Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 209, Numéro 3, 2015
Page(s) 261 - 272
Section Mémoire, attention et fonctions exécutives
DOI https://doi.org/10.1051/jbio/2015024
Publié en ligne 28 janvier 2016
  • Aly, M., and Moscovitch, M. (2010). The effects of sleep on episodic memory in older and younger adults. Memory, 18, 327-334. [CrossRef] [PubMed] [Google Scholar]
  • Arzi, A., Shedlesky, L., Ben-Shaul, M., Nasser, K., Oksenberg, A., Hairston, I.S., and Sobel, N. (2012). Humans can learn new information during sleep. Nat Neurosci, 15, 1460-1465. [CrossRef] [PubMed] [Google Scholar]
  • Backhaus, J., Born, J., Hoeckesfeld, R., Fokuhl, S., Hohagen, F., and Junghanns, K. (2007). Midlife decline in declarative memory consolidation is correlated with a decline in slow wave sleep. Learn Mem, 14, 336-341. [CrossRef] [PubMed] [Google Scholar]
  • Beaulieu-Bonneau, S., and Hudon, C. (2009). Sleep disturbances in older adults with mild cognitive impairment. Int Psychogeriatr, 21, 654-666. [CrossRef] [PubMed] [Google Scholar]
  • Bonanni, E., Maestri, M., Tognoni, G., Fabbrini, M., Nucciarone, B., Manca, M.L., Gori, S., Iducice, A., and Murri, L. (2005). Daytime sleepiness in mild and moderate Alzheimer’s disease and its relationship with cognitive impairment. J Sleep Res, 14, 311-317. [CrossRef] [PubMed] [Google Scholar]
  • Born, J., Rasch, B., and Gais, S. (2006). Sleep to remember. Neuroscientist, 12, 410-424. [CrossRef] [PubMed] [Google Scholar]
  • Buckley, T.M., and Schatzberg, A.F. (2005). Aging and the role of the HPA axis and rhythm in sleep and memory-consolidation. Am J Geriatr Psychiatry, 13, 344-352. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Bushey, D., Tononi, G., and Cirelli, C. (2011). Sleep and Synaptic Homeostasis: Structural Evidence in Drosophila. Science, 332, 1576-1581. [CrossRef] [PubMed] [Google Scholar]
  • Buzsáki, G. (1996). The hippocampo-neocortical dialogue. Cereb Cortex, 6, 81-92. [CrossRef] [PubMed] [Google Scholar]
  • Cajochen, C., Münch, M., Knoblauch, V., Blatter, K., and Wirz-Justice, A. (2006). Age-related Changes in the Circadian and Homeostatic Regulation of Human Sleep. Chronobiol Int, 23, 461-474. [CrossRef] [PubMed] [Google Scholar]
  • Carrier, J., Land, S., Buysse, D.J., Kupfer, D.J., and Monk, T.H. (2001). The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20–60 years old). Psychophysiology, 38, 232-242. [CrossRef] [PubMed] [Google Scholar]
  • Carrier, J., Viens, I., Poirier, G., Robillard, R., Lafortune, M., Vandewalle, G., Martin, N., Barakat, M., Paquet, J., and Filipini, D. (2011). Sleep slow wave changes during the middle years of life: Changes in slow waves with age. Eur J Neurosci, 33, 758-766. [CrossRef] [PubMed] [Google Scholar]
  • Clemens, Z., Mölle, M., Eröss, L., Jakus, R., Rásonyi, G., Halász, P., and Born, J. (2011). Fine-tuned coupling between human parahippocampal ripples and sleep spindles: Ripple-spindle events in human sleep. Eur J Neurosci, 33, 511-520. [CrossRef] [PubMed] [Google Scholar]
  • Crowley, K., Trinder, J., Kim, Y., Carrington, M., and Colrain, I.M. (2002). The effects of normal aging on sleep spindle and K-complex production. Clin Neurophysiol, 113, 1615-1622. [CrossRef] [PubMed] [Google Scholar]
