Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 209, Numéro 3, 2015
|
|
---|---|---|
Page(s) | 229 - 248 | |
Section | Mémoire, attention et fonctions exécutives | |
DOI | https://doi.org/10.1051/jbio/2015028 | |
Publié en ligne | 28 janvier 2016 |
- Abrous, D.N., Koehl, M., and Le Moal, M. (2005). Adult neurogenesis: from precursors to network and physiology. Physiol Rev, 85, 523-569. [CrossRef] [PubMed] [Google Scholar]
- Aimone, J.B., Deng, W., and Gage, F.H. (2010). Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci, 14, 325-337. [CrossRef] [PubMed] [Google Scholar]
- Aimone, J.B., Deng, W., and Gage, F.H. (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70, 589-596. [CrossRef] [PubMed] [Google Scholar]
- Aimone, J.B., Li, Y., Lee, S.W., Clemenson, G.D., Deng, W., and Gage, F.H. (2014). Regulation and Function of Adult Neurogenesis: From Genes to Cognition. Physiol Rev, 94, 991-1026. [CrossRef] [PubMed] [Google Scholar]
- Akers, K.G., Martinez-Canabal, A., Restivo, L., Yiu, A.P., De Cristofaro, A., Hsiang, H.-L.L., Wheeler, A.L., Guskjolen, A., Niibori, Y., Shoji, H., Ohira, K., Richards, B.A., Miyakawa, T., Josselyn, S.A., and Frankland P.W. (2014). Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science, 344, 598-602. [CrossRef] [PubMed] [Google Scholar]
- Alberini, C.M., and Kandel, E.R. (2015). The regulation of transciption in memory consolidation. Cold Spring Harb Perspect Biol, 7(1), a0221741. [Google Scholar]
- Alenina, N., and Klempin, F. (2015). The role of serotonin in adult hippocampal neurogenesis. Behav Brain Res, 277, 49-57. [CrossRef] [PubMed] [Google Scholar]
- Altman, J. (1963). Autoradiographic Investigation of Cell Prolifération in the Brains of Rats ans Cats. Anat Rec, 145, 573-591. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis. IV Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol, 137, 433-458. [CrossRef] [PubMed] [Google Scholar]
- Altman, J., and Das, G.D. (1965). Autoradiographic and Histoloaical Evidence of Postnatal Hippocampal Neurogenesis in Rats. J Comp Neurol, 124, 319-336. [CrossRef] [PubMed] [Google Scholar]
- Ambrogini, P., Lattanzi, D., Ciuffoli, S., Agostini, D., Bertini, L., Stocchi, V., Santi, S., and Cuppini, R. (2004a). Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus. Brain Res, 1017, 21-31. [CrossRef] [PubMed] [Google Scholar]
- Ambrogini, P., Orsini, L., Mancini, C., Ferri, P., Ciaroni, S., and Cuppini, R. (2004b). Learning may reduce neurogenesis in adult rat dentate gyrus. Neurosci Lett, 359, 13-16. [CrossRef] [PubMed] [Google Scholar]
- Ambrogini, P., Cuppini, R., Lattanzi, D., Ciuffoli, S., Frontini, A., and Fanelli, M. (2010). Synaptogenesis in adult-generated hippocampal granule cells is affected by behavioral experiences. Hippocampus, 20, 799-810. [PubMed] [Google Scholar]
- Amrein, I., Isler, K., and Lipp, H.-P. (2011). Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage. Eur J Neurosci, 34, 978-987. [CrossRef] [PubMed] [Google Scholar]
- Amrein, I., Lipp, H.-P., Boonstra, R., and Wojtowicz, J.M. (2015). Adult Hippocampal Neurogenesis in Natural Populations of Mammals. Cold Spring Harb Perspect Biol, 7(5), a021295. [CrossRef] [PubMed] [Google Scholar]
- Anderson, M.L., Nokia, M.S., Govindaraju, K.P., and Shors, T.J. (2012). Moderate drinking? Alcohol consumption significantly decreases neurogenesis in the adult hippocampus. Neuroscience, 224, 202-209. [CrossRef] [PubMed] [Google Scholar]
- Arruda-Carvalho, M., Sakaguchi, M., Akers, K.G., Josselyn, S.A., and Frankland, P.W. (2011). Posttraining ablation of adult-generated neurons degrades previously acquired memories. J Neurosci, 31, 15113-15127. [CrossRef] [PubMed] [Google Scholar]
- Bédard, A., and Parent, A. (2004). Evidence of newly generated neurons in the human olfactory bulb. Dev Brain Res, 151, 159-168. [CrossRef] [Google Scholar]
- Benarroch, E.E. (2013). Adult neurogenesis in the dentate gyrus: general concepts and potential implications. Neurology, 81, 1443-1452. [CrossRef] [PubMed] [Google Scholar]
- Bergmann, O., Spalding, K.L., and Frise, J. (2015). Adult Neurogenesis in Humans. Cold Spring Harb Perspect Biol, 7(7), a018994. [CrossRef] [PubMed] [Google Scholar]
- Bliss, T.V.P., and Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol, 232, 331-358. [CrossRef] [PubMed] [Google Scholar]
- Bozon, B., Davis, S., and Laroche, S. (2003). A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron, 40, 695-701. [CrossRef] [PubMed] [Google Scholar]
- Brandt, M.D., Jessberger, S., Steiner, B., Kronenberg, G., Reuter, K., Bick-Sander, A., Behrens, W. Von Der, and Kempermann, G. (2003). Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci, 24, 603-613. [CrossRef] [PubMed] [Google Scholar]
- Bruel-Jungerman, E., Laroche, S., and Rampon, C. (2005). New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci, 21, 513-521. [CrossRef] [PubMed] [Google Scholar]
- Bruel-Jungerman, E., Davis, S., Rampon, C., and Laroche, S. (2006). Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J Neurosci, 26, 5888-5893. [CrossRef] [PubMed] [Google Scholar]
