Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 208, Numéro 2, 2014
Page(s) 119 - 136
Section Signalisation de l’insuline et insulino-résistance
DOI https://doi.org/10.1051/jbio/2014013
Publié en ligne 8 septembre 2014
  • Aleksandrova K., Boeing H., Nothlings U., Jenab M., Fedirko V., Kaaks R., Lukanova A., Trichopoulou A., Trichopoulos D., Boffetta P., Trepo E., Westhpal S., Duarte-Salles T., Stepien M., Overvad K., Tjønneland A., Halkjaer J., Boutron-Ruault M.C., Dossus L., Racine A., Lagiou P., Bamia C., Benetou V., Agnoli C., Palli D., Panico S., Tumino R., Vineis P., Bueno-de-Mesquita B., Peeters P.H., Gram I.T., Lund E., Weiderpass E., Quirós J.R., Agudo A., Sánchez M.J., Gavrila D., Barricarte A., Dorronsoro M., Ohlsson B., Lindkvist B., Johansson A., Sund M., Khaw K.T., Wareham N., Travis R.C., Riboli E., Pischon T., Inflammatory and metabolic biomarkers and risk of liver and bilary tract cancer. Hepatology, 2014 (sous presse) [Google Scholar]
  • Alessi D.R., James S.R., Downes C.P., Holmes A.B., Gaffney P.R., Reese C.B., Cohen P., Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Curr Biol, 1997, 7, 261–269. [CrossRef] [PubMed] [Google Scholar]
  • Asante-Appiah E., Kennedy B.P., Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am J Physiol Endocrinol Metab, 2003, 284, E663–E670. [PubMed] [Google Scholar]
  • Balogh K., Asa S., Zheng L., Cassol C., Cheng S., Ezzat S., The insulin resistance Grb14 adaptor protein promotes thyroid cancer ret signaling and progression. Oncogene, 2012, 31, 4012–4021. [CrossRef] [PubMed] [Google Scholar]
  • Basavarajappa D.K., Gupta V.K., Dighe R., Rajala A., Rajala R.V., Phosphorylated Grb14 is an endogenous inhibitor of retinal protein tyrosine phosphatase 1B, and light-dependent activation of Src phosphorylates Grb14. Mol Cell Biol, 2011, 31, 3975–3987. [CrossRef] [PubMed] [Google Scholar]
  • Belfiore A., Frasca F., Pandini G., Sciacca L., Vigneri R., Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev, 2009, 30, 586–623. [CrossRef] [PubMed] [Google Scholar]
  • Béréziat V., Kasus-Jacobi A., Perdereau D., Cariou B., Girard J., Burnol A.F., Inhibition of insulin receptor catalytic activity by the molecular adapter Grb14. J Biol Chem, 2002, 277, 4845–4852. [CrossRef] [PubMed] [Google Scholar]
  • Bost F., Aouadi M., Caron L., Even P., Belmonte N., Prot M., Dani C., Hofman P., Pagès G., Pouysségur J., Le Marchand-Brustel Y., Binétruy B., The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes, 2005, 54, 402–411. [CrossRef] [PubMed] [Google Scholar]
  • Boucher J., Macotela Y., Bézy O., Mori M.A., Kriauciunas K., Kahn C.R., A kinase-independent role for unoccupied insulin and IGF-1 receptors in the control of apoptosis. Sci Signal, 2010, 3, ra87. [Google Scholar]
  • Boura-Halfon S., Zick Y., Serine kinases of insulin receptor substrate proteins. Vitam Horm, 2009, 80, 313–349. [CrossRef] [PubMed] [Google Scholar]
  • Boute N., Boubekeur S., Lacasa D., Issad T., Dynamics of the interaction between the insulin receptor and protein tyrosine-phosphatase 1B in living cells. EMBO Rep, 2003, 4, 313–319. [CrossRef] [PubMed] [Google Scholar]
  • Brognard J., Sierecki E., Gao T., Newton A.C., PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell, 2007, 25, 917–931. [CrossRef] [PubMed] [Google Scholar]
  • Browaeys-Poly E., Blanquart C., Perdereau D., Antoine A.F., Goenaga D., Luzy J.P., Chen H., Garbay C., Issad T., Cailliau K., Burnol A.F., Grb14 inhibits FGF receptor signaling through the regulation of PLC gamma recruitment and activation. FEBS Lett, 2010, 584, 4383–4388. [CrossRef] [PubMed] [Google Scholar]
  • Brown M.S., Goldstein J.L., Selective versus total insulin resistance: a pathogenic paradox. Cell Metab, 2008, 7, 95–96. [CrossRef] [PubMed] [Google Scholar]
  • Cailliau K., Le Marcis V., Béréziat V., Perdereau D., Cariou B., Vilain J.P., Burnol A.F., Browaeys-Poly E., Inhibition of FGF receptor signalling in Xenopus oocytes: differential effect of Grb7, Grb10 and Grb14. FEBS Lett, 2003, 548, 43–48. [CrossRef] [PubMed] [Google Scholar]
  • Calle E.E., Kaaks R., Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer, 2004, 4, 579–591. [CrossRef] [PubMed] [Google Scholar]
  • Cariou B., Béréziat V., Moncoq K., Kasus-Jacobi A., Perdereau D., Le Marcis V., Burnol A.F., Regulation and functional roles of Grb14. Front Biosci, 2004a, 9, 1626–1636. [CrossRef] [PubMed] [Google Scholar]
  • Cariou B., Capitaine N., Le Marcis V., Véga N., Béréziat V., Kergoat M., Laville M., Girard J., Vidal H., Burnol A.F., Increased adipose tissue expression of Grb14 in several models of insulin resistance. Faseb J, 2004b, 18, 965–967. [PubMed] [Google Scholar]
