Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 209, Numéro 2, 2015
|
|
---|---|---|
Page(s) | 145 - 159 | |
Section | Mécanismes de l’immunité anti-virale, défis thérapeutiques et développement de vaccins anti-sida | |
DOI | https://doi.org/10.1051/jbio/2015015 | |
Publié en ligne | 29 octobre 2015 |
- Akira, S., and Hemmi, H. (2003). Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett, 85, 85-95. [CrossRef] [PubMed] [Google Scholar]
- Bedard, K.M., Wang, M.L., Proll, S.C., Loo, Y.M., Katze, M.G., Gale, M., Jr., and Iadonato, S.P. (2012). Isoflavone agonists of IRF-3 dependent signaling have antiviral activity against RNA viruses. J Virol, 86, 7334-7344. [CrossRef] [PubMed] [Google Scholar]
- Cavlar, T., Deimling, T., Ablasser, A., Hopfner, K.P., and Hornung, V. (2013). Species-specific detection of the antiviral small-molecule compound CMA by STING. EMBO J, 32, 1440-1450. [CrossRef] [PubMed] [Google Scholar]
- Conlon, J., Burdette, D.L., Sharma, S., Bhat, N., Thompson, M., Jiang, Z., Rathinam, V.A., Monks, B., Jin, T., Xiao, T.S., Vogel, S.N., Vance, R.E., and Fitzgerald, K.A. (2013). Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J Immunol, 190, 5216-5225. [CrossRef] [PubMed] [Google Scholar]
- Dempsey, A., and Bowie, A.G. (2015). Innate immune recognition of DNA: A recent history. Virology, 479-480C, 146-152. [CrossRef] [Google Scholar]
- Engel, A.L., Holt, G.E., and Lu, H. (2011). The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system. Expert Rev Clin Pharmacol, 4, 275-289. [CrossRef] [PubMed] [Google Scholar]
- Es-Saad, S., Tremblay, N., Baril, M., and Lamarre, D. (2012). Regulators of innate immunity as novel targets for panviral therapeutics. Curr Opin Virol, 2, 622-628. [CrossRef] [PubMed] [Google Scholar]
- Field, A.K., Tytell, A.A., Lampson, G.P., and Hilleman, M.R. (1967). Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc Natl Acad Sci USA, 58, 1004-1010. [CrossRef] [Google Scholar]
- Gao, P., Ascano, M., Zillinger, T., Wang, W., Dai, P., Serganov, A.A., Gaffney, B.L., Shuman, S., Jones, R.A., Deng, L., Hartmann, G., Barchet, W., Tuschl, T., and Patel, D.J. (2013). Structure-function analysis of STING activation by c[G(2’,5’)pA(3’,5’)p] and targeting by antiviral DMXAA. Cell, 154, 748-762. [CrossRef] [PubMed] [Google Scholar]
- Gao, P., Zillinger, T., Wang, W., Ascano, M., Dai, P., Hartmann, G., Tuschl, T., Deng, L., Barchet, W., and Patel, D.J. (2014). Binding-pocket and lid-region substitutions render human STING sensitive to the species-specific drug DMXAA. Cell Rep, 8, 1668-1676. [CrossRef] [PubMed] [Google Scholar]
- Glaz, E.T., Szolgay, E., Stoger, I., and Talas, M. (1973). Antiviral activity and induction of interferon-like substance by quinacrine and acranil. Antimicrob Agents Chemother, 3, 537-541. [CrossRef] [PubMed] [Google Scholar]
- Gorden, K.B., Gorski, K.S., Gibson, S.J., Kedl, R.M., Kieper, W.C., Qiu, X., Tomai, M.A., Alkan, S.S., and Vasilakos, J.P. (2005). Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol, 174, 1259-1268. [CrossRef] [PubMed] [Google Scholar]
- Grossberg, S.E. (1977). Nonviral interferon inducers: natural and synthetic products. Tex Rep Biol Med, 35, 111-116. [PubMed] [Google Scholar]
- Guo, F., Mead, J., Aliya, N., Wang, L., Cuconati, A., Wei, L., Li, K., Block, T.M., Guo, J.T., and Chang, J. (2012). RO 90-7501 enhances TLR3 and RLR agonist induced antiviral response. PLoS One, 7, e42583. [CrossRef] [PubMed] [Google Scholar]