- Bruel-Jungerman, E., Davis, S., and Laroche, S. (2007). Brain plasticity mechanisms and memory: a party of four. Neuroscientist, 13, 492-505. [CrossRef] [PubMed] [Google Scholar]
- Cameron, H.A., and Mckay, R.D.G. (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol, 435, 406-417. [CrossRef] [PubMed] [Google Scholar]
- Campbell, N.R., Fernandes, C.C., John, D., Lozada, A.F., and Berg, D.K. (2011). Nicotinic control of adult-born neuron fate. Biochem Pharmacol, 82, 820-827. [CrossRef] [PubMed] [Google Scholar]
- Canales, J.J. (2007). Adult neurogenesis and the memories of drug addiction. Eur Arch Psychiatry Clin Neurosci, 257, 261-270. [CrossRef] [PubMed] [Google Scholar]
- Chambers, R.A. (2013). Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depend, 130, 1-12. [CrossRef] [PubMed] [Google Scholar]
- Clark, P.J., Bhattacharya, T.K., Miller, D.S., Kohman, R.A., DeYoung, E.K., and Rhodes, J.S. (2012). New neurons generated from running are broadly recruited into neuronal activation associated with three different hippocampus-involved tasks. Hippocampus, 22, 1860-1867. [CrossRef] [PubMed] [Google Scholar]
- Clelland, C.D., Choi, M., Romberg, C., Clemenson, G.D., Fragniere, A., Tyers, P., Jessberger, S., Saksida, L.M., Barker, R.A., and Gage, F. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325, 210. [CrossRef] [PubMed] [Google Scholar]
- Creer, D.J., Romberg, C., Saksida, L.M., van Praag, H., and Bussey, T.J. (2010). Running enhances spatial pattern separation in mice. Proc Natl Acad Sci USA, 107, 2367-2372. [CrossRef] [Google Scholar]
- Crowther, A.J., and Song, J. (2014). Activity-dependent signaling mechanisms regulating adult hippocampal neural stem cells and their progeny. Neurosci Bull, 30, 542-556. [CrossRef] [PubMed] [Google Scholar]
- Davis, S., Butcher, S.P., and Morris, R.G.M. (1992). The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. J Neurosci, 12, 21-34. [PubMed] [Google Scholar]
- Davis, S., Vanhoutte, P., Pagès, C., Caboche, J., and Laroche, S. (2000). The MAPK/ERK Cascade Targets Both Elk-1 and cAMP Response Element-Binding Protein to Control Long-Term Potentiation-Dependent Gene Expression in the Dentate Gyrus In Vivo. J Neurosci, 20, 4563-4572. [PubMed] [Google Scholar]
- Dayer, A.G., Ford, A.A., Cleaver, K.M., Yassaee, M., and Cameron, H.A. (2003). Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol, 460, 563-572. [CrossRef] [PubMed] [Google Scholar]
- Deng, W., Saxe, M.D., Gallina, I.S., and Gage, F.H. (2009). Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci, 29, 13532-13542. [CrossRef] [PubMed] [Google Scholar]
- Deng, W., Aimone, J.B., and Gage, F.H. (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci, 11, 339-350. [CrossRef] [PubMed] [Google Scholar]
- Döbrössy, M.D., Drapeau, E., Aurousseau, C., Le Moal, M., Piazza, P.-V., and Abrous, D.N. (2003). Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date. Mol Psychiatry, 8, 974-982. [CrossRef] [PubMed] [Google Scholar]
- Donegà, M., Giusto, E., Cossetti, C., and Pluchino, S. (2013). Systemic Neural Stem Cell-Based Therapeutic Interventions for Inflammatory CNS Disorders, Neural Stem cells – New Perspectives, Bonfanti, L. (Ed.), InTech, Chap. 11. [Google Scholar]
- Drapeau, E., and Abrous, D.N. (2008). Stem Cell Review Series: Role of neurogenesis in age-related memory disorders. Aging Cell, 7, 569-589. [CrossRef] [PubMed] [Google Scholar]
- Drapeau, E., Mayo, W., Aurousseau, C., Le Moal, M., Piazza, P.-V., and Abrous, D.N. (2003). Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci USA, 100, 14385-14390. [Google Scholar]
- Dupret, D., Fabre, A., Döbrössy, M.D., Panatier, A., Rodríguez, J.J., Lamarque, S., Lemaire, V., Oliet, S.H.R., Piazza, P.-V., and Abrous, D.N. (2007). Spatial learning depends on both the addition and removal of new hippocampal neurons. PLoS Biol, 5, e214. [CrossRef] [PubMed] [Google Scholar]
- Dupret, D., Revest, J.-M., Koehl, M., Ichas, F., De Giorgi, F., Costet, P., Abrous, D.N., and Piazza, P.V. (2008). Spatial relational memory requires hippocampal adult neurogenesis. PLoS One, 3, e1959. [CrossRef] [PubMed] [Google Scholar]
- Duveau, V., Laustela, S., Barth, L., Gianolini, F., Vogt, K.E., Keist, R., Chandra, D., Homanics, G.E., Rudolph, U., and Fritschy, J. (2011). Spatio-temporal specificity of GABA A receptor-mediated regulation of adult hippocampal neurogenesis. Eur J Neurosci, 34, 362-373. [CrossRef] [PubMed] [Google Scholar]
- Egeland, M., Zunszain, P.A., and Pariante, C.M. (2015). Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci, 16, 189-200. [CrossRef] [PubMed] [Google Scholar]
- Emsley, J.G., Mitchell, B.D., Kempermann, G., and Macklis, J.D. (2005). Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol, 75, 321-341. [CrossRef] [PubMed] [Google Scholar]
- Encinas, J.M., Vaahtokari, A., and Enikolopov, G. (2006). Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA, 103, 8233-8238. [CrossRef] [Google Scholar]