  • Cariou B., Perdereau D., Cailliau K., Browaeys-Poly E., Béréziat V., Vasseur-Cognet M., Girard J., Burnol A.-F., The adapter protein ZIP binds Grb14 and regulates its inhibitory action on insulin signaling by recruiting Protein Kinase Cζ. Mol Cell Biol, 2002, 22, 6959–6970. [CrossRef] [PubMed] [Google Scholar]
  • Carré N., Caüzac M., Girard J., Burnol A.-F., Dual effect of the adapter Grb14 on insulin action in primary hepatocytes. Endocrinology, 2008, 149, 3109–3117. [CrossRef] [PubMed] [Google Scholar]
  • Cho H., Mu J., Kim J.K., Thorvaldsen J.L., Chu Q., Crenshaw E.B., 3rd, Kaestner K.H., Bartolomei M.S., Shulman G.I., Birnbaum M.J., Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science, 2001a, 292, 1728–1731. [CrossRef] [PubMed] [Google Scholar]
  • Cho H., Thorvaldsen J.L., Chu Q., Feng F., Birnbaum M.J., Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem, 2001b, 276, 38349–38352. [CrossRef] [PubMed] [Google Scholar]
  • Coba M.P., Munoz M.C., Dominici F.P., Toblli J.E., Pena C., Bartke A., Turyn D., Increased in vivo phosphorylation of insulin receptor at serine 994 in the liver of obese insulin-resistant Zucker rats. J Endocrinol, 2004, 182, 433–444. [CrossRef] [PubMed] [Google Scholar]
  • Cooney G.J., Lyons R.J., Crew A.J., Jensen T.E., Molero J.C., Mitchell C.J., Biden T.J., Ormandy C.J., James D.E., Daly R.J., Improved glucose homeostasis and enhanced insulin signalling in Grb14-deficient mice. Embo J, 2004, 23, 582–593. [CrossRef] [PubMed] [Google Scholar]
  • Daly R.J., The Grb7 family of signalling proteins. Cell Signal, 1998, 10, 613–618. [CrossRef] [PubMed] [Google Scholar]
  • Dasgupta S., Bhattacharya S., Biswas A., Majumdar S.S., Mukhopadhyay S., Ray S., NF-kappaB mediates lipid-induced fetuin-A expression in hepatocytes that impairs adipocyte function effecting insulin resistance. Biochem J, 2010, 429, 451–462. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts P., Whittaker J., Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov, 2002, 1, 769–783. [CrossRef] [PubMed] [Google Scholar]
  • Depetris R.S., Hu J., Gimpelevich I., Holt L.J., Daly R.J., Hubbard S.R., Structural basis for inhibition of the insulin receptor by the adaptor protein Grb14. Mol Cell, 2005, 20, 325–333. [CrossRef] [PubMed] [Google Scholar]
  • Depetris R.S., Wu J., Hubbard S.R., Structural and functional studies of the Ras-associating and pleckstrin-homology domains of Grb10 and Grb14. Nat Struct Mol Biol, 2009, 16, 833–839. [CrossRef] [PubMed] [Google Scholar]
  • Desbuquois B., Béréziat V., Authier F., Girard J., Burnol A.F., Compartmentalization and in vivo insulin-induced translocation of the insulin-signaling inhibitor Grb14 in rat liver. Febs J, 2008, 275, 4363–4377. [CrossRef] [PubMed] [Google Scholar]
  • Desbuquois B., Carré N., Burnol A.F., Regulation of insulin and type 1 insulin-like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins. Febs J, 2013, 280, 794–816. [PubMed] [Google Scholar]
  • Egawa K., Maegawa H., Shimizu S., Morino K., Nishio Y., Bryer-Ash M., Cheung A.T., Kolls J.K., Kikkawa R., Kashiwagi A., Protein-tyrosine phosphatase-1B negatively regulates insulin signaling in L6 myocytes and Fao hepatoma cells. J Biol Chem, 2001, 276, 10207–10211. [CrossRef] [PubMed] [Google Scholar]
  • Elchebly M., Payette P., Michaliszyn E., Cromlish W., Collins S., Loy A.L., Normandin D., Cheng A., Himms-Hagen J., Chan C.C., Ramachandran C., Gresser M.J., Tremblay M.L., Kennedy B.P., Increased Insulin Sensitivity and Obesity Resistance in Mice Lacking the Protein Tyrosine Phosphatase-1B Gene. Science, 1999, 283, 1544–1548. [CrossRef] [PubMed] [Google Scholar]
  • Emanuelli B., Peraldi P., Filloux C., Sawka-Verhelle D., Hilton D., Van Obberghen E., SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem, 2000, 275, 15985–15991. [CrossRef] [PubMed] [Google Scholar]
  • Ezzat S., Zheng L., Florez J.C., Stefan N., Mayr T., Hliang M.M., Jablonski K., Harden M., Stancakova A., Laakso M., Haring H.U., Ullrich A., Asa S.L., The cancer-associated FGFR4-G388R polymorphism enhances pancreatic insulin secretion and modifies the risk of diabetes. Cell Metab, 2013, 17, 929–940. [CrossRef] [PubMed] [Google Scholar]
  • Gallagher E.J., LeRoith D., Does a single nucleotide polymorphism in the FGFR explain the connection between diabetes and cancer? Cell Metab, 2013, 17, 808–809. [CrossRef] [PubMed] [Google Scholar]
  • Gao T., Furnari F., Newton A.C., PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell, 2005, 18, 13–24. [CrossRef] [PubMed] [Google Scholar]