- Hammerbeck, D.M., Burleson, G.R., Schuller, C.J., Vasilakos, J.P., Tomai, M., Egging, E., Cochran, F.R., Woulfe, S., and Miller, R.L. (2007). Administration of a dual toll-like receptor 7 and toll-like receptor 8 agonist protects against influenza in rats. Antiviral Res, 73, 1-11. [CrossRef] [PubMed] [Google Scholar]
- Harvey, R., Brown, K., Zhang, Q., Gartland, M., Walton, L., Talarico, C., Lawrence, W., Selleseth, D., Coffield, N., Leary, J., Moniri, K., Singer, S., Strum, J., Gudmundsson, K., Biron, K., Romines, K.R., and Sethna, P. (2009). GSK983: a novel compound with broad-spectrum antiviral activity. Antiviral Res, 82, 1-11. [CrossRef] [PubMed] [Google Scholar]
- Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., and Akira, S. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol, 3, 196-200. [CrossRef] [PubMed] [Google Scholar]
- Hirota, K., Kazaoka, K., Niimoto, I., Kumihara, H., Sajiki, H., Isobe, Y., Takaku, H., Tobe, M., Ogita, H., Ogino, T., Ichii, S., Kurimoto, A., and Kawakami, H. (2002). Discovery of 8-hydroxyadenines as a novel type of interferon inducer. J Med Chem, 45, 5419-5422. [CrossRef] [PubMed] [Google Scholar]
- Hoffman, W.W., Korst, J.J., Niblack, J.F., and Cronin, T.H. (1973). N,N-dioctadecyl-N’,N’-bis(2-hydroxyethyl) propanediamine: antiviral activity and interferon stimulation in mice. Antimicrob Agents Chemother, 3, 498-502. [CrossRef] [PubMed] [Google Scholar]
- Hornung, R.L., Young, H.A., Urba, W.J., and Wiltrout, R.H. (1988). Immunomodulation of natural killer cell activity by flavone acetic acid: occurrence via induction of interferon alpha/beta. J Natl Cancer Inst, 80, 1226-1231. [CrossRef] [PubMed] [Google Scholar]
- Horscroft, N.J., Pryde, D.C., and Bright, H. (2012). Antiviral applications of Toll-like receptor agonists. J Antimicrob Chemother, 67, 789-801. [CrossRef] [PubMed] [Google Scholar]
- Isaacs, A., and Lindenmann, J. (1957). Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci, 147, 258-267. [CrossRef] [PubMed] [Google Scholar]
- Isaacs, A., Cox, R.A., and Rotem, Z. (1963). Foreign nucleic acids as the stimulus to make interferon. Lancet, 2, 113-116. [CrossRef] [PubMed] [Google Scholar]
- Isobe, Y., Kurimoto, A., Tobe, M., Hashimoto, K., Nakamura, T., Norimura, K., Ogita, H., and Takaku, H. (2006). Synthesis and biological evaluation of novel 9-substituted-8-hydroxyadenine derivatives as potent interferon inducers. J Med Chem, 49, 2088-2095. [CrossRef] [PubMed] [Google Scholar]
- Kaufman, H.E., Centifanto, Y.M., Ellison, E.D., and Brown, D.C. (1971). Tilorone hydrochloride: human toxicity and interferon stimulation. Proc Soc Exp Biol Med, 137, 357-360. [CrossRef] [PubMed] [Google Scholar]
- Kern, E.R., Hamilton, J.R., Overall, J.C., and Glasgow, L.A. (1976). Antiviral activity of BL-3849A, a low-molecular-weight oral interferon inducer. Antimicrob Agents Chemother, 10, 691-696. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Kim, T., Kim, T.Y., Song, Y.H., Min, I.M., Yim, J., and Kim, T.K. (1999). Activation of interferon regulatory factor 3 in response to DNA-damaging agents. J Biol Chem, 274, 30686-30689. [CrossRef] [PubMed] [Google Scholar]
- Kim, S., Li, L., Maliga, Z., Yin, Q., Wu, H., and Mitchison, T.J. (2013). Anticancer flavonoids are mouse-selective STING agonists. ACS Chem Biol, 8, 1396-1401. [CrossRef] [PubMed] [Google Scholar]
