Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 208, Numéro 3, 2014
Page(s) 225 - 235
Section Prix de thèse 2014 de la Société de Biologie
DOI https://doi.org/10.1051/jbio/2014025
Publié en ligne 5 décembre 2014
  • Abbott N.J., Patabendige A.A.K., Dolman D.E.M., Yusof S.R., Begley D.J., Structure and function of the blood-brain barrier. Neurobiol Dis, 2010, 37, 13–25. [CrossRef] [PubMed] [Google Scholar]
  • Akiri G., Nahari D., Finkelstein Y., Le S.Y., Elroy-Stein O., Levi B.Z., Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene, 1998, 17, 227–236. [CrossRef] [PubMed] [Google Scholar]
  • Balland E., Dam J., Langlet F., Caron E., Steculorum S., Messina A., Rasika S., Falluel-Morel A., Anouar Y., Dehouck B., Trinquet E., Jockers R., Bouret S.G., Prévot V., Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab, 2014, 19, 293–301. [CrossRef] [PubMed] [Google Scholar]
  • Bolborea M., Dale N., Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci, 2013, 36, 91–100. [CrossRef] [PubMed] [Google Scholar]
  • Brawer J.R., The fine structure of the ependymal tanycytes at the level of the arcuate nucleus. J Comp Neurol, 1972, 145, 25–41. [CrossRef] [PubMed] [Google Scholar]
  • Brightman M.W., Reese T.S., Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol, 1969, 40, 648–677. [CrossRef] [PubMed] [Google Scholar]
  • Broadwell R.D., Brightman M.W., Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J Comp Neurol, 1976, 166, 257–283. [CrossRef] [PubMed] [Google Scholar]
  • Carmeliet P., Dor Y., Herbert J.M., Fukumura D., Brusselmans K., Dewerchin M., Neeman M., Bono F., Abramovitch R., Maxwell P., Koch C.J., Ratcliffe P., Moons L., Jain R.K., Collen D., Keshert E., Keshet E., Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998, 394, 485–490. [CrossRef] [PubMed] [Google Scholar]
  • Ciofi P., The arcuate nucleus as a circumventricular organ in the mouse. Neurosci Lett, 2011, 487, 187–190. [CrossRef] [PubMed] [Google Scholar]
  • Ciofi P., Garret M., Lapirot O., Lafon P., Loyens A., Prévot V., Levine J.E., Brain-endocrine interactions: a microvascular route in the mediobasal hypothalamus. Endocrinology, 2009, 150, 5509–5519. [CrossRef] [PubMed] [Google Scholar]
  • Clasadonte J., Poulain P., Hanchate N.K., Corfas G., Ojeda S.R., Prévot V., Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proc Natl Acad Sci USA, 2011, 108, 16104–16109. [CrossRef] [Google Scholar]
  • Cone R.D., Cowley M.A., Butler A.A., Fan W., Marks D.L., Low M.J., The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord, 2001, 25 Suppl 5, S63–67. [CrossRef] [Google Scholar]
  • Coppola A., Liu Z.-W., Andrews Z.B., Paradis E., Roy M.-C., Friedman J.M., Ricquier D., Richard D., Horvath T.L., Gao X.-B., Diano S., A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab, 2007, 5, 21–33. [CrossRef] [PubMed] [Google Scholar]
  • Dale N., Purinergic signaling in hypothalamic tanycytes: potential roles in chemosensing. Semin Cell Dev Biol, 2011, 22, 237–244. [CrossRef] [PubMed] [Google Scholar]
  • De Seranno S., Estrella C., Loyens A., Cornea A., Ojeda S.R., Beauvillain J.-C., Prévot V., Vascular endothelial cells promote acute plasticity in ependymoglial cells of the neuroendocrine brain. J Neurosci, 2004, 24, 10353–10363. [CrossRef] [PubMed] [Google Scholar]
  • Fernandez-Galaz M.C., Torres-Aleman I., Garcia-Segura L.M., Endocrine-dependent accumulation of IGF-I by hypothalamic glia. Neuroreport, 1996, 8, 373–377. [CrossRef] [PubMed] [Google Scholar]
  • Flament-Durand J., Brion J.P., Tanycytes: morphology and functions: a review. Int Rev Cytol, 1985, 96, 121–155. [CrossRef] [PubMed] [Google Scholar]
