., Jacobs E.J., Ascherio A., Helzlsouer K., Jacobs K.B., Li Q., Weinstein S.J., Purdue M., Virtamo J., Horst R., Wheeler W., Chanock S., Hunter D.J., Hayes R.B., Kraft P., Albanes D., Genome-wide association study of circulating vitamin D levels. Hum Mol Genet, 2010, 19, 2739−2745. [CrossRef] [PubMed] [Google Scholar]
- Angus T.C., Askew F.A., Bourdillon R.B., Bruce H.M., Callow R., Fischmann C., Philpot L., Webster T.A., A crystalline antirachitic substance. Proc Royal Soc Ser B, 1931, 108, 340–359. [CrossRef] [Google Scholar]
- Baeke F., Takiishi T., Korf H., Gysemans C., Mathieu C., Vitamin D: modulator of the immune system. Curr Opin Pharmacol, 2010, 4, 482–496. [Google Scholar]
- Baldock P.A., Thomas G.P., Hodge J.M., Baker S.U., Dressel U., O’Loughlin P.D., Nicholson G.C., Briffa K.H., Eisman J.A., Gardiner E.M., Vitamin D action and regulation of bone remodeling: suppression of osteoclastogenesis by the mature osteoblast. J Bone Miner Res, 2006, 10, 1618–1626. [CrossRef] [Google Scholar]
- Cantorna M.T., Vitamin D and its role in immunology: multiple sclerosis, and inflammatory bowel disease. Prog Biophys Mol Biol, 2006, 92, 60–64. [CrossRef] [PubMed] [Google Scholar]
- Casella S.J., Reiner B.J., Chen T.C., Holick M.F., Harrison H.E., A possible genetic defect in 25-hydroxylation as a cause of rickets. J Pediatr, 1994, 124, 929–932. [CrossRef] [PubMed] [Google Scholar]
- Cheng J.B., Levine M.A., Bell N.H., Mangelsdorf D.J., Russell D.W., Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci USA, 2004, 101, 7711–7715. [CrossRef] [Google Scholar]
- Christakos S., Recent advances in our understanding of 1,25-dihydroxyvitamin D3 regulation of intestinal calcium absorption. Arch Biochem Biophys, 2012, 523, 73−76. [CrossRef] [PubMed] [Google Scholar]
- Christakos S., Lieben L., Masuyama R., Carmeliet G., Vitamin D endocrine system and the intestine. Bonekey Rep, 2014, 3, 496. [CrossRef] [PubMed] [Google Scholar]
- Dastani Z., Li R., Richards B., Genetic regulation of vitamin D levels. Calcif Tissue Int, 2013, 92, 106–117. [CrossRef] [PubMed] [Google Scholar]
- DeLuca G.C., Kimball S.M., Kolasinski J., Ramagopalan S.V., Ebers G.C., Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol, 2013, 39, 458–484. [CrossRef] [PubMed] [Google Scholar]
- Deluca HF. History of the discovery of vitamin D and its active metabolites. Bonekey Rep. 2014, 3, 479. [PubMed] [Google Scholar]
- Demay M.B., Physiological insights from the vitamin D receptor knockout mouse. Calcif Tissue Int, 2013, 92, 99–105. [CrossRef] [PubMed] [Google Scholar]
- Fernandes de Abreu D.A., Eyles D., Féron F., Vitamin D, a neuro immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology, 2009, 34, S265–S277. [CrossRef] [Google Scholar]
- Fraser D.R., Kodicek E., Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature, 1970, 228, 764–766. [CrossRef] [PubMed] [Google Scholar]
- Fukumoto S., Phosphate metabolism and vitamin D. Bonekey Rep, 2014, 3, 497. [CrossRef] [PubMed] [Google Scholar]
- Garabedian M., Holick M.F., Deluca H.F., Boyle I.T., Control of 25-hydroxycholecalciferol metabolism by parathyroid glands. Proc Natl Acad Sci USA, 1972, 69, 1673–1676. [CrossRef] [Google Scholar]