- Konishi, H., Okamoto, K., Ohmori, Y., Yoshino, H., Ohmori, H., Ashihara, M., Hirata, Y., Ohta, A., Sakamoto, H., Hada, N., Katsume, A., Kohara, M., Morikawa, K., Tsukuda, T., Shimma, N., Foster, G.R., Alazawi, W., Aoki, Y., Arisawa, M., and Sudoh, M. (2012). An orally available, small-molecule interferon inhibits viral replication. Sci Rep, 2, 259. [CrossRef] [PubMed] [Google Scholar]
- Kramer, M.J., Cleeland, R., and Grunberg, E. (1976). Antiviral activity of 10-carboxymethyl-9-acridanone. Antimicrob Agents Chemother, 9, 233-238. [CrossRef] [PubMed] [Google Scholar]
- Kramer, M.J., Taylor, J.L., and Grossberg, S.E. (1981). Induction of interferon in mice by 10-carboxymethyl-9-acridanone. Methods Enzymol, 78, 284-287. [CrossRef] [PubMed] [Google Scholar]
- Krueger, R.E., and Mayer, G.D. (1970). Tilorone hydrochloride: an orally active antiviral agent. Science, 169, 1213-1214. [CrossRef] [PubMed] [Google Scholar]
- Lanford, R.E., Guerra, B., Chavez, D., Giavedoni, L., Hodara, V.L., Brasky, K.M., Fosdick, A., Frey, C.R., Zheng, J., Wolfgang, G., Halcomb, R.L., and Tumas, D.B. (2013). GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology, 144, 1508-1517, 1517 e1501-1510. [CrossRef] [PubMed] [Google Scholar]
- Lee, J., Chuang, T.H., Redecke, V., She, L., Pitha, P.M., Carson, D.A., Raz, E., and Cottam, H.B. (2003). Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc Natl Acad Sci USA, 100, 6646-6651. [CrossRef] [Google Scholar]
- Lee, J., Wu, C.C., Lee, K.J., Chuang, T.H., Katakura, K., Liu, Y.T., Chan, M., Tawatao, R., Chung, M., Shen, C., Cottam, H.B., Lai, M.M., Raz, E., and Carson, D.A. (2006). Activation of anti-hepatitis C virus responses via Toll-like receptor 7. Proc Natl Acad Sci USA, 103, 1828-1833. [CrossRef] [Google Scholar]
- Li, L., Yin, Q., Kuss, P., Maliga, Z., Millan, J.L., Wu, H., and Mitchison, T.J. (2014). Hydrolysis of 2’3’-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat Chem Biol, 10, 1043-1048. [CrossRef] [PubMed] [Google Scholar]
- Lin, C.W., Wu, C.F., Hsiao, N.W., Chang, C.Y., Li, S.W., Wan, L., Lin, Y.J., and Lin, W.Y. (2008). Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71. Int J Antimicrob Agents, 32, 355-359. [CrossRef] [PubMed] [Google Scholar]
- Lucas-Hourani, M., Dauzonne, D., Jorda, P., Cousin, G., Lupan, A., Helynck, O., Caignard, G., Janvier, G., André-Leroux, G., Khiar, S., Escriou, N., Després, P., Jacob, Y., Munier-Lehmann, H., Tangy, F., and Vidalain, P.O. (2013). Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity. PLoS Pathog, 9, e1003678. [CrossRef] [PubMed] [Google Scholar]
- Martinez-Gil, L., Ayllon, J., Ortigoza, M.B., Garcia-Sastre, A., Shaw, M.L., and Palese, P. (2012). Identification of small molecules with type I interferon inducing properties by high-throughput screening. PLoS One, 7, e49049. [CrossRef] [PubMed] [Google Scholar]
- Mayer, G.D., and Krueger, R.F. (1970). Tilorone hydrochloride: mode of action. Science, 169, 1214-1215. [CrossRef] [PubMed] [Google Scholar]
- Meyer, T., Surber, C., French, L.E., and Stockfleth, E. (2013). Resiquimod, a topical drug for viral skin lesions and skin cancer. Expert Opin Investig Drugs, 22, 149-159. [CrossRef] [PubMed] [Google Scholar]
- Miller, R.L., Gerster, J.F., Owens, M.L., Slade, H.B., and Tomai, M.A. (1999). Imiquimod applied topically: a novel immune response modifier and new class of drug. Int J Immunopharmacol, 21, 1-14. [CrossRef] [PubMed] [Google Scholar]