  • Frayling C., Britton R., Dale N., ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol, 2011, 589, 2275–2286. [CrossRef] [PubMed] [Google Scholar]
  • Ganong W.F., Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol, 2000, 27, 422–427. [CrossRef] [PubMed] [Google Scholar]
  • García M.A., Millán C., Balmaceda-Aguilera C., Castro T., Pastor P., Montecinos H., Reinicke K., Zúñiga F., Vera J.C., Oñate S.A., Nualart F., Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J Neurochem, 2003, 86, 709–724. [CrossRef] [PubMed] [Google Scholar]
  • Gotoh H., Okumura A., Nagai K., Okumura N., Localization of phospho-tyrosine489-beta-adducin immunoreactivity in the hypothalamic tanycytes and its involvement in energy homeostasis. Brain Res, 2008, 1228, 97–106. [CrossRef] [PubMed] [Google Scholar]
  • Gross P.M., Circumventricular organ capillaries. Prog Brain Res, 1992, 91, 219–233. [CrossRef] [PubMed] [Google Scholar]
  • Gross P.M., Weindl A., Peering through the windows of the brain. J Cereb Blood Flow Metab, 1987, 7, 663–672. [CrossRef] [PubMed] [Google Scholar]
  • Guillam M.T., Hümmler E., Schaerer E., Yeh J.I., Birnbaum M.J., Beermann F., Schmidt A., Dériaz N., Thorens B., Wu J.Y., Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet, 1997, 1, 327–330. [CrossRef] [Google Scholar]
  • Horstmann E., Die Faserglia des Selachiergehirns. Z. Zellforsch. Mikrosk. Anat., 1954, 39, 588–617. [CrossRef] [PubMed] [Google Scholar]
  • Kang L., Routh V.H., Kuzhikandathil E.V., Gaspers L.D., Levin B.E., Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes, 2004, 53, 549–559. [CrossRef] [PubMed] [Google Scholar]
  • Klara P.M., Brizzee K.R., Ultrastructure of the feline area postrema. J Comp Neurol, 1977, 72, 409–431. [CrossRef] [PubMed] [Google Scholar]
  • Kozlowski G.P., Coates P.W., Ependymoneuronal specializations between LHRH fibers and cells of the cerebroventricular system. Cell Tissue Res, 1985, 242, 301–311. [CrossRef] [PubMed] [Google Scholar]
  • Lanfray D., Arthaud S., Ouellet J., Compère V., Do Rego J.-L., Leprince J., Lefranc B., Castel H., Bouchard C., Monge-Roffarello B., Richard D., Pelletier G., Vaudry H., Tonon M.-C., Morin F., Gliotransmission and brain glucose sensing: critical role of endozepines. Diabetes, 2013, 62, 801–810. [CrossRef] [PubMed] [Google Scholar]
  • Langlet F., Levin B.E., Luquet S., Mazzone M., Messina A., Dunn-Meynell A.A., Balland E., Lacombe A., Mazur D., Carmeliet P., Bouret S.G., Prévot V., Dehouck B., Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab, 2013a, 17, 607–617. [CrossRef] [PubMed] [Google Scholar]
  • Langlet F., Mullier A., Bouret S.G., Prévot V., Dehouck B., Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol, 2013b, 521, 3389–3405. [CrossRef] [PubMed] [Google Scholar]
  • Ma Y.J., Hill D.F., Junier M.P., Costa M.E., Felder S.E., Ojeda S.R., Expression of epidermal growth factor receptor changes in the hypothalamus during the onset of female puberty. Mol Cell Neurosci, 1994, 5, 246–262. [CrossRef] [PubMed] [Google Scholar]
  • Mayer J, Glucostatic Mechanism of Regulation of Food Intake. N Engl J Med, 1953, 249, 13–16 [CrossRef] [PubMed] [Google Scholar]
  • Mestres P., Rascher K., The ventricular system of the pigeon brain: a scanning electron microscope study. J Anat, 1994, 184, 35–58. [PubMed] [Google Scholar]
  • Millán C., Martínez F., Cortés-Campos C., Lizama I., Yañez M.J., Llanos P., Reinicke K., Rodríguez F., Peruzzo B., Nualart F., García M.A. Glial glucokinase expression in adult and post-natal development of the hypothalamic region. ASN Neuro, 2010, 2, e00035. [CrossRef] [Google Scholar]