  • Dang-Vu, T.T., Schabus, M., Desseilles, M., Sterpenich, V., Bonjean, M., and Maquet, P. (2010). Functional neuroimaging insights into the physiology of human sleep. Sleep, 33, 15-89. [PubMed] [Google Scholar]
  • Dauvilliers, Y., and Billiard, M. (2011). Sommeil normal. In Billiard, M., Dauvilliers, Y. (Eds.), Les Troubles du sommeil, Elsevier Masson, Issy-les-Moulineaux, pp. 3-9. [Google Scholar]
  • de Lavilléon, G., Lacroix, M.M., Rondi-Reig, L., and Benchenane, K. (2015). Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nat Neurosci, 18, 493-495. [CrossRef] [PubMed] [Google Scholar]
  • Deliens, G., and Peigneux, P. (2011). Mémoire et sommeil. In Billiard M., Dauvilliers Y. (Eds.), Les Troubles du sommeil, Elsevier Masson, Issy-les-Moulineaux, pp. 73-81. [Google Scholar]
  • Ebbinghaus, H. (1885). Über das gedächtnis. Untersuchungen zur experimentellen Psychologie, Duncker und Humblot, Leipzig. [Google Scholar]
  • Eggert, T., Dorn, H., Sauter, C., Nitsche, M.A., Bajbouj, M., and Danker-Hopfe, H. (2013). No Effects of Slow Oscillatory Transcranial Direct Current Stimulation (tDCS) on Sleep-Dependent Memory Consolidation in Healthy Elderly Subjects. Brain Stimulat, 6, 938-945. [CrossRef] [Google Scholar]
  • Eustache, F., and Desgranges, B. (2008). MNESIS: Towards the Integration of Current Multisystem Models of Memory. Neuropsychol Rev, 18, 53-69. [CrossRef] [PubMed] [Google Scholar]
  • Fogel, S.M., and Smith, C.T. (2006). Learning-dependent changes in sleep spindles and Stage 2 sleep. J Sleep Res, 15, 250-255. [Google Scholar]
  • Gais, S., and Born, J. (2004). Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proc Natl Acad Sci USA, 101, 2140-2144. [CrossRef] [Google Scholar]
  • Gais, S., Plihal, W., Wagner, U., and Born, J. (2000). Early sleep triggers memory for early visual discrimination skills. Nat Neurosci, 3, 1335-1339. [CrossRef] [PubMed] [Google Scholar]
  • Gais, S., Mölle, M., Helms, K., and Born, J. (2002). Learning-dependent increases in sleep spindle density. J Neurosci, 22, 6830-6834. [PubMed] [Google Scholar]
  • Gais, S., Albouy, G., Boly, M., Dang-Vu, T.T., Darsaud, A., Desseilles, M. Rauchs, G., Schabus, M., Sterpenich, V., Vandewalle, G., Maquet, P., and Peigneux, P. (2007). Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci USA, 104, 18778-18783. [CrossRef] [Google Scholar]
  • Gerrard, J.L., Burke, S.N., McNaughton, B.L., and Barnes, C.A. (2008). Sequence Reactivation in the Hippocampus Is Impaired in Aged Rats. J Neurosci, 28, 7883-7890. [CrossRef] [PubMed] [Google Scholar]
  • Girardeau, G., Benchenane, K., Wiener, S.I., Buzsáki, G., and Zugaro, M.B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci, 12, 1222-1223. [CrossRef] [PubMed] [Google Scholar]
  • Giuditta, A., Ambrosini, M.V., Montagnese, P., Mandile, P., Cotugno, M., Grassi, Zucconi, G., and Vescia, S. (1995). The sequential hypothesis of the function of sleep. Behav Brain Res, 69, 157-166. [CrossRef] [PubMed] [Google Scholar]
  • Harand, C., Bertran, F., La Joie, R., Landeau, B., Mézenge, F., Desgranges, B., Peigneux, P., Eustache, F., and Rauchs, G. (2012a). The Hippocampus Remains Activated over the Long Term for the Retrieval of Truly Episodic Memories. PLoS One, 7, e43495. [CrossRef] [PubMed] [Google Scholar]
