Accès gratuit
Biologie Aujourd'hui
Volume 211, Numéro 1, 2017
Page(s) 29 - 37
Section Microbiote intestinal et santé (Journée Claude Bernard 2016)
Publié en ligne 6 juillet 2017
  • Aigner, M., Treasure J., Kaye W., Kasper S. and The WFSBP Task Force on Eating Disorders (2011). World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of eating disorders. World J Biol Psychiatry, 12, 400-443. [Google Scholar]
  • Alcock, J., Maley C.C., Aktipis C.A. (2014). Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays, 36, 940-949. [CrossRef] [PubMed] [Google Scholar]
  • Anini, Y., Fu-Cheng X., Cuber C.J., Kervran A., Chariot J., Rozé C. (1999). Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat. Pflügers Archiv, 438, 299-306. [CrossRef] [Google Scholar]
  • Armougom, F., Henry M., Vialettes B., Raccah D., Raoult D. (2009). Monitoring bacterial community of human gut microbiota reveals an increase in lactobacillus in obese patients and methanogens in anorexic patients. PLoS One, 4, e7125. [Google Scholar]
  • Bäckhed, F.,Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., Semenkovich C.F., Gordon J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA, 101, 15718-15723. [Google Scholar]
  • Bäckhed, F., Ley R. E., Sonnenburg J.L., Peterson D.A., Gordon J.I. (2005). Host-bacterial mutualism in the human intestine. Science, 307, 1915-1920. [CrossRef] [PubMed] [Google Scholar]
  • Breton, J., Tennoune N., Lucas N., François M., Legrand R., Jacquemot J., Goichon A., Guérin C., Peltier J., Pestel-Caron M., Chan P., Vaudry D., do Rego J.C., Liénard F., Pénicaud J., Fioramonti X., Ebenezer I.S., Hökfelt T., Déchelotte P., Fetissov S.O. (2016). Gut commensal E.coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab, 23, 1-11. [CrossRef] [PubMed] [Google Scholar]
  • Bukharin, O. V., Perunova N. B. (2014). Microsymbiocenosis. Ekaterinburg, UrDepart RAS. [Google Scholar]
  • Cani, P.D., Bibiloni R., Knauf C., Waget A., Neyrinck A.M., Delzenne N.M., Burcelin R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57, 1470-1481. [CrossRef] [PubMed] [Google Scholar]
  • Chapelot, D., Aubert R., Marmonier C., Chabert M., Louis-Sylvestre J. (2000). An endocrine and metabolic definition of the intermeal interval in humans : evidence for a role of leptin on the prandial pattern through fatty acid disposal. American J Clin Nutr, 72, 421-431. [CrossRef] [Google Scholar]
  • Cryan, J.F., Dinan T.G. (2012). Mind-altering microorganisms : the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci, 13, 701-712. [CrossRef] [PubMed] [Google Scholar]
  • de Zwaan, M., Marschollek M., Allison K.C. (2015). The night eating syndrome (NES) in bariatric surgery patients. Eur Eat Disord Rev, 23, 426-434. [CrossRef] [PubMed] [Google Scholar]
  • Dethlefsen, L., McFall-Ngai M., Relman D.A. (2007). An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature, 449, 811-818. [CrossRef] [PubMed] [Google Scholar]
  • Everard, A., Lazarevic V., Derrien M., Girard M., Muccioli G.G., Neyrinck A.M., Possemiers S., Van Holle A., François P., de Vos W.M., Delzenne N.M., Schrenzel J., Cani P.D. (2011). Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes, 60, 2775-2786. [CrossRef] [PubMed] [Google Scholar]
  • Fergus, C., Barnes D., Alqasem M., Kelly V. (2015). The queuine micronutrient : charting a course from microbe to man. Nutrients, 7, 2897. [CrossRef] [PubMed] [Google Scholar]
  • Fetissov, S.O. (2017). Role of the gut microbiota in host appetite control : bacterial growth to animal feeding behaviour. Nat Rev Endocrinol, 13, 11-25. [CrossRef] [PubMed] [Google Scholar]
