Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 209, Numéro 3, 2015
Page(s) 249 - 260
Section Mémoire, attention et fonctions exécutives
DOI https://doi.org/10.1051/jbio/2015026
Publié en ligne 28 janvier 2016
  • Addis, D.R., and Schacter, D.L. (2008). Constructive episodic simulation: temporal distance and detail of past and future events modulate hippocampal engagement. Hippocampus, 18, 227–237. [CrossRef] [PubMed] [Google Scholar]
  • Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends Cogn Sci, 4, 417–423. [Google Scholar]
  • Bauer, P.J. (2006). Constructing a past in infancy: a neuro-developmental account. Trends Cogn Sci, 10, 175–181. [CrossRef] [PubMed] [Google Scholar]
  • Billingsley, R.L., Smith, M. Lou, and McAndrews, M.P. (2002). Developmental patterns in priming and familiarity in explicit recollection. J Exp Child Psychol, 82, 251–277. [CrossRef] [PubMed] [Google Scholar]
  • Brain Development Cooperative Group (2012). Total and Regional Brain Volumes in a Population-Based Normative Sample from 4 to 18 Years: The NIH MRI Study of Normal Brain Development. Cereb Cortex, 22, 1–12. [CrossRef] [PubMed] [Google Scholar]
  • Brainerd, C.J., Holliday, R.E., and Reyna, V.F. (2004). Behavioral measurement of remembering phenomenologies: So simple a child can do it. Child Dev, 75, 505–522. [CrossRef] [PubMed] [Google Scholar]
  • Brewer, J.B., Zhao, Z., Desmond, J.E., Glover, G.H., and Gabrieli, J.D. (1998). Making memories: brain activity that predicts how well visual experience will be remembered. Science, 281, 1185–1187. [CrossRef] [PubMed] [Google Scholar]
  • Bruce, D., Dolan, A., and Phillips-Grant, K. (2000). On the transition from childhood amnesia to the recall of personal memories. Psychol Sci J Am Psychol Soc, 11, 360–364. [CrossRef] [Google Scholar]
  • Casey, B.J., Cohen, J.D., Jezzard, P., Turner, R., Noll, D.C., Trainor, R.J., Giedd, J., Kaysen, D., Hertz-Pannier, L., and Rapoport, J.L. (1995). Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI. Neuroimage, 2, 221–229. [CrossRef] [PubMed] [Google Scholar]
  • Casey, B.J., Giedd, J.N., and Thomas, K.M. (2000). Structural and functional brain development and its relation to cognitive development. Biol Psychol, 54, 241–257. [CrossRef] [PubMed] [Google Scholar]
  • Casey, B.J., Galvan, A., and Hare, T.A. (2005). Changes in cerebral functional organization during cognitive development. Curr Opin Neurobiol, 15, 239–244. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Casey, B.J., Getz, S., and Galvan, A. (2008). The adolescent brain. Dev Rev, 28, 62–77. [CrossRef] [PubMed] [Google Scholar]
  • Changeux, J.-P., and Danchin, A. (1976). Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature, 264, 705–712. [CrossRef] [PubMed] [Google Scholar]
  • Conway, M.A. (2005). Memory and the self. J Mem Lang, 53, 594–628. [CrossRef] [Google Scholar]
  • Conway, M.A., and Pleydell-Pearce, C.W. (2000). The construction of autobiographical memories in the self-memory system. Psychol Rev, 107, 261–288. [CrossRef] [PubMed] [Google Scholar]
  • Crone, E. a, Wendelken, C., Donohue, S., van Leijenhorst, L., and Bunge, S.A. (2006). Neurocognitive development of the ability to manipulate information in working memory. Proc Natl Acad Sci USA, 103, 9315–9320. [Google Scholar]
  • D’Esposito, M., Postle, B.R., Ballard, D., and Lease, J. (1999). Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain Cogn, 41, 66–86. [CrossRef] [PubMed] [Google Scholar]