  • Gesta S., Bluher M., Yamamoto Y., Norris A.W., Berndt J., Kralisch S., Boucher J., Lewis C., Kahn C.R., Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci USA, 2006, 103, 6676–6681. [CrossRef] [Google Scholar]
  • Goding J.W., Terkeltaub R., Maurice M., Deterre P., Sali A., Belli S.I., Ecto-phosphodiesterase/pyrophosphatase of lymphocytes and non-lymphoid cells: structure and function of the PC-1 family. Immunol Rev, 1998, 161, 11–26. [CrossRef] [PubMed] [Google Scholar]
  • Goenaga D., Hampe, C., Carré N., Cailliau K., Browaeys-Poly E., Perdereau D., Holt L.J., Daly R.J., Girard J., Broutin I., Issad T., Burnol A.F., Molecular determinants of Grb14-mediated inhibition of insulin signaling. Mol Endocrinol, 2009, 23, 1043–1051. [CrossRef] [PubMed] [Google Scholar]
  • Goldfine I.D., Maddux B.A., Youngren J.F., Frittitta L., Trischitta V., Dohm G.L., Membrane glycoprotein PC-1 and insulin resistance. Mol Cell Biochem, 1998, 182, 177–184. [CrossRef] [PubMed] [Google Scholar]
  • Goustin A.S., Abou-Samra A.B., The “thrifty” gene encoding Ahsg/Fetuin-A meets the insulin receptor: Insights into the mechanism of insulin resistance. Cell Signal, 2001, 23, 980–990. [CrossRef] [Google Scholar]
  • Greene M.W., Sakaue H., Wang L., Alessi D.R., Roth R.A., Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by Serine 312 phosphorylation. J Biol Chem, 2003, 278, 8199–8211. [CrossRef] [PubMed] [Google Scholar]
  • Gual P., Le Marchand-Brustel Y., Tanti J.F., Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, 2005, 87, 99–109. [CrossRef] [PubMed] [Google Scholar]
  • Gustafson T.A., He W., Craparo A., Schaub C.D., O’Neill T.J., Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel Non-SH2 domain. Mol Cell Biol, 1995, 15, 2500–2508. [PubMed] [Google Scholar]
  • Harder M.N., Ribel-Madsen R., Justesen J.M., Sparso T., Andersson E.A., Grarup N., Jorgensen T., Linneberg A., Hansen T., Pedersen O., Type 2 diabetes risk alleles near BCAR1 and in ANK1 associate with decreased beta-cell function whereas risk alleles near ANKRD55 and Grb14 associate with decreased insulin sensitivity in the Danish Inter99 cohort. J Clin Endocrinol Metab, 2013, 98, E801–E806. [CrossRef] [PubMed] [Google Scholar]
  • Heid I.M., Jackson A.U., Randall J.C., Winkler T.W., Qi L., Steinthorsdottir V., Thorleifsson G., Zillikens M.C., Speliotes E.K., Magi R., Workalemahu T., White C.C., Bouatia-Naji N., Harris T.B., Berndt S.I., Ingelsson E., Willer C.J., Weedon M.N., Luan J., Vedantam S., Esko T., Kilpeläinen T.O., Kutalik Z., Li S., Monda K.L., Dixon A.L., Holmes C.C., Kaplan L.M., Liang L., Min J.L., Moffatt M.F., Molony C., Nicholson G., Schadt E.E., Zondervan K.T., Feitosa M.F., Ferreira T., Lango Allen H., Weyant R.J., Wheeler E., Wood A.R., MAGIC, Estrada K., Goddard M.E., Lettre G., Mangino M., Nyholt D.R., Purcell S., Smith A.V., Visscher P.M., Yang J., McCarroll S.A., Nemesh J., Voight B.F., Absher D., Amin N., Aspelund T., Coin L., Glazer N.L., Hayward C., Heard-Costa N.L., Hottenga J.J., Johansson A., Johnson T., Kaakinen M., Kapur K., Ketkar S., Knowles J.W., Kraft P., Kraja A.T., Lamina C., Leitzmann M.F., McKnight B., Morris A.P., Ong K.K., Perry J.R., Peters M.J., Polasek O., Prokopenko I., Rayner N.W., Ripatti S., Rivadeneira F., Robertson N.R., Sanna S., Sovio U., Surakka I., Teumer A., van Wingerden S., Vitart V., Zhao J.H., Cavalcanti-Proença C., Chines P.S., Fisher E., Kulzer J.R., Lecoeur C., Narisu N., Sandholt C., Scott L.J., Silander K., Stark K., Tammesoo M.L., Teslovich T.M., Timpson N.J., Watanabe R.M., Welch R., Chasman D.I., Cooper M.N., Jansson J.O., Kettunen J., Lawrence R.W., Pellikka N., Perola M., Vandenput L., Alavere H., Almgren P., Atwood L.D., Bennett A.J., Biffar R., Bonnycastle L.L., Bornstein S.R., Buchanan T.A., Campbell H., Day I.N., Dei M., Dörr M., Elliott P., Erdos M.R., Eriksson J.G., Freimer N.B., Fu M., Gaget S., Geus E.J., Gjesing A.P., Grallert H., Grässler J., Groves C.J., Guiducci C., Hartikainen A.L., Hassanali N., Havulinna A.S., Herzig K.H., Hicks A.A., Hui J., Igl W., Jousilahti P., Jula A., Kajantie E., Kinnunen L., Kolcic I., Koskinen S., Kovacs P., Kroemer H.K., Krzelj V., Kuusisto J., Kvaloy K., Laitinen J., Lantieri O., Lathrop G.M., Lokki M.L., Luben R.N., Ludwig B., McArdle W.L., McCarthy A., Morken M.A., Nelis M., Neville M.J., Paré G., Parker A.N., Peden J.F., Pichler I., Pietiläinen K.H., Platou C.G., Pouta A., Ridderstråle M., Samani N.J., Saramies J., Sinisalo J., Smit J.H., Strawbridge R.J., Stringham H.M., Swift