- Epp, J.R., Haack, A.K., and Galea, L.A.M. (2010). Task difficulty in the Morris water task influences the survival of new neurons in the dentate gyrus. Hippocampus, 20, 866-876. [PubMed] [Google Scholar]
- Epp, J.R., Scott, N.A., and Galea, L.A.M. (2011a). Strain differences in neurogenesis and activation of new neurons in the dentate gyrus in response to spatial learning. Neuroscience, 172, 342-354. [CrossRef] [PubMed] [Google Scholar]
- Epp, J.R., Haack, A.K., and Galea, L.A.M. (2011b). Activation and survival of immature neurons in the dentate gyrus with spatial memory is dependent on time of exposure to spatial learning and age of cells at examination. Neurobiol Learn Mem, 95, 316-325. [CrossRef] [PubMed] [Google Scholar]
- Epp, J.R., Chow, C., and Galea, L.A.M. (2013). Hippocampus-dependent learning influences hippocampal neurogenesis. Front Neurosci, 7, 1-9. [CrossRef] [PubMed] [Google Scholar]
- Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., and Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4, 1313-1317. [CrossRef] [PubMed] [Google Scholar]
- Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert, G., Druid, H., and Frisén, J. (2014). Neurogenesis in the Striatum of the Adult Human Brain. Cell, 156, 1072-1083. [CrossRef] [PubMed] [Google Scholar]
- Espósito, M.S., Piatti, V.C., Laplagne, D.A., Morgenstern, N.A., Ferrari, C.C., Pitossi, F.J., and Schinder, A.F. (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci, 25, 10074-10086. [CrossRef] [PubMed] [Google Scholar]
- Etkin, A., Alarcón, J.M., Weisberg, S.P., Touzani, K., Huang, Y.Y., Nordheim, A., and Kandel, E.R. (2006). A Role in Learning for SRF: Deletion in the Adult Forebrain Disrupts LTD and the Formation of an Immediate Memory of a Novel Context. Neuron, 50, 127-143. [CrossRef] [PubMed] [Google Scholar]
- Fan, Y., Liu, Z., Weinstein, P.R., Fike, J.R., and Liu, J. (2007). Environmental enrichment enhances neurogenesis and improves functional outcome after cranial irradiation. Eur J Neurosci, 25, 38-46. [CrossRef] [PubMed] [Google Scholar]
- Farioli-Vecchioli, S., Saraulli, D., Costanzi, M., Pacioni, S., Cinà, I., Aceti, M., Micheli, L., Bacci, A., Cestari, V., and Tirone, F. (2008). The timing of differentiation of adult hippocampal neurons is crucial for spatial memory. PLoS Biol, 6, e246. [CrossRef] [PubMed] [Google Scholar]
- Faulkner, R.L., Jang, M., Liu, X., Duan, X., Sailor, K.A., Kim, J.Y., Ge, S., Jones, E.G., Ming, G., Song, H., and Cheng, H-J. (2008). Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA, 105, 14157-14162. [CrossRef] [Google Scholar]
- Fournier, N.M., and Duman, R.S. (2012). Role of vascular endothelial growth factor in adult hippocampal neurogenesis: Implications for the pathophysiology and treatment of depression. Behav Brain Res, 227, 440-449. [CrossRef] [PubMed] [Google Scholar]
- Galea, L.A.M., Wainwright, S.R., Roes, M.M., Duarte-Guterman, P., Chow, C., and Hamson, D.K. (2013). Sex, hormones and neurogenesis in the hippocampus: Hormonal modulation of neurogenesis and potential functional implications. J Neuroendocrinol, 25, 1039-1061. [CrossRef] [PubMed] [Google Scholar]
- Garthe, A., Behr, J., and Kempermann, G. (2009). Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS One, 4, e5464. [CrossRef] [PubMed] [Google Scholar]
- Ge, S., Goh, E.L.K., Sailor, K.A., Kitabatake, Y., Ming, G., and Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439, 589-593. [CrossRef] [PubMed] [Google Scholar]
- Ge, S., Yang, C., Hsu, K., Guo-li, M., and Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54, 559-566. [CrossRef] [PubMed] [Google Scholar]
- Giachino, C., Barz, M., Tchorz, J.S., Tome, M., Gassmann, M., Bischofberger, J., Bettler, B., and Taylor, V. (2014). GABA suppresses neurogenesis in the adult hippocampus through GABA B receptors. Development, 141, 83-90. [CrossRef] [PubMed] [Google Scholar]
- Gil-Mohapel, J., Brocardo, P.S., Choquette, W., Gothard, R., Simpson, J.M., and Christie, B.R. (2013). Hippocampal neurogenesis levels predict WATERMAZE search strategies in the aging brain. PLoS One, 8, e75125. [CrossRef] [PubMed] [Google Scholar]
- Goodman, T., Trouche, S., Massou, I., Verret, L., Zerwas, M., Roullet, P., and Rampon, C. (2010). Young hippocampal neurons are critical for recent and remote spatial memory in adult mice. Neuroscience, 171, 769-778. [CrossRef] [PubMed] [Google Scholar]
- Gould, E., Reeves, A.J., Fallah, M., Tanapat, P., Gross, C.G., and Fuchs, E. (1999a). Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA, 96, 5263-5267. [CrossRef] [Google Scholar]
- Gould, E., Beylin, A., Tanapat, P., Reeves, A., and Shors, T.J. (1999b). Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci, 2, 260-265. [CrossRef] [PubMed] [Google Scholar]
- Groves, J.O., Leslie, I., Huang, G.-J., McHugh, S.B., Taylor, A., Mott, R., Munafò, M., Bannerman, D.M., and Flint, J. (2013). Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic model. PLoS Genet, 9, e1003718. [CrossRef] [PubMed] [Google Scholar]
