Accès gratuit
Biologie Aujourd'hui
Volume 208, Numéro 2, 2014
Page(s) 109 - 117
Section Signalisation de l’insuline et insulino-résistance
Publié en ligne 8 septembre 2014
  • Andrali S.S., Qian Q., Ozcan S., Glucose mediates the translocation of NeuroD1 by O-linked glycosylation. J Biol Chem, 2007, 282, 15589–15596. [CrossRef] [PubMed] [Google Scholar]
  • Chen Q., Chen Y., Bian C., Fujiki R., Yu X., TET2 promotes histone O-GlcNAcylation during gene transcription. Nature, 2013, 493, 561–564. [CrossRef] [PubMed] [Google Scholar]
  • Cheng X., Hart G.W., Alternative O-glycosylation/ O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation activity. J Biol Chem, 2001, 276, 10570–10575. [CrossRef] [PubMed] [Google Scholar]
  • Cheung W.D., Hart G.W., AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J Biol Chem, 2008, 283, 13009–13020. [CrossRef] [PubMed] [Google Scholar]
  • Collins F.S., Guyer M., Peterson J., Felsenfeld A., Wetterstrand K., Kamholz S., Finishing the euchromatic sequence of the human genome. Nature, 2004, 431, 931–945. [CrossRef] [PubMed] [Google Scholar]
  • D’Alessandris C., Andreozzi F., Federici M., Cardellini M., Brunetti A., Ranalli M., Del Guerra S., Lauro D., Del Prato S., Marchetti P., Lauro R., Sesti G., Increased O-glycosylation of insulin signaling proteins results in their impaired activation and enhanced susceptibility to apoptosis in pancreatic beta-cells. Faseb J, 2004, 18, 959–961. [PubMed] [Google Scholar]
  • Deplus R., Delatte B., Schwinn M.K., Defrance M., Mendez J., Murphy N., Dawson M.A., Volkmar M., Putmans P., Calonne E., Shih A.H., Levine R.L., Bernard O., Mercher T., Solary E., Urh M., Daniels D.L., Fuks F., TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. Embo J, 2013, 32, 645–655. [CrossRef] [PubMed] [Google Scholar]
  • Dogan S., Hu X., Zhang Y., Maihle N.J., Grande J.P., Cleary M.P., Effects of high-fat diet and/or body weight on mammary tumor leptin and apoptosis signaling pathways in MMTV-TGF-alpha mice. Breast Cancer Res, 2007, 9, R91. [CrossRef] [PubMed] [Google Scholar]
  • Dossus L., Kaaks R., Nutrition, metabolic factors and cancer risk. Best Pract Res Clin Endocrinol Metab, 2008, 22, 551–571. [CrossRef] [PubMed] [Google Scholar]
  • Fardini Y., Dehennaut V., Lefebvre T., Issad T., O-GlcNAcylation: A New Cancer Hallmark? Front Endocrinol (Lausanne), 2013, 4, 99. [PubMed] [Google Scholar]
  • Fardini Y., Masson E., Boudah O., Ben Jouira R., Cosson C., Pierre-Eugène C., Kuo M.S., Issad T., O-GlcNAcylation of FoxO1 in pancreatic beta cells promotes Akt inhibition through an IGFBP1-mediated autocrine mechanism. Faseb J, 2014, 28, 1010–1021. [CrossRef] [PubMed] [Google Scholar]
  • Federici M., Menghini R., Mauriello A., Hribal M.L., Ferrelli F., Lauro D., Sbraccia P., Spagnoli L.G., Sesti G., Lauro R., Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation, 2002, 106, 466–472. [CrossRef] [PubMed] [Google Scholar]
  • Gao Y., Wells L., Comer F.I., Parker G.J., Hart G.W., Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem, 2001, 276, 9838–9845. [CrossRef] [PubMed] [Google Scholar]
  • Gao Y., Miyazaki J., Hart G.W., The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells. Arch Biochem Biophys, 2003, 415, 155–163. [CrossRef] [PubMed] [Google Scholar]
  • Gillette C.A., Zhu Z., Westerlind K.C., Melby C.L., Wolfe P., Thompson H.J., Energy availability and mammary carcinogenesis: effects of calorie restriction and exercise. Carcinogenesis, 1997, 18, 1183–1188. [CrossRef] [PubMed] [Google Scholar]
