Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 208, Numéro 2, 2014
Page(s) 97 - 107
Section Signalisation de l’insuline et insulino-résistance
DOI https://doi.org/10.1051/jbio/2014014
Publié en ligne 8 septembre 2014
  • Bertola A., Ciucci T., Rousseau D., Bourlier V., Duffaut C., Bonnafous S., Blin-Wakkach C., Anty R., Iannelli A., Gugenheim J., Tran A., Bouloumié A., Gual P., Wakkach A., Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes, 2012, 61, 2238–2247. [CrossRef] [PubMed] [Google Scholar]
  • Biddinger S.B., Kahn C.R., From Mice to Men: Insights into the Insulin Resistance Syndromes. Annu Rev Physiol, 2006, 68, 123–158. [Google Scholar]
  • Bost F., Aouadi M., Caron L., Even P., Belmonte N., Prot M., Dani C., Hofman P., Pages G., Pouysségur J., Le Marchand-Brustel Y., Binétruy B., The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes, 2005, 54, 402–411. [CrossRef] [PubMed] [Google Scholar]
  • Boura-Halfon S., Zick Y., Serine kinases of insulin receptor substrate proteins. Vitam Horm, 2009, 80, 313–349. [CrossRef] [PubMed] [Google Scholar]
  • Bouzakri K., Karlsson H.K., Vestergaard H., Madsbad S., Christiansen E., Zierath J.R., IRS-1 Serine Phosphorylation and Insulin Resistance in Skeletal Muscle From Pancreas Transplant Recipients. Diabetes, 2006, 55, 785–791. [CrossRef] [PubMed] [Google Scholar]
  • Burcelin R. Regulation of metabolism: a cross talk between gut microbiota and its human host. Physiology (Bethesda), 2012, 27, 300–307. [CrossRef] [PubMed] [Google Scholar]
  • Carlson C.J., Rondinone C.M., Pharmacological inhibition of p38 MAP kinase results in improved glucose uptake in insulin-resistant 3T3-L1 adipocytes. Metabolism, 2005, 54, 895–901. [CrossRef] [PubMed] [Google Scholar]
  • Ceppo F., Berthou F., Jager J., Dumas K., Cormont M., Tanti J.-F., Implication of the Tpl2 kinase in inflammatory changes and insulin resistance induced by the interaction between adipocytes and macrophages. Endocrinology, 2014, 155, 951–964. [CrossRef] [PubMed] [Google Scholar]
  • Dali-Youcef N., Mecili M., Ricci R., Andres E., Metabolic inflammation: connecting obesity and insulin resistance. Ann Med, 2013, 45, 242–253. [CrossRef] [PubMed] [Google Scholar]
  • Donath M.Y., Shoelson S.E., Type 2 diabetes as an inflammatory disease. Nat Rev Immunol, 2011, 11, 98–107. [CrossRef] [PubMed] [Google Scholar]
  • Dumitru C.D., Ceci J.D., Tsatsanis C., Kontoyiannis D., Stamatakis K., Lin J.H., Patriotis C., Jenkins N.A., Copeland N.G., Kollias G., Tsichlis P. N., TNF-alpha induction by LPS is regulated post-transcriptionally via a Tpl2/ERK-dependent pathway. Cell, 2000, 103, 1071–1083. [CrossRef] [PubMed] [Google Scholar]
  • Emanuelli B., Eberlé D., Suzuki R., Kahn C.R., Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc Natl Acad Sci USA, 2008, 105, 3545–3550. [CrossRef] [Google Scholar]
  • Forsythe L.K., Wallace J.M., Livingstone M.B., Obesity and inflammation: the effects of weight loss. Nutr Res Rev, 2008, 21, 117–133. [CrossRef] [PubMed] [Google Scholar]
  • Fujishiro M., Gotoh Y., Katagiri H., Sakoda H., Ogihara T., Anai M., Onishi Y., Ono H., Funaki M., Inukai K., Fukushima Y., Kikuchi M., Oka Y., Asano, T., MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression. J Biol Chem, 2001, 276, 19800–19806. [CrossRef] [PubMed] [Google Scholar]
  • Fujishiro M., Gotoh Y., Katagiri H., Sakoda H., Ogihara T., Anai M., Onishi Y., Ono H., Abe M., Shojima N., Fukushima Y., Kikuchi M., Oka Y., Asano T., Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3T3-L1 adipocytes. Mol Endocrinol, 2003, 17, 487–497. [CrossRef] [PubMed] [Google Scholar]
  • Gallagher E.J., LeRoith D., Insulin, insulin resistance, obesity, and cancer. Curr Diab Rep, 2010, 10, 93–100. [CrossRef] [PubMed] [Google Scholar]
  • Gantke T., Sriskantharajah S., Ley S.C., Regulation and function of TPL-2, an IkappaB kinase-regulated MAP kinase kinase kinase. Cell Res, 2011, 21, 131–145. [CrossRef] [PubMed] [Google Scholar]
  • Gantke T., Sriskantharajah S., Sadowski M., Ley S.C. IkappaB kinase regulation of the TPL-2/ERK MAPK pathway. Immunol Rev, 2012, 246, 168–182. [CrossRef] [PubMed] [Google Scholar]