  • Dégeilh, F., Guillery-Girard, B., Dayan, J., Gaubert, M., Chételat, G., Egler, P.-J., Baleyte, J.-M., Eustache, F., and Viard, A. (2015). Neural Correlates of Self and Its Interaction With Memory in Healthy Adolescents. Child Dev, In press [Google Scholar]
  • DeMaster, D.M., and Ghetti, S. (2013). Developmental differences in hippocampal and cortical contributions to episodic retrieval. Cortex, 49, 1482–1493. [CrossRef] [PubMed] [Google Scholar]
  • Eustache, F., and Desgranges, B. (2008). MNESIS: towards the integration of current multisystem models of memory. Neuropsychol Rev, 18, 53–69. [CrossRef] [PubMed] [Google Scholar]
  • Eustache, F., and Desgranges, B. (2012). Les Chemins de la mémoire (Le Pommier). [Google Scholar]
  • Fair, D.A., Dosenbach, N.U.F., Church, J.A., Cohen, A.L., Brahmbhatt, S., Miezin, F.M., Barch, D.M., Raichle, M.E., Petersen, S.E., and Schlaggar, B.L. (2007). Development of distinct control networks through segregation and integration. Proc Natl Acad Sci USA, 104, 13507–13512. [Google Scholar]
  • Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U.F., Church, J.A., Miezin, F.M., Schlaggar, B.L., and Petersen, S.E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol, 5, e1000381. [CrossRef] [Google Scholar]
  • Finn, A.S., Sheridan, M.A., Kam, C.L.H., Hinshaw, S., and D’Esposito, M. (2010). Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. J Neurosci, 30, 11062–11067. [CrossRef] [PubMed] [Google Scholar]
  • Gathercole, S.E. (1998). The development of memory. J Child Psychol Psychiatry, 39, 3–27. [CrossRef] [PubMed] [Google Scholar]
  • Gathercole, S.E., Pickering, S.J., Ambridge, B., and Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Dev Psychol, 40, 177–190. [CrossRef] [PubMed] [Google Scholar]
  • Ghetti, S., and Angelini, L. (2008). The Development of Recollection and Familiarity in Childhood and Adolescence: Evidence From the Dual-Process Signal Detection Model. Child Dev, 79, 339–358. [CrossRef] [PubMed] [Google Scholar]
  • Ghetti, S., and Bunge, S.A. (2012). Neural changes underlying the development of episodic memory during middle childhood. Dev Cogn Neurosci, 2, 381–395. [CrossRef] [PubMed] [Google Scholar]
  • Ghetti, S., DeMaster, D.M., Yonelinas, A.P., and Bunge, S.A. (2010). Developmental Differences in Medial Temporal Lobe Function during Memory Encoding. J Neurosci, 30, 9548–9556. [CrossRef] [PubMed] [Google Scholar]
  • Giedd, J.N., Snell, J.W., Lange, N., Rajapakse, J.C., Casey, B.J., Kozuch, P.L., Vaituzis, A.C., Vauss, Y.C., Hamburger, S.D., Kaysen, D., and Rapoport J.L. (1996). Quantitative Magnetic Resonance Imaging of Human Brain Development: Ages 4–18. Cereb Cortex, 6, 551–559. [CrossRef] [PubMed] [Google Scholar]
  • Giedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A., Paus, T., Evans, A.C., and Rapoport, J.L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci, 2, 861–863. [CrossRef] [PubMed] [Google Scholar]
  • Giovanello, K.S., Schnyer, D., and Verfaellie, M. (2009). Distinct hippocampal regions make unique contributions to relational memory. Hippocampus, 19, 111–117. [CrossRef] [PubMed] [Google Scholar]
  • Gogtay, N., Giedd, J.N., Lusk, L., Hayashi, K.M., Greenstein, D., Vaituzis, A.C., Nugent, T.F., Herman, D.H., Clasen, L.S., Toga, A.W., Rapoport J.L., and Thompson P.M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA, 101, 8174–8179. [CrossRef] [Google Scholar]
