Accès gratuit
Biologie Aujourd'hui
Volume 210, Numéro 4, 2016
Page(s) 227 - 235
Section Comment le cerveau contrôle-t-il notre équilibre énergétique ?
Publié en ligne 22 mars 2017
  • Allerton, T.D., Primeaux, S.D. (2015). QRFP-26 enhances insulin’s effects on glucose uptake in rat skeletal muscle cells. Peptides, 69, 77-79. [CrossRef] [PubMed] [Google Scholar]
  • Bäckberg, M., Hervieu, G., Wilson, S., Meister, B. (2002). Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake. Eur J Neurosci, 15, 315-328. [CrossRef] [PubMed] [Google Scholar]
  • Beck, B., Richy, S. (2009).Suppression of QRFP 43 in the hypothalamic ventromedial nucleus of Long-Evans rats fed a high-fat diet. Biochem Biophys Res Commun, 383, 78-82. [CrossRef] [PubMed] [Google Scholar]
  • Bonini, J.A., Jones, K.A., Adham, N., Forray, C., Artymyshyn, R., Durkin, M.M., Smith, K.E., Tamm, J.A., Boteju, L.W., Lakhlani, P.P., Raddatz, R., Yao, W.J., Ogozalek, K.L., Boyle, N., Kouranova, E.V., Quan, Y., Vaysse, P.J., Wetzel, J.M., Branchek, T.A., Gerald, C., Borowsky, B. (2000). Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J Biol Chem, 275, 39324-39331. [CrossRef] [PubMed] [Google Scholar]
  • Bruzzone, F., Lectez, B., Tollemer, H., Leprince, J., Dujardin, C., Rachidi, W., Chatenet, D., Baroncini, M., Beauvillain, J.C., Vallarino, M., Vaudry, H., Chartrel, N. (2006). Anatomical distribution and biochemical characterization of the novel RFamide peptide 26RFa in the human hypothalamus and spinal cord. J Neurochem, 99, 616-27. [CrossRef] [PubMed] [Google Scholar]
  • Bruzzone, F., Lectez, B., Alexandre, D., Jégou, S., Mounien, L., Tollemer, H., Chatenet, D., Leprince, J., Vallarino, M., Vaudry, H., Chartrel, N. (2007). Distribution of 26RFa binding sites and GPR103 mRNA in the central nervous system of the rat. J Comp Neurol, 503, 573-591. [PubMed] [Google Scholar]
  • Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A., Butler, P.C. (2003). Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 52, 102-110. [PubMed] [Google Scholar]
  • Chartrel, N., Dujardin, C., Leprince, J., Desrues, L., Tonon, M.C., Cellier, E., Jouenne, T., Simonnet, G., Vaudry, H. (2002). Isolation, characterization and distribution of a novel neuropeptide, Rana RFamide (R-RFa), in the brain of the European green frog Rana esculenta. J Comp Neurol, 448, 111-127. [PubMed] [Google Scholar]
  • Chartrel, N., Dujardin, C., AnouarY., Leprince, J., Decker, A., Clerens, S., Do-Régo J.L., Vandesande, F., Llorens-Cortes, C., Costentin, J., Beauvillain, J.C., Vaudry, H. (2003). Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity. Proc Natl Acad Sci USA, 100, 15247-15252. [CrossRef] [Google Scholar]
  • Chartrel, N., Alonzeau, J., Alexandre, D., Jeandel, L., Alvear-Perez, R., Leprince, J., Boutin, J., Vaudry, H., Anouar, Y., Llorens-Cortes, C. (2011).The RFamide neuropeptide 26RFa and its role in the control of neuroendocrine functions. Front Neuroendocrinol, 32, 387-397. [CrossRef] [PubMed] [Google Scholar]
  • Chen, A., Chiu, C.N., Mosser, E.A., Kahn, S., Spence, R., Prober, D.A. (2016). QRFP and its receptors regulate locomotor activity and sleep in zebrafish. J Neurosci, 36, 1823-1840. [CrossRef] [PubMed] [Google Scholar]