- Pan, Q., de Ruiter, P.E., Metselaar, H.J., Kwekkeboom, J., de Jonge, J., Tilanus, H.W., Janssen, H.L., and van der Laan, L.J. (2012). Mycophenolic acid augments interferon-stimulated gene expression and inhibits hepatitis C Virus infection in vitro and in vivo. Hepatology, 55, 1673-1683. [CrossRef] [PubMed] [Google Scholar]
- Patel, D.A., Patel, A.C., Nolan, W.C., Zhang, Y., and Holtzman, M.J. (2012). High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery. PLoS One, 7, e36594. [CrossRef] [PubMed] [Google Scholar]
- Pestka, S. (2007). Purification and cloning of interferon alpha. Curr Top Microbiol Immunol, 316, 23-37. [PubMed] [Google Scholar]
- Prantner, D., Perkins, D.J., Lai, W., Williams, M.S., Sharma, S., Fitzgerald, K.A., and Vogel, S.N. (2012). 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) activates stimulator of interferon gene (STING)-dependent innate immune pathways and is regulated by mitochondrial membrane potential. J Biol Chem, 287, 39776-39788. [CrossRef] [PubMed] [Google Scholar]
- Pryde, D.C., Tran, T.D., Jones, P., Parsons, G.C., Bish, G., Adam, F.M., Smith, M.C., Middleton, D.S., Smith, N.N., Calo, F., Hay, D., Paradowski, M., Proctor, K.J.W., Parkinson, T., Laxton, C., Fox, D.N.A., Horscroft, N.J., Ciaramella, G., Jones, H.M., Duckworth, J., Benson, N., Harrison, A., and Webster, R. (2011). The discovery of a novel prototype small molecule TLR7 agonist for the treatment of hepatitis C virus infection. Med Chem Comm, 2, 185-189. [CrossRef] [Google Scholar]
- Raj, N.B., and Pitha, P.M. (1993). 65-kDa protein binds to destabilizing sequences in the IFN-beta mRNA coding and 3’ UTR. FASEB J, 7, 702-710. [PubMed] [Google Scholar]
- Sariol, C.A., Martinez, M.I., Rivera, F., Rodriguez, I.V., Pantoja, P., Abel, K., Arana, T., Giavedoni, L., Hodara, V., White, L.J., Anglero, Y.I., Montaner, L.J., and Kraiselburd, E.N. (2011). Decreased dengue replication and an increased anti-viral humoral response with the use of combined Toll-like receptor 3 and 7/8 agonists in macaques. PLoS One, 6, e19323. [CrossRef] [PubMed] [Google Scholar]
- Schlee, M., Barchet, W., Hornung, V., and Hartmann, G. (2007). Beyond double-stranded RNA-type I IFN induction by 3pRNA and other viral nucleic acids. Curr Top Microbiol Immunol, 316, 207-230. [PubMed] [Google Scholar]
- Schmid, S., Mordstein, M., Kochs, G., Garcia-Sastre, A., and Tenoever, B.R. (2010). Transcription factor redundancy ensures induction of the antiviral state. J Biol Chem, 285, 42013-42022. [CrossRef] [PubMed] [Google Scholar]
- Schoggins, J.W., and Rice, C.M. (2011). Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol, 1, 519-525. [CrossRef] [PubMed] [Google Scholar]
- Silin, D.S., Lyubomska, O.V., Ershov, F.I., Frolov, V.M., and Kutsyna, G.A. (2009). Synthetic and natural immunomodulators acting as interferon inducers. Curr Pharm Des, 15, 1238-1247. [CrossRef] [PubMed] [Google Scholar]
- Siminoff, P., Bernard, A.M., Hursky, V.S., and Price, K.E. (1973). BL-20803, a new, low-molecular-weight interferon inducer. Antimicrob Agents Chemother, 3, 742-743. [CrossRef] [PubMed] [Google Scholar]
- Stevenson, N.J., Murphy, A.G., Bourke, N.M., Keogh, C.A., Hegarty, J.E., and O’Farrelly, C. (2011). Ribavirin enhances IFN-alpha signalling and MxA expression: a novel immune modulation mechanism during treatment of HCV. PLoS One, 6, e27866. [CrossRef] [PubMed] [Google Scholar]