A.J., Teder-Laving M., Thomson B., Usala G., van Meurs J.B., van Ommen G.J., Vatin V., Volpato C.B., Wallaschofski H., Walters G.B., Widen E., Wild S.H., Willemsen G., Witte D.R., Zgaga L., Zitting P., Beilby J.P., James A.L., Kähönen M., Lehtimäki T., Nieminen M.S., Ohlsson C., Palmer L.J., Raitakari O., Ridker P.M., Stumvoll M., Tönjes A., Viikari J., Balkau B., Ben-Shlomo Y., Bergman R.N., Boeing H., Smith G.D., Ebrahim S., Froguel P., Hansen T., Hengstenberg C., Hveem K., Isomaa B., Jørgensen T., Karpe F., Khaw K.T., Laakso M., Lawlor D.A., Marre M., Meitinger T., Metspalu A., Midthjell K., Pedersen O., Salomaa V., Schwarz P.E., Tuomi T., Tuomilehto J., Valle T.T., Wareham N.J., Arnold A.M., Beckmann J.S., Bergmann S., Boerwinkle E., Boomsma D.I., Caulfield M.J., Collins F.S., Eiriksdottir G., Gudnason V., Gyllensten U., Hamsten A., Hattersley A.T., Hofman A., Hu F.B., Illig T., Iribarren C., Jarvelin M.R., Kao W.H., Kaprio J., Launer L.J., Munroe P.B., Oostra B., Penninx B.W., Pramstaller P.P., Psaty B.M., Quertermous T., Rissanen A., Rudan I., Shuldiner A.R., Soranzo N., Spector T.D., Syvanen A.C., Uda M., Uitterlinden A., Völzke H., Vollenweider P., Wilson J.F., Witteman J.C., Wright A.F., Abecasis G.R., Boehnke M., Borecki I.B., Deloukas P., Frayling T.M., Groop L.C., Haritunians T., Hunter D.J., Kaplan R.C., North K.E., O’Connell JR, Peltonen L, Schlessinger D, Strachan DP, Hirschhorn JN, Assimes T.L., Wichmann H.E., Thorsteinsdottir U., van Duijn C.M., Stefansson K., Cupples L.A., Loos R.J., Barroso I., McCarthy M.I., Fox C.S., Mohlke K.L., Lindgren C.M., Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet, 2010, 42, 949–960. [CrossRef] [PubMed] [Google Scholar]
  • Hemming R., Agatep R., Badiani K., Wyant K., Arthur G., Gietz R.D., Triggs-Raine B., Human growth factor receptor bound 14 binds the activated insulin receptor and alters the insulin-stimulated tyrosine phosphorylation levels of multiple proteins. Biochem Cell Biol, 2001, 79, 21–32. [CrossRef] [PubMed] [Google Scholar]
  • Holt L.J., Lyons R.J., Ryan A.S., Beale S.M., Ward A., Cooney G.J., Daly R.J., Dual ablation of Grb10 and Grb14 in mice reveals their combined role in regulation of insulin signaling and glucose homeostasis. Mol Endocrinol, 2009, 23, 1406–1414. [CrossRef] [PubMed] [Google Scholar]
  • Holt L.J., Siddle K., Grb10 and Grb14: enigmatic regulators of insulin action–and more? Biochem J, 2005, 388, 393–406. [CrossRef] [PubMed] [Google Scholar]
  • Houtkooper R.H., Williams R.W., Auwerx J., Metabolic networks of longevity. Cell, 2010, 142, 9–14. [CrossRef] [PubMed] [Google Scholar]
  • Hubbard S.R., Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J, 1997, 16, 5572–5581. [CrossRef] [PubMed] [Google Scholar]
  • Hubbard S.R., The insulin receptor: both a prototypical and atypical receptor tyrosine kinase. Cold Spring Harb Perspect Biol, 2013, 5, 1–12. [CrossRef] [Google Scholar]
  • Jensen M., De Meyts P., Molecular mechanisms of differential intracellular signaling from the insulin receptor. Vitam Horm, 2009, 80, 51–75. [CrossRef] [PubMed] [Google Scholar]
  • Jones N., Master Z., Jones J., Bouchard D., Gunji Y., Sasaki H., Daly R., Alitalo K., Dumont D.J., Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem, 1999, 274, 30896–30905. [CrossRef] [PubMed] [Google Scholar]
  • Kasus-Jacobi A., Perdereau D., Auzan C., Clauser E., Van Obberghen E., Mauvais-Jarvis F., Girard J., Burnol A.-F., Identification of the rat adapter Grb14 as an inhibitor of insulin actions. J Biol Chem, 1998, 273, 26026–26035. [CrossRef] [PubMed] [Google Scholar]
  • King C.C., Newton A.C., The adaptor protein Grb14 regulates the localization of 3-phosphoinositide-dependent kinase-1. J Biol Chem, 2004, 279, 37518–37527. [CrossRef] [PubMed] [Google Scholar]
  • Kooner J.S., Saleheen D., Sim X., Sehmi J., Zhang W., Frossard P., Been L.F., Chia K.S., Dimas A.S., Hassanali N., Jafar T., Jowett J.B., Li X., Radha V., Rees S.D., Takeuchi F., Young R., Aung T., Basit A., Chidambaram M., Das D., Grundberg E., Hedman A.K., Hydrie Z.I., Islam M., Khor C.C., Kowlessur S., Kristensen M.M., Liju S., Lim W.Y., Matthews D.R., Liu J., Morris A.P., Nica A.C., Pinidiyapathirage J.M., Prokopenko I., Rasheed A., Samuel M., Shah N., Shera A.S., Small K.S., Suo C., Wickremasinghe A.R., Wong T.Y., Yang M., Zhang F, DIAGRAM; MUTHER,Abecasis G.R., Barnett A.H., Caulfield M., Deloukas P., Frayling T.M., Froguel P., Kato N., Katulanda P., Kelly M.A., Liang J., Mohan V., Sanghera D.K., Scott J., Seielstad M., Zimmet P.Z., Elliott P., Teo Y.Y., McCarthy M.I., Danesh J., Tai E.S., Chambers J.C., Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet, 2011, 43, 984–989. [CrossRef] [PubMed] [Google Scholar]