- Gruart, A., Munoz, M.D., and Delagrado-Garcia, J.M. (2006). Involvement of the CA3-CA1 Synapse in the Acquisition of Associative Learning in Behaving Mice. J Neurosci, 26, 1077-1087. [CrossRef] [PubMed] [Google Scholar]
- Gu, Y., Arruda-Carvalho, M., Wang, J., Janoschka, S.R., Josselyn, S.A., Frankland, P.W., and Ge, S. (2012). Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci, 15, 1700-1706. [CrossRef] [PubMed] [Google Scholar]
- Hairston, I.S., Little, M.T.M., Scanlon, M.D., Barakat, M.T., Palmer, T.D., Sapolsky, R.M., and Heller, H.C. (2005). Sleep restriction suppresses neurogenesis induced by hippocampus-dependent learning. J Neurophysiol, 94, 4224-4233. [CrossRef] [PubMed] [Google Scholar]
- Hernández-Rabaza, V., Llorens-Martín, M., Velázquez-Sánchez, C., Ferragud, A., Arcusa, A., Gumus, H.G., Gómez-Pinedo, U., Pérez-Villalba, A., Roselló, J., Trejo, J.L., Barcia, J.A., and Canales, J.J. (2009). Inhibition of adult hippocampal neurogenesis disrupts contextual learning but spares spatial working memory, long-term conditional rule retention and spatial reversal. Neuroscience, 159, 59-68. [CrossRef] [PubMed] [Google Scholar]
- Imayoshi, I., Sakamoto, M., Ohtsuka, T., Takao, K., Miyakawa, T., Yamaguchi, M., Mori, K., Ikeda, T., Itohara, S., and Kageyama, R. (2008). Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci, 11, 1153-1161. [CrossRef] [PubMed] [Google Scholar]
- Imayoshi, I., Sakamoto, M., and Kageyama, R. (2011). Genetic methods to identify and manipulate newly born neurons in the adult brain. Front Neurosci, 5, 64. [CrossRef] [PubMed] [Google Scholar]
- Inta, D., Cameron, H.A., and Gass, P. (2015). New neurons in the adult striatum: from rodents to humans. Trends Neurosci, 38, 517-523. [CrossRef] [PubMed] [Google Scholar]
- Jaholkowski, P., Kiryk, A., Jedynak, P., Ben Abdallah, N.M.B., Knapska, E., Kowalczyk, A., Piechal, A., Blecharz-Klin, K., Figiel, I., Lioudyno, V., Widy-Tyszkiewicz, E., Wilczynski, G.M., Lipp, H-P., Kaczmarek, L., and Filipkowski, R.K. (2009). New hippocampal neurons are not obligatory for memory formation; cyclin D2 knockout mice with no adult brain neurogenesis show learning. Learn Mem, 16, 439-451. [CrossRef] [PubMed] [Google Scholar]
- Jessberger, S., and Kempermann, G. (2003). Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur J Neurosci, 18, 2707-2712. [CrossRef] [PubMed] [Google Scholar]
- Jones, M.W., Errington, M.L., French, P.J., Fine, A., Bliss, T.V.P., Garel, S., Charnay, P., Bozon, B., Laroche, S., and Davis, S. (2001). A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat Neurosci, 4, 289-296. [CrossRef] [PubMed] [Google Scholar]
- Kaplan, M.S. (1985). Formation and turnover of neurons in young and senescent animals: an electronmicroscopic and morphometric analysis. Ann N Y Acad Sci, 457, 173-192. [CrossRef] [PubMed] [Google Scholar]
- Kaplan, M.S., and Hinds, J.W. (1977). Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science, 197, 1092-1094. [CrossRef] [PubMed] [Google Scholar]
- Kaslin, J., Ganz, J., and Brand, M. (2008). Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philos Trans R Soc Lond B Biol Sci, 363, 101-122. [CrossRef] [PubMed] [Google Scholar]
- Kee, N., Teixeira, C.M., Wang, A.H., and Frankland, P.W. (2007). Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci, 10, 355-362. [CrossRef] [PubMed] [Google Scholar]
- Kemp, A., and Manahan-Vaughan, D. (2007). Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci, 30, 111-118. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Kempermann, G., and Gage, F.H. (2002a). Genetic influence on phenotypic differentiation in adult hippocampal neurogenesis. Brain Res Dev Brain Res, 134, 1-12. [CrossRef] [Google Scholar]
- Kempermann, G., and Gage, F.H. (2002b). Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci, 16, 129-136. [CrossRef] [PubMed] [Google Scholar]
- Kempermann, G., Kuhn, H.G., and Gage, F.H. (1997). Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci USA, 94, 10409-10414. [CrossRef] [Google Scholar]
- Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M., and Gage, F.H. (2003). Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development, 130, 391-399. [CrossRef] [PubMed] [Google Scholar]
- Kesner, R.P. (2007). A behavioral analysis of dentate gyrus function. Prog Brain, 163, 567-576. [CrossRef] [PubMed] [Google Scholar]
- Kirby, E.D., Kuwahara, A.A., Messer, R.L., and Wyss-Coray, T. (2015). Adult hippocampal neural stem and progenitor cells regulate the neurogenic niche by secreting VEGF. Proc Natl Acad Sci USA, 112, 4128-4133. [CrossRef] [Google Scholar]
- Kitamura, T., Saitoh, Y., Takashima, N., Murayama, A., Niibori, Y., Ageta, H., Sekiguchi, M., Sugiyama, H., and Inokuchi, K. (2009). Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell, 139, 814-827. [CrossRef] [PubMed] [Google Scholar]
- Ko, H.-G., Jang, D.-J., Son, J., Kwak, C., Choi, J.-H., Ji, Y.-H., Lee, Y.-S., Son, H., and Kaang, B.-K. (2009). Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory. Mol Brain, 2, 1. [CrossRef] [PubMed] [Google Scholar]