  • Ciriello, J., McMurray, J.C., Babic, T., de Oliveira, C.V. (2003). Collateral axonal projections from hypothalamic hypocretin neurons to cardiovascular sites in nucleus ambiguus and nucleus tractus solitarius. Brain Res, 991, 133-141. [PubMed] [Google Scholar]
  • Davies, J., Chen, J., Pink, R., Carter, D., Saunders, N., Sotiriadis, G., Bai, B., Pan, Y., Howlett, D., Payne, A., Randeva, H., Karteris, E. (2015). Orexin receptors exert a neuroprotective effect in Alzheimer’s desease (AD) via heterodimerization with GPR103. Sci Rep, 5, 12584. [CrossRef] [PubMed] [Google Scholar]
  • Dockray, G.J. (2004). The expanding family of -RFamide peptides and their effects on feeding behavior. Exp Physiol, 89, 229-235. [PubMed] [Google Scholar]
  • Do Rego, J.C., Leprince, J., Chartrel, N., Vaudry, H., Costentin, J. (2006). Behavioral effects of 26RFamide and related peptides. Peptides, 27, 2715-2721. [CrossRef] [PubMed] [Google Scholar]
  • Dube, M.G., HorvathT.L., Kalra, P.S. (2000). Evidence of NPY Y5 receptor involvement in food intake elicited by orexin A in sated rats. Peptides, 21, 1557-1560. [CrossRef] [PubMed] [Google Scholar]
  • Fukusumi, S., Yoshida, H., Fujii, R., Maruyama, M., Komatsu, H., Habata, Y., Shintani, Y., Hinuma, S., Fujino, M. (2003). A new peptidic ligand and its receptor regulating adrenal function in rats. J Biol Chem, 278, 46387-46395. [CrossRef] [PubMed] [Google Scholar]
  • Egido, E.M., Hernandez, R., Leprince, J., Chartrel, N., Vaudry, H., Marco, J., Silvestre, R.A. (2007). 26RFa, a novel orexigenic neuropeptide, inhibits insulin secretion in the rat pancreas. Peptides, 28, 725-730. [CrossRef] [PubMed] [Google Scholar]
  • Galusca, B., Jeandel, L., Germain, N., Alexandre, D., Leprince, J., Anouar, Y., Estour, B., Chartrel, N. (2012). Plasma levels of the orexigenic neuropeptide 26RFa in two populations with low body weight: constitutional thinness and anorexia nervosa. Influence of bingeing/purging episodes. J Clin Endocrinol Metab, 97, 2012-2018. [PubMed] [Google Scholar]
  • Gouardères, C., Mazarguil, H., Mollereau, C., Chartrel, N., Leprince, J., Vaudry, H., Zajac, J.M. (2007). Functional differences between NPFF1 and NPFF2 receptor coupling: High intrinsic activities of RFamide-related peptides on stimulation of [35S]GTPγS binding. Neuropharmacol, 52, 376-386. [CrossRef] [Google Scholar]
  • Granata, R., Settanni, F., Trovato, L., Gallo, D., Gesmundo, I., Nano, R., Gallo, M.P., Bergandi, L., Volante, M., Alloatti, G., Piemonti, L., Leprince, J., Papotti, M., Vaudry, H., Ong, H., Ghigo, E. (2014). RFamide Peptides 43RFa and 26RFa Both Promote Survival of Pancreatic β-Cells and Human Pancreatic Islets but Exert Opposite Effects on Insulin Secretion. Diabetes, 63, 2380-2393. [PubMed] [Google Scholar]
  • Greenwood, H.C., Bloom, S.R., Murphy, K.G. (2011).Peptides and their potential role in the treatment of diabetes and obesity. Rev Diabet Stud, 8, 355-368. [PubMed] [Google Scholar]