  • Lebrun P., Van Obberghen E., SOCS proteins causing trouble in insulin action. Acta Physiol (Oxf), 2008, 192, 29–36. [CrossRef] [PubMed] [Google Scholar]
  • Li S., Depetris R.S., Barford D., Chernoff J., Hubbard S.R., Crystal structure of a complex between protein tyrosine phosphatase 1B and the insulin receptor tyrosine kinase. Structure, 2005, 13, 1643–1651. [CrossRef] [PubMed] [Google Scholar]
  • Lin R.C., Weeks K.L., Gao X.M., Williams R.B., Bernardo B.C., Kiriazis H., Matthews V.B., Woodcock E.A., Bouwman R.D., Mollica J.P.Speirs H.J., Dawes I.W., Daly R.J., Shioi T., Izumo S., Febbraio M.A., Du X.J., McMullen J.R., PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA. Arterioscler Thromb Vasc Biol, 2010, 30, 724–732. [CrossRef] [PubMed] [Google Scholar]
  • Maddux B.A., Goldfine I.D., Membrane glycoprotein PC-1 inhibition of insulin receptor function occurs via direct interaction with the receptor alpha-subunit. Diabetes, 2000, 49, 13–19. [CrossRef] [PubMed] [Google Scholar]
  • Manning A.K., Hivert M.F., Scott R.A., Grimsby J.L., Bouatia-Naji N., Chen H., Rybin D., Liu C.T., Bielak L.F., Prokopenko I., Amin N., Barnes D., Cadby G., Hottenga J.J., Ingelsson E., Jackson A.U., Johnson T., Kanoni S., Ladenvall C., Lagou V., Lahti J., Lecoeur C., Liu Y., Martinez-Larrad M.T., Montasser M.E., Navarro P., Perry J.R., Rasmussen-Torvik L.J., Salo P., Sattar N., Shungin D., Strawbridge R.J., Tanaka T., van Duijn C.M., An P., de Andrade M., Andrews J.S., Aspelund T., Atalay M., Aulchenko Y., Balkau B., Bandinelli S., Beckmann J.S., Beilby J.P., Bellis C., Bergman R.N., Blangero J., Boban M., Boehnke M., Boerwinkle E., Bonnycastle L.L., Boomsma D.I., Borecki I.B., Böttcher Y., Bouchard C., Brunner E., Budimir D., Campbell H., Carlson O., Chines P.S., Clarke R., Collins F.S., Corbatón-Anchuelo A., Couper D., de Faire U., Dedoussis G.V., Deloukas P., Dimitriou M., Egan J.M., Eiriksdottir G., Erdos M.R., Eriksson J.G., Eury E., Ferrucci L., Ford I., Forouhi N.G., Fox C.S., Franzosi M.G., Franks P.W., Frayling T.M., Froguel P., Galan P., de Geus E., Gigante B., Glazer N.L., Goel A., Groop L., Gudnason V., Hallmans G., Hamsten A., Hansson O., Harris T.B., Hayward C., Heath S., Hercberg S., Hicks A.A., Hingorani A., Hofman A., Hui J., Hung J., Jarvelin M.R., Jhun M.A., Johnson P.C., Jukema J.W., Jula A., Kao W.H., Kaprio J., Kardia S.L., Keinanen-Kiukaanniemi S., Kivimaki M., Kolcic I., Kovacs P., Kumari M., Kuusisto J., Kyvik K.O., Laakso M., Lakka T., Lannfelt L., Lathrop G.M., Launer L.J., Leander K., Li G., Lind L., Lindstrom J., Lobbens S., Loos R.J., Luan J., Lyssenko V., Mägi R., Magnusson P.K., Marmot M., Meneton P., Mohlke K.L., Mooser V., Morken M.A., Miljkovic I., Narisu N., O’Connell J., Ong K.K., Oostra B.A., Palmer L.J., Palotie A., Pankow J.S., Peden J.F., Pedersen N.L., Pehlic M., Peltonen L., Penninx B., Pericic M., Perola M., Perusse L., Peyser P.A., Polasek O., Pramstaller P.P., Province M.A., Räikkönen K., Rauramaa R., Rehnberg E., Rice K., Rotter J.I., Rudan I., Ruokonen A., Saaristo T., Sabater-Lleal M., Salomaa V., Savage D.B., Saxena R., Schwarz P., Seedorf U., Sennblad B., Serrano-Rios M., Shuldiner A.R., Sijbrands E.J., Siscovick D.S., Smit J.H., Small K.S., Smith N.L., Smith A.V., Stančá ková A., Stirrups K., Stumvoll M., Sun Y.V., Swift A.J., Tönjes A., Tuomilehto J., Trompet S., Uitterlinden A.G., Uusitupa M., Vikström M., Vitart V., Vohl M.C., Voight B.F., Vollenweider P., Waeber G., Waterworth D.M., Watkins H., Wheeler E., Widen E., Wild S.H., Willems S.M., Willemsen G., Wilson J.F., Witteman J.C., Wright A.F., Yaghootkar H., Zelenika D., Zemunik T., Zgaga L., DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; Multiple Tissue Human Expression Resource (MUTHER) Consortium, Wareham N.J., McCarthy M.I., Barroso I., Watanabe R.M., Florez J.C., Dupuis J., Meigs J.B., Langenberg C., A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet, 2012, 44, 659–669. [CrossRef] [PubMed] [Google Scholar]
  • Manning B.D., Cantley L.C., AKT/PKB signaling: navigating downstream. Cell, 2007, 129, 1261–1274. [CrossRef] [PubMed] [Google Scholar]
  • Mathews S.T., Singh G.P., Ranalletta M., Cintron V.J., Qiang X., Goustin A.S., Jen K.L., Charron M.J., Jahnen-Dechent W., Grunberger G., Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes, 2002, 51, 2450–2458. [CrossRef] [PubMed] [Google Scholar]