- Kornack, D.R., and Rakic, P. (2001). The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA, 98, 4752-4757. [CrossRef] [Google Scholar]
- Kuhn, H.G., Biebl, M., Wilhelm, D., Li, M., Friedlander, R.M., and Winkler, J. (2005). Increased generation of granule cells in adult Bcl-2-overexpressing mice: a role for cell death during continued hippocampal neurogenesis. Eur J Neurosci, 22, 1907-1915. [CrossRef] [PubMed] [Google Scholar]
- Laroche, S. (2010). Mécanismes cellulaires et moléculaires de la mémoire. Biol Aujourdhui, 204, 93-102. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lavado, A., Lagutin, O. V, Chow, L.M.L., Baker, S.J., and Oliver, G. (2010). Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol, 8, e1000460. [CrossRef] [PubMed] [Google Scholar]
- Lee, S.W., Clemenson, G.D., and Gage, F.H. (2012). New neurons in an aged brain. Behav Brain Res, 227, 497-507. [CrossRef] [PubMed] [Google Scholar]
- Lemaire, V., Tronel, S., Montaron, M.-F., Fabre, A., Dugast, E., and Abrous, D.N. (2012). Long-Lasting Plasticity of Hippocampal Adult-Born Neurons. J Neurosci, 32, 3101-3108. [CrossRef] [PubMed] [Google Scholar]
- Lepousez, G., Nissant, A., and Lledo, P.-M. (2015). Adult Neurogenesis and the Future of the Rejuvenating Brain Circuits. Neuron, 86, 387-401. [CrossRef] [PubMed] [Google Scholar]
- Leuner, B., Falduto, J., and Shors, T.J. (2003). Associative memory formation increases the observation of dendritic spines in the hippocampus. J Neurosci, 23, 659-665. [PubMed] [Google Scholar]
- Leuner, B., Mendolia-Loffredo, S., Kozorovitskiy, Y., Samburg, D., Gould, E., and Shors, T.J. (2004). Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory. J Neurosci, 24, 7477-7481. [CrossRef] [PubMed] [Google Scholar]
- Leuner, B., Gould, E., and Shors, T.J. (2006). Is there a link between adult neurogenesis and learning? Hippocampus, 16, 216-224. [CrossRef] [PubMed] [Google Scholar]
- Leutgeb, J.K., Leutgeb, S., Moser, M.-B., and Moser, E.I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315, 961-966. [CrossRef] [PubMed] [Google Scholar]
- Li, Q.-Q., Qiao, G.-Q., Ma, J., Fan, H.-W., and Li, Y.-B. (2015). Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature. Neural Regen Res, 10, 277-285. [CrossRef] [PubMed] [Google Scholar]
- Lledo, P.-M., Alonso, M., and Grubb, M.S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci, 7, 179-193. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Llorens-Martín, M., Jurado-Arjona, J., Avila, J., and Hernández, F. (2015). Novel connection between newborn granule neurons and the hippocampal CA2 field. Exp Neurol, 263, 285-292. [CrossRef] [PubMed] [Google Scholar]
- Lu, L., Bao, G., Chen, H., Xia, P., Fan, X., Zhang, J., Pei, G., and Ma, L. (2003). Modification of hippocampal neurogenesis and neuroplasticity by social environments. Exp Neurol, 183, 600-609. [CrossRef] [PubMed] [Google Scholar]
- Luu, P., Becker, S., Wojtowicz, J.M., and Smith, D.M. (2012). The Role of Adult Hippocampal Neurogenesis in Reducing Interference. Behav Neurosci, 126, 381-391. [CrossRef] [PubMed] [Google Scholar]
- Ma, D.K., Ming, G.-L., and Song, H. (2005). Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr Opin Neurobiol, 15, 514-520. [CrossRef] [PubMed] [Google Scholar]
- Ma, D.K., Marchetto, M.C., Guo, J.U., Ming, G., Gage, F.H., and Song, H. (2010). Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci., 13, 1338-1344. [CrossRef] [PubMed] [Google Scholar]
- Madsen, T., Kristjansen, P., Bolwig, T., and Wortwein, G. (2003). Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience, 119, 635-642. [CrossRef] [PubMed] [Google Scholar]
- Markakis, E.A., and Gage, F.H. (1999). Adult-Generated Neurons in the Dentate Gyrus Send Axonal Projections to Field CA 3 and Are Surrounded by Synaptic Vesicles. J Comp Neurol, 460, 449-460. [CrossRef] [Google Scholar]
- Markham, J.A., and Greenough, W.T. (2005). Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol, 1, 351. [CrossRef] [PubMed] [Google Scholar]
- Marrone, D.F. (2007). Ultrastructural plasticity associated with hippocampal-dependent learning: A meta-analysis. Neurobiol Learn Mem, 87, 361-371. [CrossRef] [PubMed] [Google Scholar]
- Meshi, D., Drew, M.R., Saxe, M., Ansorge, M.S., David, D., Santarelli, L., Malapani, C., Moore, H., and Hen, R. (2006). Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci, 9, 729-731. [CrossRef] [PubMed] [Google Scholar]
- Ming, G., and Song, H. (2005). Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci, 28, 223-250. [CrossRef] [PubMed] [Google Scholar]
- Mohapel, P., Mundt-Petersen, K., Brundin, P., and Frielingsdorf, H. (2006). Working memory training decreases hippocampal neurogenesis. Neuroscience, 142, 609-613. [CrossRef] [PubMed] [Google Scholar]
- Mongiat, L.A., Espósito, M.S., Lombardi, G., and Schinder, A.F. (2009). Reliable activation of immature neurons in the adult hippocampus. PLoS One, 4, e5320. [CrossRef] [PubMed] [Google Scholar]
