Accès gratuit
Biologie Aujourd'hui
Volume 208, Numéro 1, 2014
Page(s) 31 - 44
Section La douleur : Journée Claude Bernard 2013
Publié en ligne 23 juin 2014
  • Auffray C., Fogg D., Garfa M., Elain G., Join-Lambert O., Kayal S., Sarnacki S., Cumano A., Lauvau G., Geissmann F., Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science, 2007, 317, 666–670. [CrossRef] [PubMed] [Google Scholar]
  • Austin P.J., Moalem-Taylor G., The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol, 2010, 229, 26–50. [CrossRef] [PubMed] [Google Scholar]
  • Austin P.J., Kim C.F., Perera C.J., Moalem-Taylor G., Regulatory T cells attenuate neuropathic pain following peripheral nerve injury and experimental autoimmune neuritis. Pain, 2012, 153, 1916–1931. [CrossRef] [PubMed] [Google Scholar]
  • Bajetto A., Bonavia R., Barbero S., Florio T., Schettini G., Chemokines and their receptors in the central nervous system. Front Neuroendocrinol, 2001, 22, 147–184. [CrossRef] [PubMed] [Google Scholar]
  • Banisadr G., Rostène W., Kitabgi P., Parsadaniantz S.M., Chemokines and brain functions. Curr Drug Targets Inflamm Allergy, 2005, 4, 387–399. [CrossRef] [PubMed] [Google Scholar]
  • Barclay J., Clark A.K., Ganju P., Gentry C., Patel S., Wotherspoon G., Buxton F., Song C., Ullah J., Winter J., Fox A., Bevan S., Malcangio M., Role of the cysteine protease cathepsin S in neuropathic hyperalgesia. Pain, 2007, 130, 225–234. [CrossRef] [PubMed] [Google Scholar]
  • Bazan J.F., Bacon K.B., Hardiman G., Wang W., Soo K., Rossi D., Greaves D.R., Zlotnik A., Schall T.J., A new class of membrane-bound chemokine with a CX3C motif. Nature, 1997, 385, 640–644. [CrossRef] [PubMed] [Google Scholar]
  • Bennett G.J., Xie Y.K., A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain, 1988, 33, 87–107. [CrossRef] [PubMed] [Google Scholar]
  • Biber K., Tsuda M., Tozaki-Saitoh H., Tsukamoto K., Toyomitsu E., Masuda T., Boddeke H., Inoue K., Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J, 2011, 30, 1864–1873. [CrossRef] [PubMed] [Google Scholar]
  • Boué J., Blanpied C., Brousset P., Vergnolle N., Dietrich G., Endogenous opioid-mediated analgesia is dependent on adaptive T cell response in mice. J Immunol, 2011, 186, 5078–5084. [CrossRef] [PubMed] [Google Scholar]
  • Bouhassira D., Attal N., Fermanian J., Alchaar H., Gautron M., Masquelier E., Rostaing S., Lanteri-Minet M., Collin E., Grisart J., Boureau F., Development and validation of the Neuropathic Pain Symptom Inventory. Pain, 2004, 108, 248–257. [CrossRef] [PubMed] [Google Scholar]
  • Bouhassira D., Lanteri-Minet M., Attal N., Laurent B., Touboul C., Prevalence of chronic pain with neuropathic characteristics in the general population. Pain, 2008, 136, 380–387. [CrossRef] [PubMed] [Google Scholar]
  • Clark A.K., Malcangio M. Microglial signalling mechanisms: Cathepsin S and Fractalkine. Exp Neurol, 2012, 234, 283–292. [CrossRef] [PubMed] [Google Scholar]
  • Clark A.K., Yip P.K., Malcangio M., The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J Neurosci, 2009, 29, 6945–6954. [CrossRef] [PubMed] [Google Scholar]
  • Cowart M., Hsieh G., Black L.A., Zhan C., Gomez E.J., Pai M., Strakhova M., Manelli A., Carr T., Wetter J., Lee A., Diaz G., Garrison T., Brioni J.D., Pharmacological characterization of A-960656, a histamine H(3) receptor antagonist with efficacy in animal models of osteoarthritis and neuropathic pain. Eur J Pharmacol, 2012, 684, 87–94. [CrossRef] [PubMed] [Google Scholar]
  • Cui J.G., Holmin S., Mathiesen T., Meyerson B.A., Linderoth B., Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain, 2000, 88, 239–248. [CrossRef] [PubMed] [Google Scholar]