  • Gogtay, N., Nugent, T.F., Herman, D.H., Ordonez, A., Greenstein, D., Hayashi, K.M., Clasen, L., Toga, A.W., Giedd, J.N., Rapoport, J.L., and Thompson P.M. (2006). Dynamic mapping of normal human hippocampal development. Hippocampus, 16, 664–672. [CrossRef] [PubMed] [Google Scholar]
  • Guillery-Girard, B., Martins, S., Deshayes, S., Hertz-Pannier, L., Chiron, C., Jambaqué, I., Landeau, B., Clochon, P., Chételat, G., and Eustache, F. (2013). Developmental trajectories of associative memory from childhood to adulthood: a behavioral and neuroimaging study. Front Behav Neurosci, 7, 126. [CrossRef] [PubMed] [Google Scholar]
  • Hayne, H., and Jack, F. (2011). Childhood amnesia. Wiley Interdiscip Rev Cogn Sci, 2, 136–145. [CrossRef] [PubMed] [Google Scholar]
  • Howe, M.L., and Courage, M.L. (1993). On resolving the enigma of infantile amnesia. Psychol Bull, 113, 305–326. [CrossRef] [PubMed] [Google Scholar]
  • Howe, M.L., and Courage, M.L. (1997). The emergence and early development of autobiographical memory. Psychol Rev, 104, 499–523. [CrossRef] [PubMed] [Google Scholar]
  • Huttenlocher, P.R. (1979). Synaptic density in human frontal cortex: Developmental changes and effects of aging. Brain Res, 163, 195–205. [CrossRef] [PubMed] [Google Scholar]
  • Insausti, R., Cebada-Sánchez, S., and Marcos, P. (2010). Postnatal development of the human hippocampal formation. Adv Anat Embryol Cell Biol, 206, 1–86. [CrossRef] [PubMed] [Google Scholar]
  • Janowsky, J.S., Shimamura, A.P., and Squire, L.R. (1989). Source memory impairment in patients with frontal lobe lesions. Neuropsychologia, 27, 1043–1056. [CrossRef] [PubMed] [Google Scholar]
  • Jernigan, T.L., Trauner, D.A., Hesselink, J.R., and Tallal, P.A. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain, 114, 2037–2049. [CrossRef] [PubMed] [Google Scholar]
  • Lebel, C., and Beaulieu, C. (2011). Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci, 31, 10937–10947. [CrossRef] [PubMed] [Google Scholar]
  • Lebel, C., Walker, L., Leemans, A., Phillips, L., and Beaulieu, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. Neuroimage, 40, 1044–1055. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Lee, K., Bull, R., and Ho, R.M.H. (2013). Developmental changes in executive functioning. Child Dev, 84, 1933–1953. [CrossRef] [PubMed] [Google Scholar]
  • Lenroot, R.K., and Giedd, J.N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev, 30, 718–729. [CrossRef] [PubMed] [Google Scholar]
  • Lenroot, R.K., Gogtay, N., Greenstein, D.K., Wells, E.M., Wallace, G.L., Clasen, L.S., Blumenthal, J.D., Lerch, J., Zijdenbos, A.P., Evans, A.C., Thompson P.M., and Giedd J.N. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage, 36, 1065–1073. [CrossRef] [PubMed] [Google Scholar]
  • Mabbott, D.J., Rovet, J., Noseworthy, M.D., Smith, M. Lou, and Rockel, C. (2009). The relations between white matter and declarative memory in older children and adolescents. Brain Res, 1294, 80–90. [CrossRef] [PubMed] [Google Scholar]
  • Maguire, E.A. (2001). Neuroimaging, memory and the human hippocampus. Rev Neurol (Paris), 157, 791–794. [PubMed] [Google Scholar]
  • Mishkin, M., Suzuki, W.A., Gadian, D.G., and Vargha-Khadem, F. (1997). Hierarchical organization of cognitive memory. Philos Trans R Soc Lond B, Biol Sci, 352, 1461–1467. [CrossRef] [Google Scholar]
  • Monette, S., Bigras, M., and Guay, M.-C. (2011). The role of the executive functions in school achievement at the end of Grade 1. J Exp Child Psychol, 109, 158–173. [CrossRef] [PubMed] [Google Scholar]