  • Gregor M.F., Hotamisligil, G.S., Inflammatory mechanisms in obesity. Annu Rev Immunol, 2011, 29, 415–445. [CrossRef] [PubMed] [Google Scholar]
  • Gual P., Le Marchand-Brustel Y., Tanti, J.-F., Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, 2005, 87, 99–109. [CrossRef] [PubMed] [Google Scholar]
  • Han M.S., Jung D.Y., Morel C., Lakhani S.A., Kim J.K., Flavell R.A., Davis, R.J., JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science, 2013, 339, 218–222. [CrossRef] [PubMed] [Google Scholar]
  • Henstridge D.C., Bruce C.R., Pang C.P., Lancaster G.I., Allen T.L., Estevez E., Gardner T., Weir J.M., Meikle P.J., Lam K.S., Xu A., Fujii N., Goodyear L.J., Febbraio M.A., Skeletal muscle-specific overproduction of constitutively activated c-Jun N-terminal kinase (JNK) induces insulin resistance in mice. Diabetologia, 2012, 55, 2769–2778. [CrossRef] [PubMed] [Google Scholar]
  • Hirosumi J., Tuncman G., Chang L., Gorgun C.Z., Uysal K.T., Maeda K., Karin M., Hotamisligil G.S., A central role for JNK in obesity and insulin resistance. Nature, 2002, 420, 333–336. [CrossRef] [PubMed] [Google Scholar]
  • Hotamisligil G.S., Peraldi P., Budavari A., Ellis R., White M.F., Spiegelman B.M., IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-apha- and obesity-induced insulin resistance. Science, 1996, 271, 665–668. [CrossRef] [PubMed] [Google Scholar]
  • Jager J., Grémeaux T., Cormont M., Le Marchand-Brustel Y., Tanti J.-F., Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology, 2007, 148, 241–251. [CrossRef] [PubMed] [Google Scholar]
  • Jager J., Grémeaux T., Gonzalez T., Bonnafous S., Debard C., Laville M., Vidal H., Tran A., Gual P., Le Marchand-Brustel Y., Cormont M., Tanti, J.-F., The Tpl2 kinase is up-regulated in adipose tissue in obesity and may mediate IL-1{beta} and TNF- {alpha} effects on ERK activation and lipolysis. Diabetes, 2010, 59, 61–70. [CrossRef] [PubMed] [Google Scholar]
  • Jager J., Corcelle V., Grémeaux T., Laurent K., Waget A., Pagès G., Binétruy B., Le Marchand-Brustel Y., Burcelin R., Bost F., Tanti, J.-F., Deficiency in the extracellular signal-regulated kinase 1 (ERK1) protects leptin-deficient mice from insulin resistance without affecting obesity. Diabetologia, 2011, 54, 180–189. [CrossRef] [PubMed] [Google Scholar]
  • Kaddai V., Le Marchand-Brustel Y., Cormont M., Rab proteins in endocytosis and Glut4 trafficking. Acta Physiol (Oxf), 2008, 192, 75–88. [CrossRef] [PubMed] [Google Scholar]
  • Kaddai V., Gonzalez T., Keslair F., Grémeaux T., Bonnafous S., Gugenheim J., Tran A., Gual P., Le Marchand-Brustel Y., Cormont M., Rab4b is a small GTPase involved in the control of the glucose transporter GLUT4 localization in adipocyte. PLoS One, 2009, 4, e5257. [CrossRef] [PubMed] [Google Scholar]
  • Keshet Y., Seger R., The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol, 2010, 661, 3–38. [CrossRef] [PubMed] [Google Scholar]
  • Lancaster G.I., Kowalski G.M., Estevez E., Kraakman M.J., Grigoriadis G., Febbraio M.A., Gerondakis, S., Banerjee A., Tumor progression locus 2 (Tpl2) deficiency does not protect against obesity-induced metabolic disease. PLoS One, 2012, 7, e39100. [CrossRef] [PubMed] [Google Scholar]
  • Lebrun P., Van Obberghen E. SOCS proteins causing trouble in insulin action. Acta Physiol (Oxf), 2008, 192, 29–36. [CrossRef] [PubMed] [Google Scholar]
  • Lee S.J., Pfluger P.T., Kim J.Y., Nogueiras R., Duran A., Pagès G., Pouysségur J., Tschop M.H., Diaz-Meco M.T., Moscat J., A functional role for the p62-ERK1 axis in the control of energy homeostasis and adipogenesis. EMBO Rep, 2010, 11, 226–232. [CrossRef] [PubMed] [Google Scholar]
  • Leto D., Saltiel A.R., Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol, 2012, 13, 383–396. [CrossRef] [PubMed] [Google Scholar]
  • Lolmède K., Duffaut C., Zakaroff-Girard A., Bouloumié A., Immune cells in adipose tissue: key players in metabolic disorders. Diabetes Metab, 2011, 37, 283–290. [CrossRef] [PubMed] [Google Scholar]
  • Mari M., Monzo P., Kaddai V., Keslair F., Gonzalez T., Le Marchand-Brustel Y., Cormont M., The Rab4 effector Rabip4 plays a role in the endocytotic trafficking of Glut 4 in 3T3-L1 adipocytes. J Cell Sci, 2006, 119, 1297–1306. [CrossRef] [PubMed] [Google Scholar]