  • Moncoq K., Broutin I., Larue V., Perdereau D., Cailliau K., Browaeys-Poly E., Burnol A.F., Ducruix A., The PIR domain of Grb14 is an intrinsically unstructured protein: implication in insulin signaling. FEBS Lett, 2003, 554, 240–246. [CrossRef] [PubMed] [Google Scholar]
  • Mooney R.A., Senn J., Cameron S., Inamdar N., Boivin L.M., Shang Y., Furlanetto R.W., Suppressors of cytokine signaling (SOCS)-1 and 6 associate with and inhibit the insulin receptor: A potential mechanism for cytokine mediated insulin resistance. J Biol Chem, 2001, 276, 25889–25893. [CrossRef] [PubMed] [Google Scholar]
  • Morris A.P., Voight B.F., Teslovich T.M., Ferreira T., Segre A.V., Steinthorsdottir V., Strawbridge R.J., Khan H., Grallert H., Mahajan A., Prokopenko I., Kang H.M., Dina C., Esko T., Fraser R.M., Kanoni S., Kumar A., Lagou V., Langenberg C., Luan J., Lindgren C.M., Müller-Nurasyid M., Pechlivanis S., Rayner N.W., Scott L.J., Wiltshire S., Yengo L., Kinnunen L., Rossin E.J., Raychaudhuri S., Johnson A.D., Dimas A.S., Loos R.J., Vedantam S., Chen H., Florez J.C., Fox C., Liu C.T., Rybin D., Couper D.J., Kao W.H., Li M., Cornelis M.C., Kraft P., Sun Q., van Dam R.M., Stringham H.M., Chines P.S., Fischer K., Fontanillas P., Holmen O.L., Hunt S.E., Jackson A.U., Kong A., Lawrence R., Meyer J., Perry J.R., Platou C.G., Potter S., Rehnberg E., Robertson N., Sivapalaratnam S., Stančáková A., Stirrups K., Thorleifsson G., Tikkanen E., Wood A.R., Almgren P., Atalay M., Benediktsson R., Bonnycastle L.L., Burtt N., Carey J., Charpentier G., Crenshaw A.T., Doney A.S., Dorkhan M., Edkins S., Emilsson V., Eury E., Forsen T., Gertow K., Gigante B., Grant G.B., Groves C.J., Guiducci C., Herder C., Hreidarsson A.B., Hui J., James A., Jonsson A., Rathmann W., Klopp N., Kravic J., Krjutškov K., Langford C., Leander K., Lindholm E., Lobbens S., Männistö S., Mirza G., Mühleisen T.W., Musk B., Parkin M., Rallidis L., Saramies J., Sennblad B., Shah S., Sigurðsson G., Silveira A., Steinbach G., Thorand B., Trakalo J., Veglia F., Wennauer R., Winckler W., Zabaneh D., Campbell H., van Duijn C., Uitterlinden A.G., Hofman A., Sijbrands E., Abecasis G.R., Owen K.R., Zeggini. E., Trip M.D., Forouhi N.G., Syvänen A.C., Eriksson J.G., Peltonen L., Nöthen M.M., Balkau B., Palmer C.N., Lyssenko V., Tuomi T., Isomaa B., Hunter D.J., Qi L., Wellcome Trust Case Control Consortium; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium, Shuldiner A.R, Roden M., Barroso I., Wilsgaard T., Beilby J., Hovingh K., Price J.F., Wilson J.F., Rauramaa R., Lakka T.A., Lind L., Dedoussis G., Njølstad I., Pedersen N.L., Khaw K.T., Wareham N.J., Keinanen-Kiukaanniemi S.M., Saaristo T.E., Korpi-Hyövälti E., Saltevo J., Laakso M., Kuusisto J., Metspalu A., Collins F.S., Mohlke K.L., Bergman R.N., Tuomilehto J., Boehm B.O., Gieger C., Hveem K., Cauchi S., Froguel P., Baldassarre D., Tremoli E0, Humphries S.E., Saleheen D., Danesh J., Ingelsson E., Ripatti S., Salomaa V., Erbel R., Jöckel K.H., Moebus S., Peters A., Illig T., de Faire U., Hamsten A., Morris A.D., Donnelly P.J., Frayling T.M., Hattersley A.T., Boerwinkle E., Melander O., Kathiresan S., Nilsson P.M., Deloukas P., Thorsteinsdottir U., Groop L.C., Stefansson K., Hu F., Pankow J.S., Dupuis J., Meigs J.B., Altshuler D., Boehnke M., McCarthy M.I., DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium., Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet, 2012, 44, 981–990. [CrossRef] [PubMed] [Google Scholar]
  • Mothe I., Van Obberghen E., Phosphorylation of insulin receptor substrate-1 on multiple serine residues, 612, 632, 662, and 731, modulates insulin action. J Biol Chem, 1996, 271, 11222–11227. [CrossRef] [PubMed] [Google Scholar]
  • Nandi A., Kitamura Y., Kahn C.R., Accili D., Mouse models of insulin resistance. Physiol Rev, 2004, 84, 623–647. [CrossRef] [PubMed] [Google Scholar]
  • Nouaille S., Blanquart C., Zilberfarb V., Boute N., Perdereau D., Burnol A.F., Issad T., Interaction between the insulin receptor and Grb14: a dynamic study in living cells using BRET. Biochem Pharmacol, 2006a, 72, 1355–1366. [CrossRef] [PubMed] [Google Scholar]
  • Nouaille S., Blanquart C., Zilberfarb V., Boute N., Perdereau D., Roix J., Burnol A.F., Issad T., Interaction with Grb14 results in site-specific regulation of tyrosine phosphorylation of the insulin receptor. EMBO Rep, 2006b 7, 512–518. [PubMed] [Google Scholar]
  • Park J.J., Berggren J.R., Hulver M.W., Houmard J.A., Hoffman E.P., Grb14, GPD1, and GDF8 as potential network collaborators in weight loss-induced improvements in insulin action in human skeletal muscle. Physiol Genomics, 2006, 27, 114–121. [CrossRef] [PubMed] [Google Scholar]