  • Dansereau M.A., Gosselin R.D., Pohl M., Pommier B., Mechighel P., Mauborgne A., Rostène W., Kitabgi P., Beaudet N., Sarret P., Melik-Parsadaniantz S., Spinal CCL2 pronociceptive action is no longer effective in CCR2 receptor antagonist-treated rats. J Neurochem, 2008, 106, 757–769. [CrossRef] [PubMed] [Google Scholar]
  • De Filippo K., Dudeck A., Hasenberg M., Nye E., van Rooijen N., Hartmann K., Gunzer M., Roers A., Hogg N., Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood, 2013, 121, 4930–4937. [CrossRef] [PubMed] [Google Scholar]
  • de Jong E.K., Vinet J., Stanulovic V.S., Meijer M., Wesseling E., Sjollema K., Boddeke H.W., Biber K., Expression, transport, and axonal sorting of neuronal CCL21 in large dense-core vesicles. FASEB J, 2008, 22, 4136–4145. [CrossRef] [PubMed] [Google Scholar]
  • Decosterd I., Woolf C.J., Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain, 2000, 87, 149–158. [CrossRef] [PubMed] [Google Scholar]
  • Gaboury J.P., Johnston B., Niu X.F., Kubes P., Mechanisms underlying acute mast cell-induced leukocyte rolling and adhesion in vivo. J Immunol, 1995, 154, 804–813. [PubMed] [Google Scholar]
  • Gao Y.J., Zhang L., Samad O.A., Suter M.R., Yasuhiko K., Xu Z.Z., Park J.Y., Lind A.L., Ma Q., Ji R.R., JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci, 2009, 29, 4096–4108. [CrossRef] [PubMed] [Google Scholar]
  • Gosselin R.D., Varela C., Banisadr G., Mechighel P., Rostène W., Kitabgi P., Melik-Parsadaniantz S., Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. J Neurochem, 2005, 95, 1023–1034. [CrossRef] [PubMed] [Google Scholar]
  • Hayashi R., Xiao W., Kawamoto M., Yuge O., Bennett G.J., Systemic glucocorticoid therapy reduces pain and the number of endoneurial tumor necrosis factor-alpha (TNFalpha)-positive mast cells in rats with a painful peripheral neuropathy. J Pharmacol Sci, 2008, 106, 559–565. [CrossRef] [PubMed] [Google Scholar]
  • Hough L.B., Rice F.L., H3 receptors and pain modulation: peripheral, spinal, and brain interactions. J Pharmacol Exp Ther, 2011, 336, 30–37. [CrossRef] [PubMed] [Google Scholar]
  • Hsieh G.C., Chandran P., Salyers A.K., Pai M., Zhu C.Z., Wensink E.J., Witte D.G., Miller T.R., Mikusa J.P., Baker S.J., Wetter J.M., Marsh K.C., Hancock A.A., Cowart M.D., Esbenshade T.A., Brioni J.D., Honore P., H4 receptor antagonism exhibits anti-nociceptive effects in inflammatory and neuropathic pain models in rats. Pharmacol Biochem Behav, 2010a, 95, 41–50. [CrossRef] [PubMed] [Google Scholar]
  • Hsieh G.C., Honore P., Pai M., Wensink E.J., Chandran P., Salyers A.K., Wetter J.M., Zhao C., Liu H., Decker M.W., Esbenshade T.A., Cowart M.D., Brioni J.D., Antinociceptive effects of histamine H3 receptor antagonist in the preclinical models of pain in rats and the involvement of central noradrenergic systems. Brain Res, 2010b, 1354, 74-84. [CrossRef] [PubMed] [Google Scholar]
  • Hu P., McLachlan E.M., Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. Neuroscience, 2002, 112, 23–38. [CrossRef] [PubMed] [Google Scholar]
  • Hu P., Bembrick A.L., Keay K.A., McLachlan E.M., Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav Immun, 2007, 21, 599–616. [CrossRef] [PubMed] [Google Scholar]
  • Imai T., Hieshima K., Haskell C., Baba M., Nagira M., Nishimura M., Kakizaki M., Takagi S., Nomiyama H., Schall T.J., Yoshie O., Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell, 1997, 91, 521–530. [CrossRef] [PubMed] [Google Scholar]