- Stringfellow, D.A., Vanderberg, H.C., and Weed, S.D. (1980). Interferon induction by 5-halo-6-phenyl pyrimidinones. J Interferon Res, 1, 1-14. [CrossRef] [PubMed] [Google Scholar]
- Stringfellow, D.A., Weed, S.D., and Underwood, G.E. (1979). Antiviral and interferon-inducing properties of 1,5-diamino anthraquinones. Antimicrob Agents Chemother, 15, 111-118. [CrossRef] [PubMed] [Google Scholar]
- Tai, Z.F., Zhang, G.L., and Wang, F. (2012). Identification of small molecule activators of the janus kinase/signal transducer and activator of transcription pathway using a cell-based screen. Biol Pharm Bull, 35, 65-71. [CrossRef] [PubMed] [Google Scholar]
- Tanji, H., Ohto, U., Shibata, T., Miyake, K., and Shimizu, T. (2013). Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science, 339, 1426-1429. [CrossRef] [PubMed] [Google Scholar]
- Taylor, J.L., Schoenherr, C., and Grossberg, S.E. (1980a) Protection against Japanese encephalitis virus in mice and hamsters by treatment with carboxymethylacridanone, a potent interferon inducer. J Infect Dis, 142, 394-399. [CrossRef] [PubMed] [Google Scholar]
- Taylor, J.L., Schoenherr, C.K., and Grossberg, S.E. (1980b) High-yield interferon induction by 10-carboxymethyl-9-acridanone in mice and hamsters. Antimicrob Agents Chemother, 18, 20-26. [CrossRef] [PubMed] [Google Scholar]
- Thomas, E., Feld, J.J., Li, Q., Hu, Z., Fried, M.W., and Liang, T.J. (2011) Ribavirin potentiates interferon action by augmenting interferon-stimulated gene induction in hepatitis C virus cell culture models. Hepatology, 53, 32-41. [CrossRef] [PubMed] [Google Scholar]
- Tijono, S.M., Guo, K., Henare, K., Palmer, B.D., Wang, L.C., Albelda, S.M., and Ching, L.M. (2013) Identification of human-selective analogues of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Br J Cancer, 108, 1306-1315. [CrossRef] [PubMed] [Google Scholar]
- Vilcek, J. (2007) Interferon research BC (before cloning). Curr Top Microbiol Immunol, 316, 9-22. [PubMed] [Google Scholar]
- Wheelock, E.F. (1965) Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science, 149, 310-311. [CrossRef] [Google Scholar]
- Wong, J.P., Christopher, M.E., Viswanathan, S., Karpoff, N., Dai, X., Das, D., Sun, L.Q., Wang, M., and Salazar, A.M. (2009). Activation of toll-like receptor signaling pathway for protection against influenza virus infection. Vaccine, 27, 3481-3483. [CrossRef] [PubMed] [Google Scholar]
- Wu, C.C., Li, Y.C., Wang, Y.R., Li, T.K., and Chan, N.L. (2013). On the structural basis and design guidelines for type II topoisomerase-targeting anticancer drugs. Nucleic Acids Res, 41, 10630-10640. [CrossRef] [PubMed] [Google Scholar]
- Yan, D., Krumm, S.A., Sun, A., Steinhauer, D.A., Luo, M., Moore, M.L., and Plemper, R.K. (2013). Dual myxovirus screen identifies a small-molecule agonist of the host antiviral response. J Virol, 87, 11076-11087. [CrossRef] [PubMed] [Google Scholar]
- Yeo, K.L., Chen, Y.L., Xu, H.Y., Dong, H., Wang, Q.Y., Yokokawa, F., and Shi, P.Y. (2015). Synergistic suppression of dengue virus replication using a combination of nucleoside analogs and nucleoside synthesis inhibitors. Antimicrob Agents Chemother, 59, 2086-2093. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Zhao, J., Wohlford-Lenane, C., Zhao, J., Fleming, E., Lane, T.E., McCray, P.B., Jr., and Perlman, S. (2012). Intranasal treatment with poly(I*C) protects aged mice from lethal respiratory virus infections. J Virol, 86, 11416-11424. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.