  • Newcombe, N.S., Lloyd, M.E., and Ratliff, K.R. (2007). Development of episodic and autobiographical memory: a cognitive neuroscience perspective. Adv Child Dev Behav, 35, 37–85. [CrossRef] [PubMed] [Google Scholar]
  • Oakes, L.M., Hurley, K.B., Ross-Sheehy, S., and Luck, S.J. (2011). Developmental changes in infants’ visual short-term memory for location. Cognition, 118, 293–305. [CrossRef] [PubMed] [Google Scholar]
  • Ofen, N. (2012). The development of neural correlates for memory formation. Neurosci Biobehav Rev, 36, 1708–1717. [CrossRef] [PubMed] [Google Scholar]
  • Ofen, N., Kao, Y.-C., Sokol-Hessner, P., Kim, H., Whitfield-Gabrieli, S., and Gabrieli, J.D.E. (2007). Development of the declarative memory system in the human brain. Nat Neurosci, 10, 1198–1205. [CrossRef] [PubMed] [Google Scholar]
  • Olson, I.R., and Newcombe, N.S. (2013). Binding Together the Elements of Episodes: Relational Memory and the Developmental Trajectory of the Hippocampus. In The Wiley Handbook on the Development of Children’s Memory, P.J. Bauer, and R. Fivush (eds.) (John Wiley & Sons Ltd, Chichester, UK), pp. 285–308. [Google Scholar]
  • Paz-Alonso, P.M., Ghetti, S., Donohue, S.E., Goodman, G.S., and Bunge, S.A. (2008). Neurodevelopmental correlates of true and false recognition. Cereb Cortex, 18, 2208–2216. [CrossRef] [PubMed] [Google Scholar]
  • Paz-Alonso, P.M., Ghetti, S., Matlen, B.J., Anderson, M.C., and Bunge, S.A. (2009). Memory suppression is an active process that improves over childhood. Front Hum Neurosci, 3, 24. [CrossRef] [PubMed] [Google Scholar]
  • Pfefferbaum, A., Mathalon, D.H., Sullivan, E. V, Rawles, J.M., Zipursky, R.B., and Lim, K.O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol, 51, 874–887. [CrossRef] [PubMed] [Google Scholar]
  • Picard, L., Cousin, S., Guillery-Girard, B., Eustache, F., and Piolino, P. (2012). How Do the Different Components of Episodic Memory Develop? Role of Executive Functions and Short-Term Feature-Binding Abilities. Child Dev, 83, 1037–1050. [CrossRef] [PubMed] [Google Scholar]
  • Piolino, P., Hisland, M., Ruffeveille, I., Matuszewski, V., Jambaqué, I., and Eustache, F. (2007). Do school-age children remember or know the personal past? Conscious Cogn, 16, 84–101. [CrossRef] [PubMed] [Google Scholar]
  • Reiss, A.L., Abrams, M.T., Singer, H.S., Ross, J.L., and Denckla, M.B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain 119, 1763–1774. [CrossRef] [PubMed] [Google Scholar]
  • Riggins, T. (2014). Longitudinal investigation of source memory reveals different developmental trajectories for item memory and binding. Dev Psychol, 50, 449–459. [CrossRef] [PubMed] [Google Scholar]
  • Ross-Sheehy, S., Oakes, L.M., and Luck, S.J. (2011). Exogenous attention influences visual short-term memory in infants. Dev Sci, 14, 490–501. [CrossRef] [PubMed] [Google Scholar]
  • Rovee-Collier, C., Sullivan, M., Enright, M., Lucas, D., and Fagen, J. (1980). Reactivation of infant memory. Science, 208, 1159–1161. [CrossRef] [PubMed] [Google Scholar]
  • Shaw, P., Kabani, N.J., Lerch, J.P., Eckstrand, K., Lenroot, R., Gogtay, N., Greenstein, D., Clasen, L., Evans, A., Rapoport, J.L., Giedd J.N., and Wise S.P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci, 28, 3586–3594. [CrossRef] [PubMed] [Google Scholar]