- Garabedian M., Tanaka Y., Holick M.F., Deluca H.F., Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology, 1974, 94, 1022–1027. [CrossRef] [PubMed] [Google Scholar]
- Gardiner E.M., Baldock P.A., Thomas G.P., Sims N.A., Henderson N.K., Hollis B., White C.P., Sunn K.L., Morrison N.A., Walsh W.R., Eisman J.A., Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB J, 2000, 13, 1908–1916. [CrossRef] [Google Scholar]
- Haussler M.R., Norman A.W., Chromosomal receptor for a vitamin D metabolite. Proc Natl Acad Sci USA, 1969, 62, 155–162. [CrossRef] [Google Scholar]
- Haussler M.R., Whitfield G.K., Kaneko I., Haussler C.A., Hsieh D., Hsieh J.C., Jurutka P.W., Molecular mechanisms of vitamin D action. Calcif Tissue Int, 2013, 92, 77–98. [CrossRef] [PubMed] [Google Scholar]
- Hess A.F., Weinstock M., The antirachitic value of irradiated cholesterol and phytosterol. II. Further evidence of change in biological activity. Methods Enzymol, 1925, 64, 181–191. [Google Scholar]
- Holick M.F., Schnoes H.K., Deluca H.F., Suda T., Cousins R.J., Isolation and identification of 1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry, 1971, 10, 2799–2804. [CrossRef] [PubMed] [Google Scholar]
- Huldschinsky, K., Heilung von Rachitis durch kiinstliche Hohensonne. Dtsch med Wschr 1919, 45, 712–713. [CrossRef] [Google Scholar]
- Hyppönen E., Power C., Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors. Am J Clin Nutr. 2007, 85, 860−868. [PubMed] [Google Scholar]
- Jones G., Strugnell S.A., DeLuca H.F., Current understanding of the molecular actions of vitamin D. Physiol Rev, 1998, 78, 1193–1231. [PubMed] [Google Scholar]
- Jones G., Prosser D.E., Kaufmann M., Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res, 2014, 55, 13–31. [CrossRef] [PubMed] [Google Scholar]
- Krishnan A.V., Feldman D., Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu Rev Pharmacol Toxicol, 2011, 51, 311–336. [CrossRef] [PubMed] [Google Scholar]
- Lasky-Su J., Lange N., Brehm J.M., Damask A., Soto-Quiros M., Avila L., Celedón J.C., Canino G., Cloutier M.M., Hollis B.W., Weiss S.T., Litonjua A.A., Genome-wide association analysis of circulating vitamin D levels in children with asthma. Hum Genet, 2012, 131, 1495–1505. [CrossRef] [PubMed] [Google Scholar]
- Lawson D.E.M., Fraser D.R., Kodicek E., Morris H.R., Williams D.H., Identification of 1,25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism. Nature, 1971, 230, 228–230. [CrossRef] [PubMed] [Google Scholar]
- Lieben L., Carmeliet G., The delicate balance between vitamin D, calcium and bone homeostasis: lessons learned from intestinal- and osteocyte-specific VDR null mice. J Steroid Biochem Mol Biol, 2013. 136, 102−106. [CrossRef] [PubMed] [Google Scholar]
- Lieben L., Masuyama R., Torrekens S., Van Looveren R., Schrooten J., Baatsen P., Lafage-Proust M.H., Dresselaers T., Feng J.Q., Bonewald L.F., Meyer M.B., Pike J.W., Bouillon R., Carmeliet G., Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest, 2012, 122, 1803–1815. [CrossRef] [PubMed] [Google Scholar]
- Lund J., DeLuca H.F., Biologically active metabolite of vitamin D3 from bone, liver, and blood serum. J Lipid Res, 1966, 6, 739–744. [Google Scholar]