  • Jiang, Y., Luo, L., Gustafson, E.L., Yadav, D., Laverty, M., Murgolo, N., Vassileva, G., Zeng, M., Laz, T.M., Behan, J., Qiu, P., Wang, L., Wang, S., Bayne, M., Greene, J., Monsma, F. Jr., Zhang, F.L. (2003). Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J Biol Chem, 278, 27652-27657. [CrossRef] [PubMed] [Google Scholar]
  • Kahn, S.E., Cooper, M.E., Del Prato, S. (2014). Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet, 383, 1068-1083. [CrossRef] [PubMed] [Google Scholar]
  • Kampe, J., Wiedmer, P., Pfluger, P.T., Castaneda, T.R., Burget, L., Mondala, H., Kerr, J., Liaw, C., Oldfield, B.J., Tschöp, M.H., Bagnol, D. (2006). Effect of central administration of QRFP(26) peptide on energy balance and characterization of a second QRFP receptor in rat. Brain Res, 1119, 133-149. [PubMed] [Google Scholar]
  • Lectez, B., Jeandel, L., El-Yamani, F.Z., Arthaud, S., Alexandre, D., Mardargent, A., Jégou, S., Mounien, L., Bizet, P., Magoul, R., Anouar, Y., Chartrel, N. (2009). The orexigenic activity of the hypothalamic neuropeptide 26RFa is mediated by the neuropeptide Y and proopiomelanocortin neurons of the arcuate nucleus. Endocrinology, 150, 2342-2350. [CrossRef] [PubMed] [Google Scholar]
  • Lee, D.K., Nguyen, T., Lynch, K.R., Cheng, R., Vanti, W.B., Arkhitko, O., Lewis, T., Evans, J.F., George, S.R., O’Dowd, B.F. (2001). Discovery and mapping of ten novel G protein-coupled receptor genes. Gene, 275, 83-91. [Google Scholar]
  • Liu, Y., Zhang, Y., Li, S., Huang, W., Liu, X., Lu, D., Meng, Z., Lin, H. (2009). Molecular cloning and functional characterization of the first non-mammalian 26RFa/QRFP orthologue in goldfish, Carassius auratus. Mol Endocrinol, 303, 82-90. [Google Scholar]
  • López, M., Seoane, L.M., García Medel, C., Diéguez, C., Señarís, R. (2002). Neuropeptide Y, but not agouti-related peptide or melanin-concentrating hormone, is a target peptide for orexin-A feeding actions in the rat hypothalamus. Neuroendocrinology, 75, 34-44. [CrossRef] [PubMed] [Google Scholar]
  • Moriya, R., Sano, H., Umeda, T., Ito, M., Takahashi, Y., Matsuda, M., Ishihara, A., Kanatani, A., Iwaasa, H. (2006). RFamide peptide QRFP43 causes obesity with hyperphagia and reduced thermogenesis in mice. Endocrinology, 147, 2916-2922. [CrossRef] [PubMed] [Google Scholar]
  • Mulumba, M., Jossart, C., Granata, R., Gallo, D., Escher, E., Ghigo, E., Servant, M.J., Marleau, S., Ong, H. (2010). GPR103b functions in the peripheral regulation of adipogenesis. Mol Endocrinol, 24, 1615-1625. [PubMed] [Google Scholar]
  • Mulumba, M., Granata, R., Marleau, S., Ong, H. (2015). QRFP-43 inhibits lipolysis by preventing ligand-induced complex formation between perilipin A, caveolin-1, the catalytic subunit of protein kinase and hormone-sensitive lipase in 3T3-L1 adipocytes. Biochim Biophys Acta, 1851, 657-666. [PubMed] [Google Scholar]
  • Patel, S.R., Murphy, K.G., Thompson, E.L., Patterson, M., Curtis, A.E., Ghatei, M.A., Bloom, S.R. (2008). Pyroglutamylated RFamide peptide 43 stimulates the hypothalamic-pituitary-gonadal axis via gonadotropin-releasing hormone in rats. Endocrinology, 149, 4747-4754. [CrossRef] [PubMed] [Google Scholar]