- Montaron, M.-F., Drapeau, E., Dupret, D., Kitchener, P., Aurousseau, C., Le Moal, M., Piazza, P.-V., and Abrous, D.N. (2006). Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol Aging, 27, 645-654. [CrossRef] [PubMed] [Google Scholar]
- Monteiro, B.M.M., Moreira, F.A., Massensini, A.R., Moraes, M.F.D., and Pereira, G.S. (2014). Enriched environment increases neurogenesis and improves social memory persistence in socially isolated adult mice. Hippocampus, 24, 239-248. [CrossRef] [PubMed] [Google Scholar]
- Montkowski, A., Poettig, M., Mederer, A., and Holsboer, F. (1997). Behavioural performance in three substrains of mouse strain 129. Brain Res, 762, 12-18. [CrossRef] [PubMed] [Google Scholar]
- Mu, L., Berti, L., Masserdotti, G., Covic, M., Michaelidis, T.M., Doberauer, K., Merz, K., Rehfeld, F., Haslinger, A., Wegner, M., Sock, E., Lefebvre, V., Couillard-Despres, S., Aigner, L., Berninger, B., and Lie, D.C. (2012). SoxC Transcription Factors Are Required for Neuronal Differentiation in Adult Hippocampal Neurogenesis. J Neurosci, 32, 3067-3080. [CrossRef] [PubMed] [Google Scholar]
- Mu, Y., Lee, S.W., and Gage, F.H. (2010). Signaling in adult neurogenesis. Curr Opin Neurobiol, 20, 416-423. [CrossRef] [PubMed] [Google Scholar]
- Nakashiba, T., Cushman, J.D., Pelkey, K.A., Renaudineau, S., Buhl, D.L., McHugh, T.J., Barrera, V.R., Chittajallu, R., Iwamoto, K.S., McBain, C.J., Fanselow, M.S., and Tonegawa, S. (2012). Young Dentate Granule Cells Mediate Pattern Separation, whereas Old Granule Cells Facilitate Pattern Completion. Cell , 149, 188-201. [CrossRef] [PubMed] [Google Scholar]
- Nilsson, M., Perfilieva, E., Johansson, U., Orwar, O., and Eriksson, P.S. (1999). Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol, 39, 569-578. [CrossRef] [PubMed] [Google Scholar]
- Nottebohm, F. (2002). Neuronal replacement in adult brain. Brain Res Bull, 57, 737-749. [CrossRef] [PubMed] [Google Scholar]
- Olariu, A., Cleaver, K.M., Shore, L.E., Brewer, M.D., and Cameron, H.A. (2005). A natural form of learning can increase and decrease the survival of new neurons in the dentate gyrus. Hippocampus, 15, 750-762. [CrossRef] [PubMed] [Google Scholar]
- Overstreet-Wadiche, L.S., Bromberg, D.A., Bensen, A.L., and Westbrook, G.L. (2005). GABAergic signaling to newborn neurons in dentate gyrus. J Neurophysiol, 94, 4528-4532. [CrossRef] [PubMed] [Google Scholar]
- Owen, E., Logue, S., Rasmussen, D., and J.M. Wehner (1997). Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analyses. Neuroscience, 80, 1087-1099. [CrossRef] [PubMed] [Google Scholar]
- Pallotto, M., and Deprez, F. (2014). Regulation of adult neurogenesis by GABAergic transmission: signaling beyond GABAA-receptors. Front Cell Neurosci, 8, 166. [CrossRef] [PubMed] [Google Scholar]
- Raber, J., Rola, R., LeFevour, A., Morhardt, D., Curley, J., Mizumatsu, S., VandenBerg, S.R., and Fike, J.R. (2004). Radiation-Induced Cognitive Impairments are Associated with Changes in Indicators of Hippocampal Neurogenesis. Radiat Res, 162, 39-47. [CrossRef] [PubMed] [Google Scholar]
- Radley, J.J., Johnson, L.R., Janssen, W.G.M., Martino, J., Lamprecht, R., Hof, P.R., LeDoux, J.E., and Morrison, J.H. (2006). Associative Pavlovian conditioning leads to an increase in spinophilin-immunoreactive dendritic spines in the lateral amygdala. Eur J. Neurosci, 24, 876-884. [CrossRef] [PubMed] [Google Scholar]
- Raucci, F., Di Fiore, M.M., Pinelli, C., D’Aniello, B., Luongo, L., Polese, G., and Rastogi, R.K. (2006). Proliferative activity in the frog brain: a PCNA-immunohistochemistry analysis. J Chem Neuroanat, 32, 127-142. [CrossRef] [PubMed] [Google Scholar]
- Ravassard, P., Hamieh, A.M., Joseph, M.A., Fraize, N., Libourel, P.-A., Lebarillier, L., Arthaud, S., Meissirel, C., Touret, M., Malleret, G., and Salin, P-A. (2015). REM Sleep-Dependent Bidirectional Regulation of Hippocampal-Based Emotional Memory and LTP. Cereb Cortex, 1-13. [Google Scholar]
- Remaud, S., Gothié, J.-D., Morvan-Dubois, G., and Demeneix, B.A. (2014). Thyroid Hormone Signaling and Adult Neurogenesis in Mammals. Front Endocrinol (Lausanne), 5, 62. [PubMed] [Google Scholar]
- Renaudineau, S., Poucet, B., Laroche, S., Davis, S., and Save, E. (2009). Impaired long-term stability of CA1 place cell representation in mice lacking the transcription factor zif268/egr1. Proc Natl Acad Sci USA, 106, 11771-11775. [CrossRef] [Google Scholar]
- Restivo, L., Vetere, G., Bontempi, B., and Ammassari-Teule, M. (2009). The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci, 29, 8206-8214. [CrossRef] [PubMed] [Google Scholar]
- Reynolds, B.A., and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707-1710. [CrossRef] [PubMed] [Google Scholar]
- Ribak, C.E., Korn, M.J., Shan, Z., and Obenaus, A. (2004). Dendritic growth cones and recurrent basal dendrites are typical features of newly generated dentate granule cells in the adult hippocampus. Brain Res, 1000, 195-199. [CrossRef] [PubMed] [Google Scholar]
