Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 208, Numéro 3, 2014
Page(s) 217 - 224
Section Régulation de la pression artérielle
DOI https://doi.org/10.1051/jbio/2014010
Publié en ligne 5 décembre 2014
  • Abhold R.H., Sullivan M.J., Wright J.W., Harding J.W., Binding, degradation and pressor activity of angiotensins II and III after aminopeptidase inhibition with amastatin and bestatin. J Pharmacol Exp Ther, 1987, 242, 957–962. [PubMed] [Google Scholar]
  • Allen A.M., Paxinos G., Song K.F., Mendelsohn F.A.O., Localization of angiotensin receptor binding sites in the rat brain. In Björklund A., Hökfelt T., Kuhar M.J. (Eds.), Handbook of Chemical Neuroanatomy, 1992, Elsevier, Amsterdam, vol. 11, pp. 1–37. [Google Scholar]
  • ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group, Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA, 2002, 288, 2981–2997. [Google Scholar]
  • Averill D.B., Matsumura K., Ganten D., Ferrario C.M., Role of area postrema in transgene hypertension. Hypertension, 1996, 27, 591–597. [CrossRef] [PubMed] [Google Scholar]
  • Balavoine F., Azizi M., Bergerot D., De Mota N., Patouret R., Roques B., Llorens-Cortès C., Randomised, Double-Blind, Placebo-Controlled, Dose-Escalating Phase I Study of QGC001, a Centrally Acting Aminopeptidase A Inhibitor Prodrug. Clin Pharmacokinet, 2014, 53, 385–395. [CrossRef] [PubMed] [Google Scholar]
  • Basso N., Ruiz P., Mangiarua E., Taquini A.C., Renin-like activity in the rat brain during the development of DOC-salt hypertension. Hypertension, 1981, 3, II-14-17. [CrossRef] [Google Scholar]
  • Bodineau L., Frugière A., Marc Y., Inguimbert N., Fassot C., Balavoine F., Roques B., Llorens-Cortès C., Orally active aminopeptidase A inhibitors reduce blood pressure: a new strategy for treating hypertension. Hypertension, 2008, 51, 1318–1325. [CrossRef] [PubMed] [Google Scholar]
  • Chauvel E.N., Coric P., Llorens-Cortès C., Wilk S., Roques B.P., Fournié-Zaluski M.C., Investigation of the active site of aminopeptidase A using a series of new thiol-containing inhibitors. J Med Chem, 1994, 37, 1339–1346. [CrossRef] [PubMed] [Google Scholar]
  • Corvol P., Plouin P.F., Angiotensin II receptor blockers: current status and future prospects. Drugs, 2002, 62, 153–164. [CrossRef] [Google Scholar]
  • Davisson R.L., Yang G., Beltz T.G., Cassell M.D., Johnson A.K., Sigmund C.D., The brain renin-angiotensin system contributes to the hypertension in mice containing both the human renin and human angiotensinogen transgenes. Circ Res, 1998, 83, 1047–1058. [CrossRef] [PubMed] [Google Scholar]
  • Dusing R., Optimizing blood pressure control through the use of fixed combinations. Vasc Health Risk Manag, 2010, 6, 321–325. [CrossRef] [PubMed] [Google Scholar]
  • Fournié-Zaluski M.C., Coric P., Turcaud S., Bruetschy L., Lucas E., Noble F., Roques B.P., Potent and systemically active aminopeptidase N inhibitors designed from active-site investigation. J Med Chem, 1992, 35, 1259–1266. [CrossRef] [PubMed] [Google Scholar]
  • Fournié-Zaluski M.C., Fassot C., Valentin B., Djordjijevic D., Réaux-Le Goazigo A., Corvol P., Roques B.P., Llorens-Cortès C., Brain renin-angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci USA, 2004, 101, 7775–7780. [CrossRef] [Google Scholar]
  • Fried M.R., Eastlund T., Christie B., Mullin G.T., Key N.S., Hypotensive reactions to white cell-reduced plasma in a patient undergoing angiotensin-converting enzyme inhibitor therapy. Transfusion, 1996, 36, 900–903. [CrossRef] [PubMed] [Google Scholar]
  • Ganten D., Hermann K., Bayer C., Unger T., Lang R.E., Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science, 1983, 221, 869–871. [CrossRef] [PubMed] [Google Scholar]