  • Haltiwanger R.S., Kelly W.G., Roquemore E.P., Blomberg M.A., Dong L.Y., Kreppel L., Chou T.Y., Hart G.W., Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem Soc Trans, 1992, 20, 264–269. [PubMed] [Google Scholar]
  • Hanover J.A., Glycan-dependent signaling: O-linked N-acetylglucosamine. Faseb J, 2001, 15, 1865–1876. [CrossRef] [PubMed] [Google Scholar]
  • Hanover J.A., Yu S., Lubas W.B., Shin S.H., Ragano-Caracciola M., Kochran J., Love D.C., Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys, 2003, 409, 287–297. [CrossRef] [PubMed] [Google Scholar]
  • Harwood K.R., Hanover J.A., Nutrient-driven O-GlcNAc cycling - think globally but act locally. J Cell Sci, 2014, 127, 1857–1867. [CrossRef] [PubMed] [Google Scholar]
  • Holt G.D., Hart G.W., The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J Biol Chem, 1986, 261, 8049–8057. [PubMed] [Google Scholar]
  • Hu Y., Suarez J., Fricovsky E., Wang H., Scott B.T., Trauger S.A., Han W., Hu Y., Oyeleye M.O., Dillmann W.H., Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem, 2009, 284, 547–555. [CrossRef] [PubMed] [Google Scholar]
  • Issad T., Kuo M., O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol Metab, 2008, 19, 380–389. [CrossRef] [PubMed] [Google Scholar]
  • Issad T., Masson E., Pagesy P., O-GlcNAc modification, insulin signaling and diabetic complications. Diabetes Metab, 2010, 36, 423–435. [CrossRef] [PubMed] [Google Scholar]
  • Iyer S.P., Akimoto Y., Hart G.W., Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. J Biol Chem, 2003, 278, 5399–5409. [CrossRef] [PubMed] [Google Scholar]
  • Kang E.S., Han D., Park J., Kwak T.K., Oh M.A., Lee S.A., Choi S., Park Z.Y., Kim Y., Lee J.W., O-GlcNAc modulation at Akt1 Ser473 correlates with apoptosis of murine pancreatic beta cells. Exp Cell Res, 2008, 314, 2238–2248. [CrossRef] [PubMed] [Google Scholar]
  • Keembiyehetty C.N., Krzeslak A., Love D.C., Hanover J.A., A lipid-droplet-targeted O-GlcNAcase isoform is a key regulator of the proteasome. J Cell Sci, 2011, 124, 2851–2860. [CrossRef] [PubMed] [Google Scholar]
  • Kreppel L.K., Blomberg M.A., Hart G.W., Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem, 1997, 272, 9308–9315. [CrossRef] [PubMed] [Google Scholar]
  • Kuo M., Zilberfarb V., Gangneux N., Christeff N., Issad T., [A new mode of reglulation of FoxO1 by O-GlcNAc glycosylation: involvement in the glucotoxicity phenomenon.]. Med Sci (Paris), 2008a, 24, 369–371. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Kuo M., Zilberfarb V., Gangneux N., Christeff N., Issad T., O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett, 2008b, 582, 829–834. [CrossRef] [PubMed] [Google Scholar]
  • Lefebvre T., Dehennaut V., Guinez C., Olivier S., Drougat L., Mir A.M., Mortuaire M., Vercoutter-Edouart A.S., Michalski J.C., Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer’s disease. Biochim Biophys Acta, 2009, 1800, 67–79. [CrossRef] [PubMed] [Google Scholar]
  • Lefebvre T., Ferreira S., Dupont-Wallois L., Bussière T., Dupire M.J., Delacourte A., Michalski J.C., Caillet-Boudin M.L., Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins – a role in nuclear localization. Biochim Biophys Acta, 2003, 1619, 167–176. [CrossRef] [PubMed] [Google Scholar]