  • Fetissov, S.O., Déchelotte P. (2011). The new link between gut-brain axis and neuropsychiatric disorders. Curr Opin Clin Nutr Metab Care, 14, 477–482. [CrossRef] [PubMed] [Google Scholar]
  • Fetissov, S.O., Meguid M.M. (2010). Serotonin delivery into the ventromedial nucleus of the hypothalamus affects differently feeding pattern and body weight in obese and lean Zucker rats. Appetite, 54, 346-353. [CrossRef] [PubMed] [Google Scholar]
  • Gautron, L., Elmquist J. K., Williams K.W. (2015). Neural control of energy balance : translating circuits to therapies.Cell, 161, 133-145. [CrossRef] [PubMed] [Google Scholar]
  • Gerspach, A.C., Steinert R.E., Schönenberger L., Graber-Maier A., Beglinger C. (2011). The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am J Physiol Endocrinol Metab, 301, E317-E325. [CrossRef] [PubMed] [Google Scholar]
  • Gilbert, S.F., Sapp J., Tauber A.I. (2012). A symbiotic view of life : we have never been individuals. Q Rev Biol, 87, 325-341. [CrossRef] [PubMed] [Google Scholar]
  • Hempfling, W.P., Mainzer S.E. (1975). Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture. J Bacteriol, 123, 1076-1087. [PubMed] [Google Scholar]
  • Hooper, L.V., Littman D.R., Macpherson A.J. (2012). Interactions between the microbiota and the immune system. Science, 336, 1268-1273. [CrossRef] [PubMed] [Google Scholar]
  • Keller, L., Surette M.G. (2006). Communication in bacteria : an ecological and evolutionary perspective. Nat Rev Micro, 4, 249-258. [Google Scholar]
  • Leone, V., Gibbons S.M., Martinez K., Hutchison A. L., Huang E.Y., Cham C.M., Pierre J.F., Heneghan A.F., Nadimpalli A., Hubert N., Zale E., Wang Y., Huang Y., Theriault B., Dinner A.R., Musch M.W., Kudsk K.A., Prendergast B.J., Gilbert J.A., Chang E.B. (2015). Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe, 17, 681-689. [CrossRef] [PubMed] [Google Scholar]
  • Ley, R.E., Turnbaugh P.J., Klein S., Gordon J.I. (2006). Microbial ecology : Human gut microbes associated with obesity. Nature, 444, 1022-1023. [CrossRef] [PubMed] [Google Scholar]
  • Liang, X., Bushman F.D., FitzGerald G.A. (2015). Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci USA, 112, 10479-10484. [CrossRef] [Google Scholar]
  • Maffei, M., Halaas J., Ravussin E., Pratley R.E., Lee G.H., Zhang Y., Fei H., Kim S., Lallone R., Ranganathan S., Kern, P.A., Friedman, J.M., (1995). Leptin levels in human and rodent : measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med, 1, 1155-1161. [CrossRef] [PubMed] [Google Scholar]
  • McFall-Ngai, M., Hadfield M.G., Bosch T.C.G., Carey H.V., Domazet-Lošo T., Douglas A.E., Dubilier N., Eberl G., Fukami T., Gilbert S.F., Hentschel U., King N., Kjelleberg S., Knoll A.H., Kremer N., Mazmanian S.K., Metcalf J.L., Nealson K., Pierce N.E., Rawls J.F., Reid A., Ruby E.G., Rumpho M., Sanders J.G., Tautz D., Wernegreen J.J. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proc Nat Acad Sci USA, 110, 3229-3236. [CrossRef] [Google Scholar]
  • Mukherji, A., Kobiita A., Damara M., Misra N., Meziane H., Champy M.-F., Chambon P. (2015). Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc Nat Acad Sci USA, 112, E6691-E6698. [CrossRef] [Google Scholar]
  • Pavlov, I.P. (1902). The work of the digestive glands, Charles Griffin Co. Ltd, London. [Google Scholar]
  • Power, M.L., Schulkin J. (2008). Anticipatory physiological regulation in feeding biology : Cephalic phase responses. Appetite, 50, 194-206. [CrossRef] [PubMed] [Google Scholar]