  • Pelicci G., Dente L., De Giuseppe A., Verducci-Galletti B., Giuli S., Mele S., Vetriani C., Giorgio M., Pandolfi P.P., Cesareni G., Pelicci P.G., A family of Shc related proteins with conserved PTB, CH1 and SH2 regions. Oncogene, 1996, 13, 633–641. [PubMed] [Google Scholar]
  • Pollak M., Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer, 2008, 8, 915–928. [CrossRef] [PubMed] [Google Scholar]
  • Posner B.I., Laporte S.A., Cellular signalling: Peptide hormones and growth factors. Prog Brain Res, 2010, 181, 1-16. [CrossRef] [PubMed] [Google Scholar]
  • Qamra R., Hubbard S.R., Structural basis for the interaction of the adaptor protein Grb14 with activated ras. PLoS One, 2013, 8, e72473. [CrossRef] [PubMed] [Google Scholar]
  • Rajala A., Daly R.J., Tanito M., Allen D.T., Holt L.J., Lobanova E.S., Arshavsky V.Y., Rajala R.V., Growth factor receptor-bound protein 14 undergoes light-dependent intracellular translocation in rod photoreceptors: functional role in retinal insulin receptor activation. Biochemistry, 2009, 48, 5563–5572. [CrossRef] [PubMed] [Google Scholar]
  • Reilly J.F., Mickey G., Maher P.A., Association of fibroblast growth factor receptor 1 with the adaptor protein Grb14. Characterization of a new receptor binding partner. J Biol Chem, 2000, 275, 7771–7778. [CrossRef] [PubMed] [Google Scholar]
  • Ren D., Zhou Y., Morris D., Li M., Li Z., Rui L., Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. J Clin Invest, 2007, 117, 397–406. [CrossRef] [PubMed] [Google Scholar]
  • Rui L., Yuan M., Frantz D., Shoelson S., White M.F., SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem, 2002, 277, 42394–42398. [CrossRef] [PubMed] [Google Scholar]
  • Salmeen A., Andersen J.N., Myers M.P., Tonks N.K., Barford D., Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell, 2000, 6, 1401–1412. [CrossRef] [PubMed] [Google Scholar]
  • Sarbassov D.D., Guertin D.A., Ali S.M., Sabatini D.M., Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005, 307, 1098–1101. [CrossRef] [PubMed] [Google Scholar]
  • Scott R.A., Lagou V., Welch R.P., Wheeler E., Montasser M.E., Luan J., Magi R., Strawbridge R.J., Rehnberg E., Gustafsson S., Kanoni S., Rasmussen-Torvik L.J., Yengo L., Lecoeur C., Shungin D., Sanna S., Sidore C., Johnson P.C., Jukema J.W., Johnson T., Mahajan A., Verweij N., Thorleifsson G., Hottenga J.J., Shah S., Smith A.V., Sennblad B., Gieger C., Salo P., Perola M., Timpson N.J., Evans D.M., Pourcain B.S., Wu Y., Andrews J.S., Hui J., Bielak L.F., Zhao W., Horikoshi M., Navarro P., Isaacs A., O’Connell J.R., Stirrups K., Vitart V., Hayward C., Esko T., Mihailov E., Fraser R.M., Fall T., Voight B.F., Raychaudhuri S., Chen H., Lindgren C.M., Morris A.P., Rayner N.W., Robertson N., Rybin D., Liu C.T., Beckmann J.S., Willems S.M., Chines P.S., Jackson A.U., Kang H.M., Stringham H.M., Song K., Tanaka T., Peden J.F., Goel A., Hicks A.A., An P., Müller-Nurasyid M., Franco-Cereceda A., Folkersen L., Marullo L., Jansen H., Oldehinkel A.J., Bruinenberg M., Pankow J.S., North K.E., Forouhi N.G., Loos R.J., Edkins S., Varga T.V., Hallmans G., Oksa H., Antonella M., Nagaraja R., Trompet S., Ford I., Bakker S.J., Kong A., Kumari M., Gigante B., Herder C., Munroe P.B., Caulfield M., Antti J., Mangino M., Small K., Miljkovic I., Liu Y., Atalay M., Kiess W., James A.L., Rivadeneira F., Uitterlinden A.G., Palmer C.N., Doney A.S., Willemsen G., Smit J.H., Campbell S., Polasek O., Bonnycastle L.L., Hercberg S., Dimitriou M., Bolton J.L., Fowkes G.R., Kovacs P., Lindström J., Zemunik T., Bandinelli S., Wild S.H., Basart H.V., Rathmann W., Grallert H., DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium, Maerz W., Kleber M.E., Boehm B.O., Peters A., Pramstaller P.P., Province M.A., Borecki I.B., Hastie N.D., Rudan I., Campbell H., Watkins H., Farrall M., Stumvoll M., Ferrucci L., Waterworth D.M., Bergman R.N., Collins F.S., Tuomilehto J., Watanabe R.M., de Geus E.J., Penninx B.W., Hofman A., Oostra B.A., Psaty B.M., Vollenweider P., Wilson J.F., Wright A.F., Hovingh G.K., Metspalu A., Uusitupa M., Magnusson P.K., Kyvik K.O., Kaprio J., Price J.F., Dedoussis G.V., Deloukas P., Meneton P., Lind L., Boehnke M., Shuldiner A.R., van Duijn C.M., Morris A.D., Toenjes A., Peyser P.A., Beilby J.P., Körner A., Kuusisto J., Laakso M., Bornstein S.R., Schwarz P.E., Lakka T.A., Rauramaa R., Adair L.S., Smith G.D., Spector T.D., Illig T., de Faire U., Hamsten A., Gudnason V., Kivimaki M., Hingorani A., Keinanen-Kiukaanniemi S.M., Saaristo T.E., Boomsma D.I., Stefansson K., van der Harst P., Dupuis J., Pedersen N.L., Sattar N., Harris T.B., Cucca F., Ripatti S., Salomaa V., Mohlke K.L., Balkau B., Froguel P., Pouta A., Jarvelin M.R., Wareham N.J., Bouatia-Naji N., McCarthy M.I., Franks P.W., Meigs J.B., Teslovich T.M., Florez J.C., Langenberg C., Ingelsson E., Prokopenko I., Barroso I., Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet, 2012, 44, 991–1005. [CrossRef] [PubMed] [Google Scholar]