  • Morgan B.J., Chai S.Y., Albiston A.L., GLUT4 associated proteins as therapeutic targets for diabetes. Recent Pat Endocr Metab Immune Drug Discov, 2011, 5, 25–32. [CrossRef] [PubMed] [Google Scholar]
  • Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S. Host-gut microbiota metabolic interactions. Science, 2012, 336, 1262–1267. [CrossRef] [PubMed] [Google Scholar]
  • Perfield J.W., 2nd, Lee Y., Shulman G.I., Samuel V.T., Jurczak M.J., Chang E., Xie C., Tsichlis P.N., Obin M.S., Greenberg A.S., Tumor progression locus 2 (TPL2) regulates obesity-associated inflammation and insulin resistance. Diabetes, 2011, 60, 1168–1176. [CrossRef] [PubMed] [Google Scholar]
  • Rask-Madsen C., Kahn, C.R., Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol, 2012, 32, 2052–2059. [CrossRef] [PubMed] [Google Scholar]
  • Regazzetti C., Peraldi P., Grémeaux T., Najem-Lendom R., Ben-Sahra I., Cormont M., Bost F., Le Marchand-Brustel Y., Tanti J.-F., Giorgetti-Peraldi S., Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes, 2009, 58, 95–103. [CrossRef] [PubMed] [Google Scholar]
  • Rodriguez A., Duran A., Selloum M., Champy M.-F., Diez-Guerra F.J., Flores J.M., Serrano M., Auwerx J., Diaz-Meco M.T., Moscat J., Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab, 2006, 3, 211–222. [CrossRef] [PubMed] [Google Scholar]
  • Sabio G., Davis, R.J., cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci, 2010, 35, 490–496. [CrossRef] [PubMed] [Google Scholar]
  • Shoelson S.E., Lee J., Yuan M., Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int J Obes Relat Metab Disord, 2003, 27 3, S49–S52. [CrossRef] [PubMed] [Google Scholar]
  • Solinas G., Vilcu C., Neels J.G., Bandyopadhyay G.K., Luo J.L., Naugler W., Grivennikov S., Wynshaw-Boris A., Scadeng M., Olefsky J.M., Karin, M., JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab, 2007, 6, 386–397. [CrossRef] [PubMed] [Google Scholar]
  • Sun S., Ji Y., Kersten S., Qi L., Mechanisms of inflammatory responses in obese adipose tissue. Annu Rev Nutr, 2012, 32, 261–286. [CrossRef] [PubMed] [Google Scholar]
  • Taniguchi C.M., Emanuelli B., Kahn, C.R., Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol, 2006, 7, 85–96. [CrossRef] [PubMed] [Google Scholar]
  • Tanti J. -F., Jager, J., Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol, 2009, 9, 753–762. [CrossRef] [PubMed] [Google Scholar]
  • Tanti J.-F., Grémeaux T., Van Obberghen E., Le Marchand-Brustel Y., Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J Biol Chem, 1994, 269, 6051–6057. [PubMed] [Google Scholar]
  • Tanti, J.-F., Ceppo F., Jager J., Berthou F., Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front Endocrinol (Lausanne), 2013, 3, 181. [PubMed] [Google Scholar]
  • Vallerie S.N., Furuhashi M., Fucho R., Hotamisligil G.S., A predominant role for parenchymal c-Jun amino terminal kinase (JNK) in the regulation of systemic insulin sensitivity. PLoS ONE, 2008, 3, e3151. [CrossRef] [PubMed] [Google Scholar]
  • Vernia S., Cavanagh-Kyros J., Barrett T., Jung D.Y., Kim J.K., Davis R. J., Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway. Genes Dev, 2013, 27, 2345–2355. [CrossRef] [PubMed] [Google Scholar]
  • White M.F., IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab, 2002, 283, E413–422. [PubMed] [Google Scholar]
  • Wood I.S., de Heredia F.P., Wang B., Trayhurn P., Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc, 2009, 68, 370–377. [CrossRef] [PubMed] [Google Scholar]
  • Yang R., Trevillyan J.M., c-Jun N-terminal kinase pathways in diabetes. Int J Biochem Cell Biol, 2008, 40, 2702–2706. [CrossRef] [PubMed] [Google Scholar]
  • Zhang X., Xu A., Chung S.K., Cresser J.H., Sweeney G., Wong R.L., Lin A., Lam, K.S., Selective inactivation of c-Jun NH2-terminal kinase in adipose tissue protects against diet-induced obesity and improves insulin sensitivity in both liver and skeletal muscle in mice. Diabetes, 2011, 60, 486–495. [CrossRef] [PubMed] [Google Scholar]
  • Zick Y., Role of Ser/Thr kinases in the uncoupling of insulin signaling. Int J Obes Relat Metab Disord, 2003, 27, S56–S60. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.