- Masuda S., Byford V., Arabian A., Sakai Y., Demay M.B., St-Arnaud R., Jones G., Altered pharmacokinetics of 1alpha,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (Cyp24A1) null mouse. Endocrinology, 2005, 146, 825–834. [CrossRef] [PubMed] [Google Scholar]
- Mathews C.H., Brommage R., DeLuca H.F., Role of vitamin D in neonatal skeletal development in rats. Am J Physiol, 1986, 250, E725–E730. [PubMed] [Google Scholar]
- McCollum E.V., Simmonds N., Pitz W., The relation of the unidentified dietary factors, the fat-soluble a, and watersoluble b, of the diet to the growthpromoting properties of milk. J Biol Chem, 1916, 27, 33–43. [Google Scholar]
- McCollum E.V., Simmonds N., Becker J.E., Shipley P.G., Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem, 1922, 53, 293–312. [Google Scholar]
- Meir T., Levi R., Lieben L., Libutti S., Carmeliet G., Bouillon R., Silver J., Naveh-Many T., Deletion of the vitamin D receptor specifically in the parathyroid demonstrates a limited role for the receptor in parathyroid physiology. Am J Physiol Renal Physiol, 2009, 5, F1192–1198. [CrossRef] [Google Scholar]
- Mellanby, E., An experimental investigation on rickets. Lancet, 1919, 1, 407–412. [Google Scholar]
- Morii H., Lund J., Neville P.F., DeLuca H.F., Biological activity of a vitamin D metabolite. Arch Biochem Biophys, 1967, 120, 508–512. [CrossRef] [Google Scholar]
- Norman A.W., Myrtle J.F., Midgett R.J., Nowicki H.G., Williams V., Popjak G., 1,25-Dihydroxy-cholecalciferol: identification of the proposed active form of vitamin D3 in the intestine. Science, 1971, 173, 51–54. [CrossRef] [PubMed] [Google Scholar]
- Pike J.W., Genome-wide principles of gene regulation by the vitamin D receptor and its activating ligand. Mol Cell Endocrinol, 2011, 347, 3–10. [CrossRef] [PubMed] [Google Scholar]
- Pike J.W., Meyer M.B., Fundamentals of vitamin D hormone-regulated gene expression. J Steroid Biochem Mol Biol, 2013, S0960-0760, 234–233. [Google Scholar]
- Ponchon G., DeLuca HF., The role of the liver in the metabolism of vitamin D. J Clin Invest, 1969, 48, 1273−1279. [CrossRef] [PubMed] [Google Scholar]
- Quarles L.D., Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat Rev Endocrinol, 2012, 8, 276–286. [CrossRef] [PubMed] [Google Scholar]
- Schlingmann K.P., Kaufmann M., Weber S., Irwin A., Goos C., John U., Misselwitz J., Klaus G., Kuwertz-Bröking E., Fehrenbach H., Wingen A.M., Güran T., Hoenderop J.G., Bindels R.J., Prosser D.E., Jones G., Konrad M., Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med, 2011, 365, 410−421. [CrossRef] [PubMed] [Google Scholar]
- Signorello L.B., Shi J., Cai Q., Zheng W., Williams S.M., Long J., Cohen S.S., Li G., Hollis B.W., Smith J.R., Blot W.J., Common variation in vitamin D pathway genes predicts circulating 25-hydroxyvitamin D levels among African Americans. PLoS One, 2011, 6, e28623. [CrossRef] [PubMed] [Google Scholar]
- St-Arnaud, R., Kupscik L., Naja R-P., Husseini A., Arabian A., Novel mechanism of action for 24-hydroxylated vitamin D metabolites in fracture repair. 15th Workshop on Vitamin D, Houston, Texas, June 16–22, 2012. [Google Scholar]