  • Harand, C., Bertran, F., Doidy, F., Guénolé, F., Desgranges, B., Eustache, F., and Rauchs, G. (2012b). How Aging Affects Sleep-Dependent Memory Consolidation? Front Neurol, 2, 3-8. [Google Scholar]
  • Hasselmo, M.E. (1999). Neuromodulation: acetylcholine and memory consolidation. Trends Cognitive Sci, 3, 351-359. [CrossRef] [Google Scholar]
  • Hita-Yañez, E., Atienza, M., and Cantero, J.L. (2013). Polysomnographic and Subjective Sleep Markers of Mild Cognitive Impairment. Sleep, 36, 1327-34. [PubMed] [Google Scholar]
  • Hornung, O., Dankerhopfe, H., and Heuser, I. (2005). Age-related changes in sleep and memory: commonalities and interrelationships. Exp Gerontol, 40, 279-285. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Hot, P., Rauchs, G., Bertran, F., Denise, P., Desgranges, B., Clochon, P., and Eustache, F. (2011). Changes in sleep theta rhythm are related to episodic memory impairment in early Alzheimer’s disease. Biol Psychol, 87, 334-339. [CrossRef] [PubMed] [Google Scholar]
  • Huang, Y. (2012). Effects of Age and Amyloid Deposition on Aβ Dynamics in the Human Central Nervous System. Arch Neurol, 69, 51. [CrossRef] [PubMed] [Google Scholar]
  • Huber, R., Ghilardi, M.F., Massimini, M. and Tononi, G. (2004). Local sleep and learning. Nature, 430, 78–81. [CrossRef] [PubMed] [Google Scholar]
  • Humm, C. (2001). Sleep patterns in older people. Nurs Times, 97, 4041. [Google Scholar]
  • Jenkins, J., and Dallenbach, K. (1924). Obliviscence during sleep and waking. Am J Psychol, 35, 605612. [CrossRef] [Google Scholar]
  • Ju, Y.E., McLeland, J.S., Toedebusch, C.D., Xiong, C., Fagan, A.M., Duntley, S.P., Morris, J.C., and Holtzman, D.M. (2013). Sleep Quality and Preclinical Alzheimer Disease. JAMA Neurol, 70, 587-593. [CrossRef] [PubMed] [Google Scholar]
  • Kalpouzos, G., Chételat, G., Baron, J.C., Landeau, B., Mevel, K., Godeau, C., Barré, L., Constans, J.M., Viader, F., Eustache, F., and Desgranges, B. (2009). Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging, 30, 112-124. [CrossRef] [PubMed] [Google Scholar]
  • Kang, J.E., Lim, M.M., Bateman, R.J., Lee, J.J., Smyth, L.P., Cirrito, J.R., Fujiki, N., Nishino, S., and Holtzman, D.M. (2009). Amyloid- Dynamics Are Regulated by Orexin and the Sleep-Wake Cycle. Science, 326, 1005-1007. [CrossRef] [PubMed] [Google Scholar]
  • Karni, A., Tanne, D., Rubenstein, B.S., Askenasy, J.J., and Sagi, D. (1994). Dependence on REM sleep of overnight improvement of a perceptual skill. Science, 265, 679-682. [CrossRef] [PubMed] [Google Scholar]
  • Kudrimoti, H.S., Barnes, C.A., and McNaughton, B.L. (1999). Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci, 19, 4090-4101. [PubMed] [Google Scholar]
  • Lucey, B.P., and Bateman, R.J. (2014). Amyloid-β diurnal pattern: possible role of sleep in Alzheimer’s disease pathogenesis. Neurobiol Aging, 35, S29-S34. [CrossRef] [PubMed] [Google Scholar]
  • MacNish, R. (1830). The Philosophy of sleep, Mac Phun, Glasgow. [Google Scholar]
  • Mander, B.A., Rao, V., Lu, B., Saletin, J.M., Lindquist, J.R., Ancoli-Israel, S., Jagust, W., and Walker, M.P. (2013). Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci, 16, 357-364. [CrossRef] [PubMed] [Google Scholar]