  • Jeon S.M., Lee K.M., Cho H.J., Expression of monocyte chemoattractant protein-1 in rat dorsal root ganglia and spinal cord in experimental models of neuropathic pain. Brain Res, 2009, 1251, 103–111. [CrossRef] [PubMed] [Google Scholar]
  • Kiguchi N., Kobayashi Y., Maeda T., Saika F., Kishioka S., CC-chemokine MIP-1alpha in the spinal cord contributes to nerve injury-induced neuropathic pain. Neurosci Lett, 2010, 484, 17–21. [CrossRef] [PubMed] [Google Scholar]
  • Kim K.W., Vallon-Eberhard A., Zigmond E., Farache J., Shezen E., Shakhar G., Ludwig A., Lira S.A., Jung S., In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood, 2011, 118, e156–167. [CrossRef] [PubMed] [Google Scholar]
  • Kim S.H., Chung J.M., An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain, 1992, 50, 355–363. [CrossRef] [PubMed] [Google Scholar]
  • Kwon M.J., Kim J., Shin H., Jeong S.R., Kang Y.M., Choi J.Y., Hwang D.H., Kim B.G., Contribution of macrophages to enhanced regenerative capacity of dorsal root ganglia sensory neurons by conditioning injury. J Neurosci, 2013, 33, 15095–15108. [CrossRef] [PubMed] [Google Scholar]
  • Lavich T.R., Siqueira Rde A., Farias-Filho F.A., Cordeiro R.S., Rodrigues e Silva P.M., Martins M.A., Neutrophil infiltration is implicated in the sustained thermal hyperalgesic response evoked by allergen provocation in actively sensitized rats. Pain, 2006, 125, 180–187. [CrossRef] [PubMed] [Google Scholar]
  • Lee Y.K., Choi D.Y., Jung Y.Y., Yun Y.W., Lee B.J., Han S.B., Hong J.T., Decreased pain responses of C-C chemokine receptor 5 knockout mice to chemical or inflammatory stimuli. Neuropharmacology, 2013, 67, 57−65. [CrossRef] [PubMed] [Google Scholar]
  • Li J., Wei G.H., Huang H., Lan Y.P., Liu B., Liu H., Zhang W., Zuo Y.X., Nerve injury-related autoimmunity activation leads to chronic inflammation and chronic neuropathic pain. Anesthesiology, 2013, 118, 416–429. [CrossRef] [PubMed] [Google Scholar]
  • Liou J.T., Mao C.C., Ching-Wah Sum D., Liu F.C., Lai Y.S., Li J.C., Day Y.J., Peritoneal administration of Met-RANTES attenuates inflammatory and nociceptive responses in a murine neuropathic pain model. J Pain, 2013, 14, 24–35. [CrossRef] [PubMed] [Google Scholar]
  • Liu T., van Rooijen N., Tracey D.J., Depletion of macrophages reduces axonal degeneration and hyperalgesia following nerve injury. Pain, 2000, 86, 25–32. [CrossRef] [PubMed] [Google Scholar]
  • Malaviya R., Abraham S.N., Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. J Leukoc Biol, 2000, 67, 841–846. [PubMed] [Google Scholar]
  • McGaraughty S., Chu K.L., Cowart M.D., Brioni J.D., Antagonism of supraspinal histamine H3 receptors modulates spinal neuronal activity in neuropathic rats. J Pharmacol Exp Ther, 2012, 343, 13–20. [CrossRef] [PubMed] [Google Scholar]
  • Melik-Parsadaniantz S., Rostène W., Chemokines and neuromodulation. J Neuroimmunol, 2008, 198, 62–68. [CrossRef] [PubMed] [Google Scholar]
  • Mert T., Gunay I., Ocal I., Guzel A.I., Inal T.C., Sencar L., Polat S., Macrophage depletion delays progression of neuropathic pain in diabetic animals. Naunyn Schmiedebergs Arch Pharmacol, 2009, 379, 445–452. [CrossRef] [PubMed] [Google Scholar]
  • Milligan E., Zapata V., Schoeniger D., Chacur M., Green P., Poole S., Martin D., Maier S.F., Watkins L.R., An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine. Eur J Neurosci, 2005, 22, 2775−2782. [CrossRef] [PubMed] [Google Scholar]
  • Moalem G., Xu K., Yu L., T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience, 2004, 129, 767–777. [CrossRef] [PubMed] [Google Scholar]