  • Gao J., Marc Y., Iturrioz X., Leroux V., Balavoine F., Llorens-Cortès C., A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase A inhibitors. Clin Sci (Lond), 2014, 127, 135–148. [CrossRef] [PubMed] [Google Scholar]
  • Holm E.A., Randlov A., Strandgaard S., Brief report: acute renal failure after losartan treatment in a patient with bilateral renal artery stenosis. Blood Press, 1996, 5, 360–362. [CrossRef] [PubMed] [Google Scholar]
  • Israili Z.H., Hall W.D., Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Intern Med, 1992, 117, 234–242. [CrossRef] [PubMed] [Google Scholar]
  • Jamerson K., Weber M.A., Bakris G.L., Dahlof B., Pitt B., Shi V., Hester A., Gupte J., Gatlin M., Velazquez E.J., Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med, 2008, 359, 2417–2428. [CrossRef] [PubMed] [Google Scholar]
  • Johansen T.L., Kjaer A., Reversible renal impairment induced by treatment with the angiotensin II receptor antagonist candesartan in a patient with bilateral renal artery stenosis. BMC Nephrol, 2001, 2, 1. [CrossRef] [PubMed] [Google Scholar]
  • Kearney P.M., Whelton M., Reynolds K., Muntner P., Whelton P.K., He J., Global burden of hypertension: analysis of worldwide data. Lancet, 2005, 365, 217–223. [CrossRef] [PubMed] [Google Scholar]
  • Lenkei Z., Palkovits M., Corvol P., Llorens-Cortès C., Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol, 1997, 18, 383–439. [CrossRef] [PubMed] [Google Scholar]
  • Levine C.B., Fahrbach K.R., Frame D., Connelly J.E., Estok R.P., Stone L.R., Ludensky V., Effect of amlodipine on systolic blood pressure. Clin Ther, 2003, 25, 35–57. [CrossRef] [PubMed] [Google Scholar]
  • Lind R.W., Ganten D., Angiotensin. In Björklund A., Hökfelt T., Kuhar M.J. (Eds.), Handbook of Chemical Neuroanatomy, 1990, Elsevier, Amsterdam, vol. 9, part II, pp.165–286. [Google Scholar]
  • Malfroy B., Kado-Fong H., Gros C., Giros B., Schwartz J.C., Hellmiss R., Molecular cloning and amino acid sequence of rat kidney aminopeptidase M: a member of a super family of zinc-metallohydrolases. Biochem Biophys Res Commun, 1989, 161, 236–241. [CrossRef] [PubMed] [Google Scholar]
  • Mancia G., Saino A., Grassi G., Interactions Between the Sympathetic Nervous System and the Renin Angiotensin System. In Laragh J.H., Brenner B.M. (Eds.), Hypertension: Pathophysiology, Diagnosis, and Management, 1995, Raven Press, New York, vol. 676, 2nd ed., pp. 399–407. [Google Scholar]
  • Marc Y., Llorens-Cortès C., The role of the brain renin-angiotensin system in hypertension: implications for new treatment. Prog Neurobiol, 2011, 95, 89–103. [CrossRef] [PubMed] [Google Scholar]
  • Marc Y., Gao J., Balavoine F., Michaud A., Roques B.P., Llorens-Cortès C., Central antihypertensive effects of orally active aminopeptidase A inhibitors in spontaneously hypertensive rats. Hypertension, 2012, 60, 411–418. [CrossRef] [PubMed] [Google Scholar]
  • Morimoto S., Cassell M.D., Beltz T.G., Johnson A.K., Davisson R.L., Sigmund C.D., Elevated blood pressure in transgenic mice with brain-specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter. Circ Res, 2001, 89, 365–372. [CrossRef] [PubMed] [Google Scholar]
  • Mukoyama M., Nakajima M., Horiuchi M., Sasamura H., Pratt R.E., Dzau V.J., Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem, 1993, 268, 24539–24542. [PubMed] [Google Scholar]
  • Murphy T.J., Alexander R.W., Griendling K.K., Runge M.S., Bernstein K.E., Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature, 1991, 351, 233–236. [CrossRef] [PubMed] [Google Scholar]
  • Owen H.G., Brecher M.E., Atypical reactions associated with use of angiotensin-converting enzyme inhibitors and apheresis. Transfusion, 1994, 34, 891–894. [CrossRef] [PubMed] [Google Scholar]