  • Marshall, L. (2004). Transcranial Direct Current Stimulation during Sleep Improves Declarative Memory. J Neurosci, 24, 9985-9992. [CrossRef] [PubMed] [Google Scholar]
  • Marshall, L., Helgadóttir, H., Mölle, M., and Born, J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature, 444, 610613. [Google Scholar]
  • Marshall, L., Kirov, R., Brade, J., Mölle, M., and Born, J. (2011). Transcranial Electrical Currents to Probe EEG Brain Rhythms and Memory Consolidation during Sleep in Humans. PLoS One, 6, e16905. [CrossRef] [PubMed] [Google Scholar]
  • Mascetti, L., Foret, A., Schrouff, J., Muto, V., Dideberg, V., Balteau, E., Degueldre, C., Phillips, C., Luxen, A., Collette, F., Bours, V., and Maquet, P. (2013). Concurrent Synaptic and Systems Memory Consolidation during Sleep. J Neurosci, 33, 10182-10190. [CrossRef] [PubMed] [Google Scholar]
  • Massimini, M. (2004). The Sleep Slow Oscillation as a Traveling Wave. J Neurosci, 24, 6862-6870. [CrossRef] [PubMed] [Google Scholar]
  • Mednick, S.C., Cai, D.J., Kanady, J., and Drummond, S.P. (2008). Comparing the benefits of caffeine, naps and placebo on verbal, motor and perceptual memory. Behav Brain Res, 193, 79-86. [CrossRef] [PubMed] [Google Scholar]
  • Mölle, M., and Born, J. (2009). Hippocampus whispering in deep sleep to prefrontal cortex–for good memories? Neuron, 61, 496-498. [CrossRef] [PubMed] [Google Scholar]
  • Mölle, M., Eschenko, O., Gais, S., Sara, S.J., and Born, J. (2009). The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats. Eur J Neurosci, 29, 1071-1081. [CrossRef] [PubMed] [Google Scholar]
  • Müller, G., and Pilzecker, A. (1900). Experimentelle Beitraege zur lehre vom gedaechtnis. Z Für Psychol, 1, 1300. [Google Scholar]
  • Nicolas, A., Petit, D., Rompre, S., and Montplaisir, J. (2001). Sleep spindle characteristics in healthy subjects of different age groups. Clin Neurophysiol, 112, 521-527. [CrossRef] [PubMed] [Google Scholar]
  • Ohayon, M.M., Carskadon, M.A., Guilleminault, C., and Vitiello, M.V. (2004). Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep, 27, 1255-1274. [PubMed] [Google Scholar]
  • Peigneux, P., Laureys, S., Delbeuck, X., and Maquet, P. (2001). Sleeping brain, learning brain. The role of sleep for memory systems. Neuroreport, 12, A111-A124. [CrossRef] [PubMed] [Google Scholar]
  • Peigneux, P., Laureys, S., Fuchs, S., Collette, F., Perrin, F., Reggers, J., Phillips, C., Degueldre, C., Del Fiore, G., Aerts, J., Luxen, A., and Maquet, P. (2004). Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron, 44, 535-545. [CrossRef] [PubMed] [Google Scholar]
  • Peters, K.R., Ray, L., Smith, V., and Smith, C. (2008). Changes in the density of stage 2 sleep spindles following motor learning in young and older adults. J Sleep Res, 17, 23-33. [CrossRef] [PubMed] [Google Scholar]
  • Petit, D., Gagnon, J.F., Fantini, M.L., Ferini-Strambi, L., and Montplaisir, J. (2004). Sleep and quantitative EEG in neurodegenerative disorders. J Psychosom Res, 56, 487-496. [CrossRef] [PubMed] [Google Scholar]
  • Plihal, W., and Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci, 9, 534-547. [CrossRef] [PubMed] [Google Scholar]