  • Morin N., Owolabi S.A., Harty M.W., Papa E.F., Tracy T.F, Jr., Shaw S.K., Kim M., Saab C.Y., Neutrophils invade lumbar dorsal root ganglia after chronic constriction injury of the sciatic nerve. J Neuroimmunol, 2007, 184, 164–171. [CrossRef] [PubMed] [Google Scholar]
  • Patapoutian A., Peier A.M., Story G.M., Viswanath V., ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci, 2003, 4, 529−539. [CrossRef] [PubMed] [Google Scholar]
  • Perkins N.M., Tracey D.J., Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience, 2000, 101, 745−757. [CrossRef] [PubMed] [Google Scholar]
  • Popovich P.G., Guan Z., McGaughy V., Fisher L., Hickey W.F., Basso D.M., The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol, 2002, 61, 623–633. [PubMed] [Google Scholar]
  • Proudfoot A.E., Handel T.M., Johnson Z., Lau E.K., LiWang P., Clark-Lewis I., Borlat F., Wells T.N., Kosco-Vilbois M.H., Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci USA, 2003, 100, 1885–1890 [CrossRef] [Google Scholar]
  • Rappert A., Biber K., Nolte C., Lipp M., Schubel A., Lu B., Gerard N.P., Gerard C., Boddeke H.W., Kettenmann H., Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglia. J Immunol, 2002, 168, 3221–3226. [CrossRef] [PubMed] [Google Scholar]
  • Rawji K.S., Yong V.W., The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol, 2013, 2013, 948976. [CrossRef] [PubMed] [Google Scholar]
  • Réaux-Le Goazigo A., Rivat C., Kitabgi P., Pohl M., Melik Parsadaniantz S., Cellular and subcellular localization of CXCL12 and CXCR4 in rat nociceptive structures: physiological relevance. Eur J Neurosci, 2012, 36, 2619–2631. [CrossRef] [PubMed] [Google Scholar]
  • Rivat C., Sebaihi S., Van Steenwinckel J., Fouquet S., Kitabgi P., Pohl M., Melik Parsadaniantz S., Réaux-Le Goazigo A., Src family kinases involved in CXCL12-induced loss of acute morphine analgesia. Brain Behav Immun, 2014, 38, 38–52. [CrossRef] [PubMed] [Google Scholar]
  • Rollins B.J. Chemokines. Blood, 1997, 90, 909–928. [PubMed] [Google Scholar]
  • Rostène W., Dansereau M.A., Godefroy D., Van Steenwinckel J., Réaux-Le Goazigo A., Melik-Parsadaniantz S., Apartis E., Hunot S., Beaudet N., Sarret P., Neurochemokines: a menage a trois providing new insights on the functions of chemokines in the central nervous system. J Neurochem, 2011, 118, 680−694. [CrossRef] [PubMed] [Google Scholar]
  • Rostène W., Kitabgi P., Parsadaniantz S.M., Chemokines: a new class of neuromodulator? Nat Rev Neurosci, 2007, 8, 895–903. [CrossRef] [PubMed] [Google Scholar]
  • Saika F., Kiguchi N., Kobayashi Y., Fukazawa Y., Kishioka S., CC-chemokine ligand 4/macrophage inflammatory protein-1beta participates in the induction of neuropathic pain after peripheral nerve injury. Eur J Pain, 2012, 16, 1271–1280. [CrossRef] [PubMed] [Google Scholar]
  • Scapini P., Lapinet-Vera J.A., Gasperini S., Calzetti F., Bazzoni F., Cassatella M.A., The neutrophil as a cellular source of chemokines. Immunol Rev, 2000, 177, 195–203. [CrossRef] [PubMed] [Google Scholar]
  • Seltzer Z., Dubner R., Shir Y., A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain, 1990, 43, 205–218. [CrossRef] [PubMed] [Google Scholar]
  • Serbina N.V., Jia T., Hohl T.M., Pamer E.G., Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol, 2008, 26, 421–452. [CrossRef] [PubMed] [Google Scholar]
  • Shi C., Pamer E.G., Monocyte recruitment during infection and inflammation. Nat Rev Immunol, 2011, 11, 762–774. [CrossRef] [PubMed] [Google Scholar]
  • Shubayev V.I., Myers R.R., Upregulation and interaction of TNFalpha and gelatinases A and B in painful peripheral nerve injury. Brain Res, 2000, 855, 83–89. [CrossRef] [PubMed] [Google Scholar]