- Steenbock H., Black A., Fat-soluble vitamins. XVII. The induction of growth-promoting and calcifying properties in a ration by exposure to ultra-violet light. J Biol Chem, 1924, 61, 405–422. [Google Scholar]
- Steenbock H., Black A., Nelson M.T., Hoppert C.A., Riising B.M., Fat-soluble vitamins. XXIII. The induction of growth-promoting and calcifying properties in fats and their unsaponifiable constituents by exposure to light. J Biol Chem, 1925, 64, 263–298. [Google Scholar]
- Tanaka H., Seino Y., Direct action of 1,25-dihydroxyvitamin D on bone: VDRKO bone shows excessive bone formation in normal mineral condition. J Steroid Biochem Mol Biol, 2004, 89-90, 343–345. [CrossRef] [PubMed] [Google Scholar]
- Underwood J.L., DeLuca H.F., Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol, 1984, 246, E493–E498. [PubMed] [Google Scholar]
- Velluz L., Amiard G., Equilibre de réaction entre précalciférol et calciférol. C R Hebd Séances Acad Sci, 1949, 228, 692–694. [Google Scholar]
- Wang T.J., Zhang F., Richards J.B., Kestenbaum B., van Meurs J.B., Berry D., Kiel D.P., Streeten E.A., Ohlsson C., Koller D.L., Peltonen L., Cooper J.D., O’Reilly P.F., Houston D.K., Glazer N.L., Vandenput L., Peacock M., Shi J., Rivadeneira F., McCarthy M.I., Anneli P., de Boer I.H., Mangino M., Kato B., Smyth D.J., Booth S.L., Jacques P.F., Burke G.L., Goodarzi M., Cheung C.L., Wolf M., Rice K., Goltzman D., Hidiroglou N., Ladouceur M., Wareham N.J., Hocking L.J., Hart D., Arden N.K., Cooper C., Malik S., Fraser W.D., Hartikainen A.L., Zhai G., Macdonald H.M., Forouhi N.G., Loos R.J., Reid D.M., Hakim A., Dennison E., Liu Y., Power C., Stevens H.E., Jaana L., Vasan R.S., Soranzo N., Bojunga J., Psaty B.M., Lorentzon M., Foroud T., Harris T.B., Hofman A., Jansson J.O., Cauley J.A., Uitterlinden A.G., Gibson Q., Järvelin MR, Karasik D, Siscovick DS, Econs MJ, Kritchevsky SB, Florez JC, Todd JA, Dupuis J., Hyppönen E., Spector T.D. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet, 2010, 376, 180–188. [CrossRef] [PubMed] [Google Scholar]
- Windaus A., Linsert O., Luttringhaus A., Weidlinch G., Uber das krystallisierte Vitamin D2. Justus Liebigs Ann Chem, 1932, 492, 226–231. [CrossRef] [Google Scholar]
- Windaus A., Schenck F., von Werder F., Uber das antirachitisch wirksame Bestrahlungs-produkt aus 7-Dehydrocholesterin. Hoppe-Seylers Ztschr physiol Chem, 1936, 241, 100–103. [CrossRef] [Google Scholar]
- Xue Y., Fleet J.C., Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology, 2009, 136, 1317-1327, e1–2. [CrossRef] [PubMed] [Google Scholar]
- Yamamoto Y., Yoshizawa T., Fukuda T., Shirode-Fukuda Y., Yu T., Sekine K., Sato T., Kawano H., Aihara K., Nakamichi Y., Watanabe T., Shindo M., Inoue K., Inoue E., Tsuji N., Hoshino M., Karsenty G., Metzger D., Chambon P., Kato S., Imai Y., Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology, 2013, 154, 1008–1020. [CrossRef] [PubMed] [Google Scholar]
- Zhu J., DeLuca H.F., Vitamin D 25-hydroxylase - Four decades of searching, are we there yet? Arch Biochem Biophys, 2012, 523, 30–36. [CrossRef] [PubMed] [Google Scholar]
- Zhu J.G., Ochalek J.T., Kaufmann M., Jones G., Deluca H.F., CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci USA, 2013, 110, 15650–15655. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.