  • Prévost G., Jeandel, L., Arabo, A., Coëffier, M., El Ouahli, M., Picot, M., Alexandre, D., Gobet, F., Leprince, J., Berrahmoune, H., Déchelotte, P., Malagon, M., Bonner, C., Kerr-Conte, J., Chigr, F., Lefebvre, H., Anouar, Y., Chartrel, N. (2015). The hypothalamic neuropeptide 26RFa acts as an incretin to regulate glucose homeostasis. Diabetes, 64, 2805-2816. [PubMed] [Google Scholar]
  • Primeaux, S.D., Blackmon, C., Barnes, M.J., Braymer, D., Bray, G.A. (2008). Central administration of the RFamide peptides, QRFP-26 and QRFP-43, increases high fat food intake in rats. Peptides, 29, 1994-2000. [CrossRef] [PubMed] [Google Scholar]
  • Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R.M., Tanaka, H., Williams, S.C., Richarson, J.A., Kozlowski, G.P., Wilson, S., Arch, J.R., Buckingham, R.E., Haynes, A.C., Carr, S.A., Annan, R.S., McNulty, D.E., Liu, W.S., Terrett, J.A., Elshourbagy, N.A., Bergsma, D.J., Yanagisawa, M. (1998). Orexins and orexin receptors : a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behaviour. Cell, 92, 573-585. [CrossRef] [PubMed] [Google Scholar]
  • Schreiber, A.L., Arceneaux III, K.P., Malbrue, R.A., Mouton, A.J., Chen, C.S., Bench, E.M., Braymer, H.D., Primeaux, S.D. (2016). The effects of high fat diet and oestradiol on hypothalamic prepro-QRFP mRNA expression in female rats. Neuropeptides, 58, 103-109. [PubMed] [Google Scholar]
  • Takayasu, S., Sakurai, T., Iwasaki, S., Teranishi, H., Yamanaka, A., Williams, S.C., Iguchi, H., Kawasawa, Y.I., Ikeda, Y., Sakakibara, I., Ohno, K., Ioka, R.X., Murakami, S., Dohmae, N., Xie, J., Suda, T., Motoike, T., Ohuchi, T., Yanagisawa, M., Sakai, J. (2006). A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proc Natl Acad Sci USA, 103, 7438-7443. [CrossRef] [Google Scholar]
  • Tomer, Y., Dolan, L.M., Kahaly, G., Divers, J., D’Agostino, R.B., Imperatore, G., Dabelea, D., Marcovina, S., Black, M.H., Pihoker, C., Hasham, A., Hammerstad, S.S., Greenberg, D.A., Lotay, V., Zhang, W., Monti, M.C., Matheis, N. (2015). SEARCH for Diabetes in Youth Study. Genome wide identification of new genes and pathways in patients with both autoimmune thyroiditis and type 1 diabetes. J Autoimmun, 60, 32-39. [CrossRef] [PubMed] [Google Scholar]
  • Ukena, K., Tachibana, T., Iwakoshi-Ukena, E., Saito, Y., Minakata, H., Kawaguchi, R., Osugi, T., Tobari, Y., Leprince, J., Vaudry, H., Tsutsui, K. (2010). Identification, localization, and function of a novel hypothalamic neuropeptide, 26RFa, and its cognate receptor, G protein-coupled receptor-103. Endocrinology, 151, 2255-2264. [CrossRef] [PubMed] [Google Scholar]
  • Yamanaka, A., Kunii, K., Nambu, T., Tsujino, N., Sakai, A., Matsuzaki, I., Miwa, Y., Goto, K., Sakurai, T. (2000). Orexin-induced food intake involves neuropeptide Y pathway. Brain Res, 859, 404-409. [PubMed] [Google Scholar]
  • Zagoracz, O., Kovacs, A., Laszlo, K., Ollmann, T., Peczely, L., Lenard, L. (2015). Effect of direct QRFP-26 administration into the medial hypothalamic area on food intake in rats. Brain Res Bull, 118, 58-64. [CrossRef] [PubMed] [Google Scholar]
  • World Health Organization (2014). Obésité et surpoids. In: Aide Mémoire. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.