  • Plihal, W., and Born, J. (1999). Memory consolidation in human sleep depends on inhibition of glucocorticoid release. Neuroreport, 10, 2741-2747. [CrossRef] [PubMed] [Google Scholar]
  • Rasch, B., Büchel, C., Gais, S., and Born, J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 315, 1426-1429. [CrossRef] [PubMed] [Google Scholar]
  • Rauchs, G., Bertran, F., Guillery-Girard, B., Desgranges, B., Kerrouche, N., Denise, P., Foret, J., and Eustache, F. (2004). Consolidation of strictly episodic memories mainly requires rapid eye movement sleep. Sleep, 27, 395-401. [PubMed] [Google Scholar]
  • Rauchs, G., Desgranges, B., Foret, J., and Eustache, F. (2005). The relationships between memory systems and sleep stages. J Sleep Res, 14, 123–140. [CrossRef] [PubMed] [Google Scholar]
  • Rauchs, G., Schabus, M., Parapatics, S., Bertran, F., Clochon, P., Hot, P., Denise, P., Desgranges, B., Eustache, F., Gruber, G., and Anderer, P. (2008). Is there a link between sleep changes and memory in Alzheimer’s disease? Neuroreport, 19, 1159. [CrossRef] [PubMed] [Google Scholar]
  • Rauchs, G., Piolino, P., Bertran, F., de La Sayette, V., Viader, F., Eustache, F., and Desgranges, B. (2013). Retrieval of Recent Autobiographical Memories is Associated with Slow-Wave Sleep in Early AD. Front Behav Neurosci, 7, 114. [CrossRef] [PubMed] [Google Scholar]
  • Ribot, T. (1881). Les Maladies de la mémoire, Baillère, Paris. [Google Scholar]
  • Schabus, M., Gruber, G., Parapatics, S., Sauter, C., Klosch, G., Anderer, P., Klimesch, W., Saletu, B., and Zeithofer, J. (2004). Sleep spindles and their significance for declarative memory consolidation. Sleep, 27, 1479-1485. [PubMed] [Google Scholar]
  • Schliebs, R., and Arendt, T. (2006). The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm, 113, 16251644. [CrossRef] [Google Scholar]
  • Schwartz, S., and Maquet, P. (2002). Sleep imaging and the neuro-psychological assessment of dreams. Trends Cogn Sci, 6, 23–30. [CrossRef] [PubMed] [Google Scholar]
  • Silber, M.H., Ancoli-Israel, S., Bonnet, M.H., Chokroverty, S., Grigg-Damberger, M.M., Hirshkowitz, M., Kapen, S., Keenan, S.A., Kryger, M.H., Penzel, T., Pressman, M.R., and Iber, C. (2007). The visual scoring of sleep in adults. J Clin Sleep Med, 3, 121-131. [PubMed] [Google Scholar]
  • Smith, C. (1995). Sleep states and memory processes. Behav Brain Res, 69, 137-145. [CrossRef] [PubMed] [Google Scholar]
  • Spencer R.M., Gouw A.M. and Ivry R.B. (2007). Age-related decline of sleep-dependent consolidation. Learn Mem, 14, 480484. [CrossRef] [Google Scholar]
  • Spira, A.P., Gamaldo, A.A., An, Y., Wu, M.N., Simonsick, E.M., Bilgel, M., Zhou, Y., Wong, D.F., Ferrucci, L., and Resnick, S.M. (2013). Self-reported Sleep and β-Amyloid Deposition in Community-Dwelling Older Adults. JAMA Neurol, 70, 1537-43. [PubMed] [Google Scholar]
  • Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience, 137, 1087-1106. [CrossRef] [PubMed] [Google Scholar]