  • Lefebvre T., Guinez C., Dehennaut V., Beseme-Dekeyser O., Morelle W., Michalski J.C., Does O-GlcNAc play a role in neurodegenerative diseases? Expert Rev Proteomics, 2005, 2, 265–275. [CrossRef] [PubMed] [Google Scholar]
  • Liu F., Iqbal K., Grundke-Iqbal I., Hart G.W., Gong C.X., O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA, 2004, 101, 10804–10809. [CrossRef] [Google Scholar]
  • Liu F., Shi J., Tanimukai H., Gu J., Gu J., Grundke-Iqbal I., Iqbal K., Gong C.X., Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain, 2009, 132, 1820–1832. [CrossRef] [PubMed] [Google Scholar]
  • Love D.C., Hanover J.A., The hexosamine signaling pathway: deciphering the “O-GlcNAc code”. Sci STKE, 2005, 2005, re13. [Google Scholar]
  • Lubas W.A., Frank D.W., Krause M., Hanover J.A., O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem, 1997, 272, 9316–9324. [CrossRef] [PubMed] [Google Scholar]
  • Marshall S., Bacote V., Traxinger R.R., Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem, 1991, 266, 4706–4712. [PubMed] [Google Scholar]
  • McClain D.A., Hexosamines as mediators of nutrient sensing and regulation in diabetes. J Diabetes Complications, 2002, 16, 72–80. [CrossRef] [PubMed] [Google Scholar]
  • McClain D.A., Lubas W.A., Cooksey R.C., Hazel M., Parker G.J., Love D.C., Hanover J.A., Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc Natl Acad Sci USA, 2002, 99, 10695–10699. [CrossRef] [Google Scholar]
  • Park S.Y., Ryu J., Lee W., O-GlcNAc modification on IRS-1 and Akt2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in rat primary adipocytes. Exp Mol Med, 2005, 37, 220–229. [CrossRef] [PubMed] [Google Scholar]
  • Schindler M., Hogan M., Miller R., DeGaetano D., A nuclear specific glycoprotein representative of a unique pattern of glycosylation. J Biol Chem, 1987, 262, 1254–1260. [PubMed] [Google Scholar]
  • Soesanto Y.A., Luo B., Jones D., Taylor R., Gabrielsen J.S., Parker G., McClain D.A., Regulation of Akt signaling by O-GlcNAc in euglycemia. Am J Physiol Endocrinol Metab, 2008, 295, E974–980. [CrossRef] [PubMed] [Google Scholar]
  • Torres C.R., Hart G.W., Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem, 1984, 259, 3308–3317. [PubMed] [Google Scholar]
  • Vella P., Scelfo A., Jammula S., Chiacchiera F., Williams K., Cuomo A., Roberto A., Christensen J., Bonaldi T., Helin K., Pasini D., Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell, 2013, 49, 645–656. [CrossRef] [PubMed] [Google Scholar]
  • Vosseller K., Wells L., Lane M.D., Hart G.W., Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci USA, 2002, 99, 5313–5318. [CrossRef] [Google Scholar]
  • Wells L., Kreppel L.K., Comer F.I., Wadzinski B.E., Hart G.W., O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J Biol Chem, 2004, 279, 38466–38470. [CrossRef] [PubMed] [Google Scholar]
  • Yang W.H., Kim J.E., Nam H.W., Ju J.W., Kim H.S., Kim Y.S., Cho J.W., Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol, 2006, 8, 1074–1083. [CrossRef] [PubMed] [Google Scholar]
  • Yang X., Ongusaha P.P., Miles P.D., Havstad J.C., Zhang F., So W.V., Kudlow J.E., Michell, R.H., Olefsky, J.M., Field, S.J., Evans, R.M., Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature, 2008, 451, 964–969. [CrossRef] [PubMed] [Google Scholar]
  • Yuzwa S.A., Shan X., Macauley M.S., Clark T., Skorobogatko Y., Vosseller K., Vocadlo D.J., Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol, 2012, 8, 393–399. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.