  • Shao J., Catalano P.M., Yamashita H., Ruyter I., Smith S., Youngren J., Friedman J.E., Decreased insulin receptor tyrosine kinase activity and plasma cell membrane glycoprotein-1 overexpression in skeletal muscle from obese women with gestational diabetes mellitus (GDM): evidence for increased serine/threonine phosphorylation in pregnancy and GDM. Diabetes, 2000, 49, 603–610. [CrossRef] [PubMed] [Google Scholar]
  • Sharfi H., Eldar-Finkelman H., Sequential phosphorylation of insulin receptor substrate-2 by glycogen synthase kinase-3 and c-Jun NH2-terminal kinase plays a role in hepatic insulin signaling. Am J Physiol Endocrinol Metab, 2008, 294, E307–E315. [CrossRef] [PubMed] [Google Scholar]
  • Siddle K., Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne), 2012, 3, 34. [CrossRef] [Google Scholar]
  • Srinivas P.R., Wagner A.S., Reddy L.V., Deutsch D.D., Leon M.A., Goustin A.S., Grunberger G., Serum alpha 2-HS-glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level. Mol Endocrinol, 1993, 7, 1445–1455. [PubMed] [Google Scholar]
  • Stefan N., Fritsche A., Weikert C., Boeing H., Joost H.G., Haring H.U., Schulze M.B., Plasma fetuin-A levels and the risk of type 2 diabetes. Diabetes, 2008, 57, 2762–2767. [CrossRef] [PubMed] [Google Scholar]
  • Stein E.G., Gustafson T.A., Hubbard S.R., The BPS domain of Grb10 inhibits the catalytic activity of the insulin and IGF-1 receptors. FEBS Lett, 2001, 493, 106–111. [CrossRef] [PubMed] [Google Scholar]
  • Stein E.G., Ghirlando R., Hubbard S.R., Structural Basis for Dimerization of the Grb10 Src Homology 2 Domain. Implications For Ligand Specificity. J Biol Chem, 2003, 278, 13257–13264. [CrossRef] [PubMed] [Google Scholar]
  • Strack V., Hennige A.M., Krutzfeldt J., Bossenmaier B., Klein H.H., Kellerer M., Lammers R., Haring H.U., Serine residues 994 and 1023/25 are important for insulin receptor kinase inhibition by protein kinase C isoforms beta2 and theta. Diabetologia, 2000, 43, 443–449. [CrossRef] [PubMed] [Google Scholar]
  • Takata H., Ikeda Y., Suehiro T., Ishibashi A., Inoue M., Kumon Y., Terada Y., High glucose induces transactivation of the alpha2-HS glycoprotein gene through the ERK1/2 signaling pathway. J Atheroscler Thromb, 2009, 16, 448–456. [CrossRef] [PubMed] [Google Scholar]
  • Takayama S., White M.F., Kahn C.R., Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity. J Biol Chem, 1988, 263, 3440–3447. [PubMed] [Google Scholar]
  • Taniguchi C.M., Emanuelli B., Kahn C.R., Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol, 2006, 7, 85–96. [CrossRef] [PubMed] [Google Scholar]
  • Taubes G., Cancer research. Unraveling the obesity-cancer connection. Science, 2012, 335, 28, 30–22. [CrossRef] [PubMed] [Google Scholar]
  • Thirone A.C., Huang C., Klip A., Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metab, 2006, 17, 72–78. [CrossRef] [PubMed] [Google Scholar]
  • Ueki K., Kondo T., Tseng Y.H., Kahn C.R., Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci USA, 2004, 101, 10422–10427. [CrossRef] [Google Scholar]
  • Ussar S., Bezy O., Bluher M., Kahn C.R., Glypican-4 enhances insulin signaling via interaction with the insulin receptor and serves as a novel adipokine. Diabetes, 2012, 61, 2289–2298. [CrossRef] [PubMed] [Google Scholar]
  • Vanhaesebroeck B., Stephens L., Hawkins P., PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol, 2012, 13, 195–203. [CrossRef] [PubMed] [Google Scholar]
  • Virkamaki A., Ueki K., Kahn C.R., Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest, 1999, 103, 931–943. [CrossRef] [PubMed] [Google Scholar]
  • Wills M.K., Jones N., Teaching an old dogma new tricks: twenty years of Shc adaptor signalling. Biochem J, 2012, 447, 1–16. [CrossRef] [PubMed] [Google Scholar]
  • Zinker B.A., Rondinone C.M., Trevillyan J.M., Gum R.J., Clampit J.E., Waring J.F., Xie N., Wilcox D., Jacobson P., Frost L.Kroeger P.E., Reilly R.M., Koterski S., Opgenorth T.J., Ulrich R.G., Crosby S., Butler M., Murray S.F., McKay R.A., Bhanot S., Monia B.P., Jirousek M.R., PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc Natl Acad Sci USA, 2002, 99, 11357–11362. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.