  • Palmieri F.E., Bausback H.H., Ward P.E., Metabolism of vasoactive peptides by vascular endothelium and smooth muscle aminopeptidase M. Biochem Pharmacol, 1989, 38, 173–180. [CrossRef] [PubMed] [Google Scholar]
  • Phillips M.I., Functions of angiotensin in the central nervous system. Annu Rev Physiol, 1987, 49, 413–435 [CrossRef] [PubMed] [Google Scholar]
  • Radevski I., Skudicky D., Candy G., Sathekge S., Strugo V., Sareli P., Antihypertensive monotherapy with nisoldipine CC is superior to enalapril in black patients with severe hypertension. Am J Hypertens, 1999, 12, 194–203. [CrossRef] [PubMed] [Google Scholar]
  • Réaux A., de Mota N., Zini S., Cadel S., Fournié-Zaluski M.C., Roques B.P., Corvol P., Llorens-Cortès C., PC18, a specific aminopeptidase N inhibitor, induces vasopressin release by increasing the half-life of brain angiotensin III. Neuroendocrinology, 1999a, 69, 370–376. [CrossRef] [PubMed] [Google Scholar]
  • Réaux A., Fournié-Zaluski M.C., David C., Zini S., Roques B.P., Corvol P., Llorens-Cortès C., Aminopeptidase A inhibitors as potential central antihypertensive agents. Proc Natl Acad Sci USA, 1999b, 96, 13415–13420. [CrossRef] [Google Scholar]
  • Saavedra J.M., Brain and pituitary angiotensin. Endocr Rev, 1992, 13, 329–380. [CrossRef] [PubMed] [Google Scholar]
  • Saine D.R., Ahrens E.R., Renal impairment associated with losartan. Ann Intern Med, 1996, 124, 775. [CrossRef] [Google Scholar]
  • Saunders E.J., Saunders J.A., Drug therapy in pregnancy: the lessons of diethylstilbestrol, thalidomide, and bendectin. Health Care Women Int, 1990, 11, 423–432. [CrossRef] [PubMed] [Google Scholar]
  • Senanayake P.D., Moriguchi A., Kumagai H., Ganten D., Ferrario C.M., Brosnihan K.B., Increased expression of angiotensin peptides in the brain of transgenic hypertensive rats. Peptides, 1994, 15, 919–926. [CrossRef] [PubMed] [Google Scholar]
  • Smith D.H., Treatment of hypertension with an angiotensin II-receptor antagonist compared with an angiotensin-converting enzyme inhibitor: a review of clinical studies of telmisartan and enalapril. Clin Ther, 2002, 24, 1484–1501. [CrossRef] [PubMed] [Google Scholar]
  • Vazeux G., Wang J., Corvol P., Llorens-Cortès C., Identification of glutamate residues essential for catalytic activity and zinc coordination in aminopeptidase A. J Biol Chem, 1996, 271, 9069–9074. [CrossRef] [PubMed] [Google Scholar]
  • Wilk S., Healy D., Glutamyl aminopeptidase (aminopeptidase A), the BP-1/6C3 antigen. Adv Neuroimmunol 1993, 3, 195–207. [CrossRef] [Google Scholar]
  • Wright J.W., Harding J.W., Important role for angiotensin III and IV in the brain renin-angiotensin system. Brain Res Brain Res Rev, 1997, 25, 96–124. [CrossRef] [PubMed] [Google Scholar]
  • Wright J.W., Morseth S.L., Abhold R.H., Harding J.W., Pressor action and dipsogenicity induced by angiotensin II and III in rats. Am J Physiol, 1985, 249, R514–521. [PubMed] [Google Scholar]
  • Wright J.W., Tamura-Myers E., Wilson W.L., Roques B.P., Llorens-Cortès C., Speth R.C., Harding J.W., Conversion of brain angiotensin II to angiotensin III is critical for pressor response in rats. Am J Physiol Regul Integr Comp Physiol, 2003, 284, R725–733. [PubMed] [Google Scholar]
  • Wu Q., Lahti J.M., Air G.M., Burrows P.D., Cooper M.D., Molecular cloning of the murine BP-1/6C3 antigen: a member of the zinc-dependent metallopeptidase family. Proc Natl Acad Sci USA, 1990, 87, 993–997. [CrossRef] [Google Scholar]
  • Zini S., Fournié-Zaluski M.C., Chauvel E., Roques B.P., Corvol P., Llorens-Cortès C., Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci USA, 1996, 93, 11968–11973. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.