  • Shubayev V.I., Angert M., Dolkas J., Campana W.M., Palenscar K., Myers R.R., TNFalpha-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Mol Cell Neurosci, 2006, 31, 407–415. [CrossRef] [PubMed] [Google Scholar]
  • Smith F.M., Haskelberg H., Tracey D.J., Moalem-Taylor G., Role of histamine H3 and H4 receptors in mechanical hyperalgesia following peripheral nerve injury. Neuroimmunomodulation, 2007, 14, 317–325. [CrossRef] [PubMed] [Google Scholar]
  • Staniland A.A., Clark A.K., Wodarski R., Sasso O., Maione F., D’Acquisto F., Malcangio M., Reduced inflammatory and neuropathic pain and decreased spinal microglial response in fractalkine receptor (CX3CR1) knockout mice. J Neurochem, 2010, 114, 1143–1157. [PubMed] [Google Scholar]
  • Sun J.L., Xiao C., Lu B., Zhang J., Yuan X.Z., Chen W., Yu L.N., Zhang F.J., Chen G., Yan M., CX3CL1/CX3CR1 regulates nerve injury-induced pain hypersensitivity through the ERK5 signaling pathway. J Neurosci Res, 2013, 91, 545–553. [CrossRef] [PubMed] [Google Scholar]
  • Tétreault P., Beaudet N., Perron A., Belleville K., Rene A., Cavelier F., Martinez J., Stroh T., Jacobi A.M., Rose S.D., Behlke M.A., Sarret P., Spinal NTS2 receptor activation reverses signs of neuropathic pain. FASEB J, 2013, 27, 3741–3752. [CrossRef] [PubMed] [Google Scholar]
  • Van Steenwinckel J., Réaux-Le Goazigo A., Pommier B., Mauborgne A., Dansereau M.A., Kitabgi P., Sarret P., Pohl M., Melik Parsadaniantz S., CCL2 released from neuronal synaptic vesicles in the spinal cord is a major mediator of local inflammation and pain after peripheral nerve injury. J Neurosci, 2011, 31, 5865–5875. [CrossRef] [PubMed] [Google Scholar]
  • Verge G.M., Milligan E.D., Maier S.F., Watkins L.R., Naeve G.S., Foster A.C., Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur J Neurosci, 2004, 20, 1150−1160. [CrossRef] [PubMed] [Google Scholar]
  • Welling M.M., Hiemstra P.S., van den Barselaar M.T., Paulusma-Annema A., Nibbering P.H., Pauwels E.K., Calame W., Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation. J Clin Invest, 1998, 102, 1583–1590. [CrossRef] [PubMed] [Google Scholar]
  • Wilson N.M., Jung H., Ripsch M.S., Miller R.J., White F.A., CXCR4 signaling mediates morphine-induced tactile hyperalgesia. Brain Behav Immun, 2011, 25, 565–573. [CrossRef] [PubMed] [Google Scholar]
  • Witko-Sarsat V., Apoptosis, cell death and inflammation. J Innate Immun, 2010, 2, 201–203. [CrossRef] [PubMed] [Google Scholar]
  • Witko-Sarsat V., Rieu P., Descamps-Latscha B., Lesavre P., Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest, 2000, 80, 617–653. [CrossRef] [PubMed] [Google Scholar]
  • Yasuda M., Kido K., Ohtani N., Masaki E., Mast cell stabilization promotes antinociceptive effects in a mouse model of postoperative pain. J Pain Res, 2013, 6, 161−166. [PubMed] [Google Scholar]
  • Zhang J., Shi X.Q., Echeverry S., Mogil J.S., De Koninck Y., Rivest S., Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci, 2007, 27, 12396–12406. [CrossRef] [PubMed] [Google Scholar]
  • Zhu X., Cao S., Zhu M.D., Liu J.Q., Chen J.J., Gao Y.J., Contribution of Chemokine CCL2/CCR2 Signaling in the Dorsal Root Ganglion and Spinal Cord to the Maintenance of Neuropathic Pain in a Rat Model of Lumbar Disc Herniation. J. Pain, 2014, 15, 516−526. [CrossRef] [PubMed] [Google Scholar]
  • Zuo Y., Perkins N.M., Tracey D.J., Geczy C.L., Inflammation and hyperalgesia induced by nerve injury in the rat: a key role of mast cells. Pain, 2003, 105, 467–479. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.