- Rola, R., Raber, J., Rizk, A., Otsuka, S., Vandenberg, S.R., Morhardt, D.R., and Fike, J.R. (2004). Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol, 188, 316-330. [CrossRef] [PubMed] [Google Scholar]
- Rolls, E.T. (2013). The mechanisms for pattern completion and pattern separation in the hippocampus. Front Syst Neurosci, 7, 74. [CrossRef] [PubMed] [Google Scholar]
- Sahay, A., Wilson, D.A., and Hen, R. (2011a). Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron, 70, 582-588. [CrossRef] [PubMed] [Google Scholar]
- Sahay, A., Scobie, K.N., Hill, A.S., O’Carroll, C.M., Kheirbek, M.A., Burghardt, N.S., Fenton, A.A., Dranovsky, A., and Hen, R. (2011b). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472, 466-470. [CrossRef] [PubMed] [Google Scholar]
- Sandoval, C.J., Martínez-Claros, M., Bello-Medina, P.C., Pérez, O., and Ramírez-Amaya, V. (2011). When are new hippocampal neurons, born in the adult brain, integrated into the network that processes spatial information? PLoS One, 6, e17689. [CrossRef] [PubMed] [Google Scholar]
- Saxe, M.D., Battaglia, F., Wang, J.-W., Malleret, G., David, D.J., Monckton, J.E., Garcia, A.D., Sofroniew, M.V., Kandel, E.R., Santarelli, L., Hen, R., and Drew, M.R. (2006). Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA, 103, 17501-17506. [CrossRef] [Google Scholar]
- Saxe, M.D., Malleret, G., Vronskaya, S., Mendez, I., Garcia, A.D., Sofroniew, M.V., Kandel, E.R., and Hen, R. (2007). Paradoxical influence of hippocampal neurogenesis on working memory. Proc Natl Acad Sci USA, 104, 4642-4646. [CrossRef] [Google Scholar]
- Schmidt-Hieber, C., Jonas, P., and Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429, 184-187. [CrossRef] [PubMed] [Google Scholar]
- Schoenfeld, T., and Gould, E. (2012). Stress, stress hormones, and adult neurogenesis. Exp Neurol, 233, 12-21. [CrossRef] [PubMed] [Google Scholar]
- Selcher, J.C., Weeber, E.J., Varga, A.W., Sweatt, J.D., and Swank, M. (2002). Protein kinase signal transduction cascades in mammalian associative conditioning. Neuroscientist, 8, 122-131. [CrossRef] [PubMed] [Google Scholar]
- Shors, T.J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T., and Gould, E. (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410, 372-376. [CrossRef] [PubMed] [Google Scholar]
- Shors, T.J., Townsend, D.A., Zhao, M., Kozorovitskiy, Y., and Gould, E. (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12, 578-584. [CrossRef] [PubMed] [Google Scholar]
- Sisti, H.M., Glass, A.L., and Shors, T.J. (2007). Neurogenesis and the spacing effect: learning over time enhances memory and the survival of new neurons. Learn Mem, 14, 368-375. [CrossRef] [PubMed] [Google Scholar]
- Snyder, J.S., Hong, N.S., McDonald, R.J., and Wojtowicz, J.M. (2005). A role for adult neurogenesis in spatial long-term memory. Neuroscience, 130, 843-852. [CrossRef] [PubMed] [Google Scholar]
- Snyder, J.S., Choe, J.S., Clifford, M.A., Jeurling, S.I., Hurley, P., Brown, A., Kamhi, J.F., and Cameron, H.A. (2009). Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci, 29, 14484-14495. [CrossRef] [PubMed] [Google Scholar]
- Song, H., Stevens, C.F., and Gage, F.H. (2002). Astroglia induce neurogenesis from adult neural stem cells. Nature, 417, 39-44. [CrossRef] [PubMed] [Google Scholar]
- Spalding, K.L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H.B., Boström, E., Westerlund, I., Vial, C., Buchholz, B.A., Possnert, G., Mash, D.C., Druid, H., and Frisén, J. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153, 1219-1227. [CrossRef] [PubMed] [Google Scholar]
- Stein, I.S., Gray, J.A., and Zito, K. (2015). Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage. J Neurosci, 35, 12303-12308. [CrossRef] [PubMed] [Google Scholar]
- Steiner, B., Kronenberg, G., Jessberger, S., Brandt, M.D., Reuter, K., and Kempermann, G. (2004). Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia, 46, 41-52. [CrossRef] [PubMed] [Google Scholar]
- Stone, S.S.D., Teixeira, C.M., Zaslavsky, K., Wheeler, A.L., Martinez-Canabal, A., Wang, A., Sakaguchi, M., Lozano, A.M., and Frankland, P.W. (2011). Functional convergence of developmentally and adult-generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory. Hippocampus, 21, 1348-1362. [CrossRef] [PubMed] [Google Scholar]
- Sun, J., Ming, G.-L., and Song, H. (2011). Epigenetic regulation of neurogenesis in the adult mammalian brain. Eur J Neurosci, 33, 1087-1093. [CrossRef] [PubMed] [Google Scholar]
- Sun, W., Winseck, A., Vinsant, S., Park, O., Kim, H., and Oppenheim, R.W. (2004). Programmed cell death of adult-generated hippocampal neurons is mediated by the proapoptotic gene Bax. J Neurosci, 24, 11205-11213. [CrossRef] [PubMed] [Google Scholar]
- Swan, A.A., Clutton, J.E., Chary, P.K., Cook, S.G., Liu, G.G., and Drew, M.R. (2014). Characterization of the role of adult neurogenesis in touch-screen discrimination learning. Hippocampus, 11, 1581-1591. [CrossRef] [Google Scholar]