  • Mullier A., Bouret S.G., Prévot V., Dehouck B., Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. J Comp Neurol, 2010, 518, 943–962. [CrossRef] [PubMed] [Google Scholar]
  • Ojeda S.R., Prévot V., Heger S., Lomniczi A., Dziedzic B., Mungenast A., The neurobiology of female puberty. Horm Res, 2003, 60 Suppl 3, 15–20. [CrossRef] [PubMed] [Google Scholar]
  • Orellana J.A., Sáez P.J., Cortés-Campos C., Elizondo R.J., Shoji K.F., Contreras-Duarte S., Figueroa V., Velarde V., Jiang J.X., Nualart F., Sáez J.C., García M.A., Glucose increases intracellular free Ca2+ in tanycytes via ATP released through connexin 43 hemichannels. Glia, 2012, 60, 53–68. [CrossRef] [PubMed] [Google Scholar]
  • Peruzzo B., Pastor F.E., Blázquez J.L., Amat P., Rodríguez E.M., Polarized endocytosis and transcytosis in the hypothalamic tanycytes of the rat. Cell Tissue Res, 2004, 317, 147–164. [CrossRef] [PubMed] [Google Scholar]
  • Petrov T., Howarth A.G., Krukoff T.L., Stevenson B.R., Distribution of the tight junction-associated protein ZO-1 in circumventricular organs of the CNS. Brain Res Mol Brain Res, 1994, 21, 235–246. [CrossRef] [PubMed] [Google Scholar]
  • Prévot V., Glial-neuronal-endothelial interactions are involved in the control of GnRH secretion. J Neuroendocrinol, 2002, 14, 247–255. [CrossRef] [PubMed] [Google Scholar]
  • Prévot V., Croix D., Bouret S., Dutoit S., Tramu G., Stefano G.B., Beauvillain J.C., Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience, 1999, 94, 809–819. [CrossRef] [PubMed] [Google Scholar]
  • Prévot V., Cornea A., Mungenast A., Smiley G., Ojeda S.R., Activation of erbB-1 signaling in tanycytes of the median eminence stimulates transforming growth factor beta1 release via prostaglandin E2 production and induces cell plasticity. J Neurosci, 2003, 23, 10622–10632. [PubMed] [Google Scholar]
  • Rodríguez E.M., Blázquez J.L., Pastor F.E., Peláez B., Peña P., Peruzzo B., Amat P., Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol, 2005, 247, 89–164. [CrossRef] [PubMed] [Google Scholar]
  • Schaeffer M., Langlet F., Lafont C., Molino F., Hodson D.J., Roux T., Lamarque L., Verdié P., Bourrier E., Dehouck B., Banères J.-L., Martinez J., Méry P.-F., Marie J., Trinquet E., Fehrentz J.-A., Prévot V., Mollard P., Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc Natl Acad Sci USA, 2013, 110, 1512–1517. [CrossRef] [Google Scholar]
  • Scott D.E., Dudley G.K., Knigge K.M., The ventricular system in neuroendocrine mechanisms. II. In vivo monoamine transport by ependyma of the median eminence. Cell Tissue Res, 1974, 154, 1–16. [CrossRef] [PubMed] [Google Scholar]
  • Smith G.M., Shine H.D., Immunofluorescent labeling of tight junctions in the rat brain and spinal cord. Int J Dev Neurosci, 1992, 10, 387–392. [CrossRef] [PubMed] [Google Scholar]
  • Stan R.V., Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis. J Cell Mol Med, 2007, 11, 621–643. [CrossRef] [PubMed] [Google Scholar]
  • Stein I., Neeman M., Shweiki D., Itin A., Keshet E., Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol, 1995, 15, 5363–5368. [PubMed] [Google Scholar]
  • Thomzig A., Wenzel M., Karschin C., Eaton M.J., Skatchkov S.N., Karschin A., Veh R.W., Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels. Mol Cell Neurosci, 2001, 18, 671–690. [CrossRef] [PubMed] [Google Scholar]
  • Thomzig A., Laube G., Prüss H., Veh R.W., Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol, 2005, 484, 313–330. [CrossRef] [PubMed] [Google Scholar]
  • Wagner H.J., Pilgrim C., Extracellular and transcellular transport of horseradish peroxidase (HRP) through the hypothalamic tanycyte ependyma. Cell Tissue Res, 1974, 152, 477–491. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.