  • Shing, Y.L., Werkle-Bergner, M., Li, S.-C., and Lindenberger, U. (2008). Associative and strategic components of episodic memory: a life-span dissociation. J Exp Psychol Gen, 137, 495–513. [CrossRef] [PubMed] [Google Scholar]
  • Shing, Y.L., Werkle-Bergner, M., Brehmer, Y., Müller, V., Li, S.-C., and Lindenberger, U. (2010). Episodic memory across the lifespan: the contributions of associative and strategic components. Neurosci Biobehav Rev, 34, 1080–1091. [CrossRef] [PubMed] [Google Scholar]
  • Sowell, E.R., Delis, D., Stiles, J., and Jernigan, T.L. (2001). Improved memory functioning and frontal lobe maturation between childhood and adolescence: a structural MRI study. J Int Neuropsychol Soc, 7, 312–322. [CrossRef] [PubMed] [Google Scholar]
  • Sowell, E.R., Peterson, B.S., Thompson, P.M., Welcome, S.E., Henkenius, A.L., and Toga, A.W. (2003). Mapping cortical change across the human life span. Nat Neurosci, 6, 309–315. [CrossRef] [PubMed] [Google Scholar]
  • Sowell, E.R., Thompson, P.M., Leonard, C.M., Welcome, S.E., Kan, E., and Toga, A.W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci, 24, 8223–8231. [CrossRef] [PubMed] [Google Scholar]
  • Squire, L.R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99, 195–231. [CrossRef] [PubMed] [Google Scholar]
  • Supekar, K., Musen, M., and Menon, V. (2009). Development of large-scale functional brain networks in children. PLoS Biol, 7, e1000157. [CrossRef] [PubMed] [Google Scholar]
  • Tamnes, C.K., Walhovd, K.B., Dale, A.M., Østby, Y., Grydeland, H., Richardson, G., Westlye, L.T., Roddey, J.C., Hagler, D.J., Due-Tønnessen, P., Holland D., and Fjell A.M. (2013). Brain development and aging: overlapping and unique patterns of change. Neuroimage, 68, 63–74. [CrossRef] [PubMed] [Google Scholar]
  • Tulving, E. (1984). Précis of Elements of episodic memory. Behav Brain Sci 7, 223. [CrossRef] [Google Scholar]
  • Tulving, E. (1995). Organization of memory: Quo vadis? In The Cognitive Neurosciences, M. Gazzaniga, (ed.) (The MIT Press, Cambridge), pp. 839–847. [Google Scholar]
  • Tulving, E. (2002). Episodic Memory: From Mind to Brain. Annu Rev Psychol, 53, 1–25. [CrossRef] [PubMed] [Google Scholar]
  • Tulving, E., and Markowitsch, H.J. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus, 8, 198–204. [CrossRef] [PubMed] [Google Scholar]
  • Utsunomiya, H., Takano, K., Okazaki, M., and Mitsudome, A. (1999). Development of the temporal lobe in infants and children: analysis by MR-based volumetry. Am J Neuroradiol, 20, 717–723. [Google Scholar]
  • Wang, S., Allen, R.J., Lee, J.R., and Hsieh, C.-E. (2015). Evaluating the developmental trajectory of the episodic buffer component of working memory and its relation to word recognition in children. J Exp Child Psychol, 133, 16–28. [CrossRef] [PubMed] [Google Scholar]
  • Wilke, M., Krägeloh-Mann, I., and Holland, S.K. (2007). Global and local development of gray and white matter volume in normal children and adolescents. Exp Brain Res, 178, 296–307. [CrossRef] [PubMed] [Google Scholar]
  • Willoughby, K. a, Desrocher, M., Levine, B., and Rovet, J.F. (2012). Episodic and semantic autobiographical memory and everyday memory during late childhood and early adolescence. Front Psychol, 3, 53. [CrossRef] [PubMed] [Google Scholar]
  • Yakovlev, P.I., and Lecours, A.-R. (1967). The myelogenetic cycles of regional maturation of the brain. In Regional Development of the Brain in Early Life., A. Minkowski, (ed.) (Lackwell Scientific Publications, Oxford, UK), pp. 3–70. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.