- Tashiro, A., Makino, H., and Gage, F.H. (2007). Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci, 27, 3252-3259. [CrossRef] [PubMed] [Google Scholar]
- Toni, N., and Sultan, S. (2011). Synapse formation on adult-born hippocampal neurons. Eur J Neurosci, 33, 1062-1068. [CrossRef] [PubMed] [Google Scholar]
- Toni, N., Laplagne, D.A., Zhao, C., Lombardi, G., Ribak, C.E., Gage, F.H., and Schinder, A.F. (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11, 901-907. [CrossRef] [PubMed] [Google Scholar]
- Tononi, G., and Cirelli, C. (2014). Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration. Neuron, 81, 12-34. [CrossRef] [PubMed] [Google Scholar]
- Tozuka, Y., Fukuda, S., Namba, T., Seki, T., and Hisatsune, T. (2005). GABAergic Excitation Promotes Neuronal Differentiation in Adult Hippocampal Progenitor Cells. Neuron, 47, 803-815. [CrossRef] [PubMed] [Google Scholar]
- Tronel, S., Fabre, A., Charrier, V., Oliet, S.H.R., Gage, F.H., and Abrous, D.N. (2010). Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proc Natl Acad Sci USA, 107, 7963-7968. [CrossRef] [Google Scholar]
- Tronel, S., Belnoue, L., Grosjean, N., Revest, J.M., Piazza, P.V., Koehl, M., and Abrous, D.N. (2012). Adult-born neurons are necessary for extended contextual discrimination. Hippocampus, 22, 292-298. [CrossRef] [PubMed] [Google Scholar]
- Tronel, S., Charrier, V., Sage, C., Maitre, M., Leste-Lasserre, T., and Abrous, D.N. (2015). Adult-born dentate neurons are recruited in both spatial memory encoding and retrieval. Hippocampus, 25, 1472-1479. [CrossRef] [PubMed] [Google Scholar]
- Trouche, S., Bontempi, B., Roullet, P., and Rampon, C. (2009). Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory. Proc Natl Acad Sci USA, 106, 5919-5924. [CrossRef] [Google Scholar]
- Tsien, J.Z., Huerta, P.T., and Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87, 1327-1338. [CrossRef] [PubMed] [Google Scholar]
- Van der Borght, K., Meerlo, P., Paul, P.G., Eggen, B.J.L., and Van Der Zee, E.A. (2005). Effects of active shock avoidance learning on hippocampal neurogenesis and plasma levels of corticosterone. Behav Brain Res, 157, 23-30. [CrossRef] [PubMed] [Google Scholar]
- Van der Borght, K., Havekes, R., Bos, T., Eggen, B.J.L., and Van der Zee, E.A. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: relationship with hippocampal neurogenesis. Behav Neurosci, 121, 324-334. [CrossRef] [PubMed] [Google Scholar]
- Van Praag, H., Christie, B.R., Sejnowski, T.J., and Gage, F.H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA, 96, 13427-13431. [CrossRef] [Google Scholar]
- Van Praag, H., Schinder, A.F., Christie, B.R., Toni, N., Palmer, T.D., and Gage, F.H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030-1034. [CrossRef] [PubMed] [Google Scholar]
- Veyrac, A., Gros, A., Bruel-Jungerman, E., Rochefort, C., Borgmann, F.B.K., Jessberger, S., and Laroche, S. (2013). Zif268/egr1 gene controls the selection, maturation and functional integration of adult hippocampal newborn neurons by learning. Proc Natl Acad Sci USA, 110, 7062-7067. [CrossRef] [Google Scholar]
- Veyrac, A., Besnard, A., Caboche, J., Davis, S., and Laroche, S. (2014). The transcription factor Zif268/Egr1, brain plasticity, and memory, Elsevier Inc. [Google Scholar]
- Waddell, J., Anderson, M.L., and Shors, T.J. (2011). Changing the rate and hippocampal dependence of trace eyeblink conditioning: slow learning enhances survival of new neurons. Neurobiol Learn Mem, 95, 159-165. [CrossRef] [PubMed] [Google Scholar]
- Wang, S., Scott, B., and Wojtowicz, J.M. (2000). Heterogenous properties of dentate granule neurons in the adult rat. J Neurobiol, 64, 248-257. [CrossRef] [PubMed] [Google Scholar]
- Whitlock, J.R., Heynen, A.J., Shuler, M.G., and Bear, M.F. (2006). Learning induces long-term potentiation in the hippocampus. Science, 313, 1093-1097. [CrossRef] [PubMed] [Google Scholar]
- Winocur, G., Wojtowicz, J.M., Sekeres, M., Snyder, J.S., and Wang, S. (2006). Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus, 16, 296-304. [CrossRef] [PubMed] [Google Scholar]
- Xu, Z., Li, J., Zhang, F., Wu, Y., Gao, Y., Liang, J., and Zhang, C. (2011). Working memory task decreases the survival of newly born neurons in hippocampus. Neurobiol Learn Mem, 95, 239-247. [CrossRef] [PubMed] [Google Scholar]
- Yassa, M.A., and Stark, C.E.L. (2011). Pattern separation in the hippocampus. Trends Neurosci, 34, 515-525. [CrossRef] [PubMed] [Google Scholar]
- De Zeeuw, C.I., and Yeo, C.H. (2005). Time and tide in cerebellar memory formation. Curr Opin Neurobiol, 15, 667-674. [CrossRef] [PubMed] [Google Scholar]
- Zhang, C.-L., Zou, Y., He, W., Gage, F.H., and Evans, R.M. (2008). A role for adult TLX-positive neural stem cells in learning and behaviour. Nature, 451, 1004-1007. [CrossRef] [PubMed] [Google Scholar]
- Zhao, C., Teng, E.M., Summers, R.G., Ming, G.-L., and Gage, F.H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci, 26, 3-11. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.