  • Sterpenich, V., Albouy, G., Boly, M., Vandewalle, G., Darsaud, A., Balteau, E., Dang-Vu, T.T., Desseilles, M., D’Argembeau, A., Gais, S., Rauchs, G., Schabus, M., Degueldre, C., Luxen, A., Collette, F., and Maquet, P. (2007). Sleep-Related Hippocampo-Cortical Interplay during Emotional Memory Recollection. PLoS Biol, 5, e282. [CrossRef] [PubMed] [Google Scholar]
  • Stickgold, R., James, L., and Hobson, J.A. (2000). Visual discrimination learning requires sleep after training. Nat Neurosci, 3, 1237-1238. [CrossRef] [PubMed] [Google Scholar]
  • Takashima, A., Petersson, K.M., Rutters, F., Tendolkar, I., Jensen, O., Zwarts, M.J., McNaughton, B.L., and Fernandez, G. (2006). Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study. Proc Natl Acad Sci USA, 103, 756-761. [CrossRef] [Google Scholar]
  • Tononi, G., and Cirelli, C. (2003). Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull, 62, 143-150. [Google Scholar]
  • Tononi, G., and Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Med Rev, 10, 49-62. [Google Scholar]
  • Tucker, M., McKinley, S., and Stickgold, R. (2011). Sleep Optimizes Motor Skill in Older Adults. J Am Geriatr Soc, 59, 603-609. [CrossRef] [PubMed] [Google Scholar]
  • Vyazovskiy, V.V., Cirelli, C., Pfister-Genskow, M., Faraguna, U., and Tononi, G. (2008). Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci, 11, 200-208. [CrossRef] [PubMed] [Google Scholar]
  • Wagner, U., Gais, S. and Born, J. (2001). Emotional Memory Formation Is Enhanced across Sleep Intervals with High Amounts of Rapid Eye Movement Sleep. Learn Mem, 8, 112-119. [CrossRef] [PubMed] [Google Scholar]
  • Walker, M.P., Brakefield, T., Morgan, A., Hobson, J.A., and Stickgold, R. (2002). Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron, 35, 205–211. [CrossRef] [PubMed] [Google Scholar]
  • Westerberg, C.E., Lundgren, E.M., Florczak, S.M., Mesulam, M.M., Weintraub, S., Zee, P.C., and Paller, K.A. (2010). Sleep Influences the Severity of Memory Disruption in Amnestic Mild Cognitive Impairment: Results From Sleep Self-assessment and Continuous Activity Monitoring. Alzheimer Dis Assoc Disord, 24, 325-333. [CrossRef] [PubMed] [Google Scholar]
  • Westerberg, C.E., Mander, B.A., Florczak, S.M., Weintraub, S., Mesulam, M.M., Zee, P.C., and Paller, K.A. (2012). Concurrent Impairments in Sleep and Memory in Amnestic Mild Cognitive Impairment. J Int Neuropsychol Soc, 18, 490-500. [CrossRef] [PubMed] [Google Scholar]
  • Westerberg, C.E., Florczak, S.M., Weintraub, S., Mesulam, M.M., Marshall, L., Zee, P.C., and Paller, K.A. (2015). Memory improvement via slow-oscillatory stimulation during sleep in older adults. Neurobiol Aging, 36, 2577-86. [CrossRef] [PubMed] [Google Scholar]
  • Wilson, J.K., Baran, B., Pace-Schott, E.F., Ivry, R.B., and R.M. (2012). Sleep modulates word-pair learning but not motor sequence learning in healthy older adults. Neurobiol Aging, 33, 991-1000. [CrossRef] [PubMed] [Google Scholar]
  • Wilson, M.A., and McNaughton, B.L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265, 676-679. [CrossRef] [PubMed] [Google Scholar]
  • Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O’Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., Takano, T., Deane, R., and Nedergaard, M. (2013). Sleep Drives Metabolite Clearance from the Adult Brain. Science, 342, 373-377. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.