  • Rajpal, D.K., Klein J.-L., Mayhew D., Boucheron J., Spivak A.T., Kumar V., Ingraham K., Paulik M., Chen L., Van Horn S., Thomas E., Sathe G., Livi G.P., Holmes D.J., Brown J.R. (2016). Selective spectrum antibiotic modulation of the gut microbiome in obesity and diabetes rodent models. PLoS One, 10, e0145499. [CrossRef] [Google Scholar]
  • Rice, K.C., Bayles K.W. (2008). Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev, 72, 85-109. [CrossRef] [PubMed] [Google Scholar]
  • Rosenbaum, M., Knight R., Leibel R.L. (2015). The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab, 26, 493-501. [CrossRef] [PubMed] [Google Scholar]
  • Schwartz, M.W., Woods S.C., Porte D., Jr., Seeley R.J., Baskin D.G. (2000). Central nervous system control of food intake. Nature, 404, 661-671. [CrossRef] [PubMed] [Google Scholar]
  • Sekirov, I., Russell S.L., Antunes L.C., Finlay B.B. (2010). Gut microbiota in health and disease. Physiol Rev, 90, 859-904. [CrossRef] [PubMed] [Google Scholar]
  • Sonnenburg, E.D., Smits S.A., Tikhonov M., Higginbottom S.K., Wingreen N.S., Sonnenburg J.L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529, 212-215. [CrossRef] [PubMed] [Google Scholar]
  • Stunkard, A.J., Grace W.J., Wolff H.G (1955). The night-eating syndrome : A pattern of food intake among certain obese patients. Am J Med, 19, 78-86. [CrossRef] [PubMed] [Google Scholar]
  • Tennoune, N., Chan P., Breton J., Legrand R., Chabane Y.N., Akkermann K., Jarv A., Ouelaa W., Takagi K., Ghouzali I., François M., Lucas N., Bole-Feysot C., Pestel-Caron M., doRego J.C., Vaudry D., Harro J., Dé E., Déchelotte P., Fetissov S.O. (2014). Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide [alpha]-MSH, at the origin of eating disorders. Transl Psychiatry, 4, e458. [CrossRef] [PubMed] [Google Scholar]
  • Thaiss, C.A., Zeevi D., Levy M., Zilberman-Schapira G., Suez J., Tengeler A.C., Abramson L., Katz M.N., Korem T., Zmora N., Kuperman Y., Biton I., Gilad S., Harmelin A., Shapiro H., Halpern Z., Segal E., Elinav E. (2014). Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell, 159, 514-529. [CrossRef] [PubMed] [Google Scholar]
  • Thaiss, C.A., Zeevi D., Levy M., Segal E., Elinav E. (2015). A day in the life of the meta-organism : diurnal rhythms of the intestinal microbiome and its host. Gut Microbes, 6, 137-142. [CrossRef] [PubMed] [Google Scholar]
  • Thaiss, C.A., Itav, S., Rothschild, D., Meijer, M.T., Levy, M., Moresi, C., Dohnalová, L., Braverman, S., Rozin, S., Malitsky, S., Dori-Bachash, M., Kuperman, Y., Biton, I., Gertler, A., Harmelin, A., Shapiro, H., Halpern, Z., Aharoni, A., Segal, E., Elinav, E., (2016) Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature, 540, 544-551. [CrossRef] [PubMed] [Google Scholar]
  • Tremaroli, V., Karlsson F., Werling M., Ståhlman M., Kovatcheva-Datchary P., Olbers T., Fändriks L., C.W. Le Roux, Nielsen J., Bäckhed F. (2015). Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metabolism, 22, 228-238. [CrossRef] [PubMed] [Google Scholar]
  • Turnbaugh, P.J., Ley R.E., Hamady M., Fraser-Liggett C.M., Knight R., Gordon J.I. (2007). The human microbiome project. Nature, 449, 804-810. [CrossRef] [PubMed] [Google Scholar]
  • Turnbaugh, P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027-1131. [CrossRef] [PubMed] [Google Scholar]
  • Wang, J.D., Levin P.A. (2009). Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol, 7, 822-827. [CrossRef] [PubMed] [Google Scholar]
  • Zarrinpar, A., Chaix A., Yooseph S., Panda S., (2014). Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab, 20, 1006-1017. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.