Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 211, Numéro 2, 2017
Page(s) 137 - 148
Section Forces mécaniques et morphogenèse des tissus
DOI https://doi.org/10.1051/jbio/2017021
Publié en ligne 13 décembre 2017
  • Anani, S., Bhat, S., Honma-Yamanaka, N., Krawchuk, D., Yamanaka, Y. (2014). Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development, 141, 2813-2824. [CrossRef] [PubMed] [Google Scholar]
  • Anastasiadis, P.Z. (2007). p120-ctn: a nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta, 1773, 34-46. [CrossRef] [PubMed] [Google Scholar]
  • Bedzhov, I., Liszewska, E., Kanzler, B., Stemmler, M.P. (2012). Igf1r signaling is indispensable for preimplantation development and is activated via a novel function of E-cadherin. PLoS Genet, 8, e1002609. [CrossRef] [PubMed] [Google Scholar]
  • Bement, W.M., Leda, M., Moe, A.M., Kita, A.M., Larson, M.E., Golding, A.E., Pfeuti, C., Su, K.-C., Miller, A.L., Goryachev, A.B., von Dassow G. (2015). Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium. Nat Cell Biol, 17, 1471-1483. [CrossRef] [PubMed] [Google Scholar]
  • Benham-Pyle, B.W., Pruitt, B.L., Nelson, W.J. (2015). Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science, 348, 1024-1027. [CrossRef] [PubMed] [Google Scholar]
  • Bertet, C., Sulak, L., Lecuit, T. (2004). Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature, 429, 667-671. [CrossRef] [PubMed] [Google Scholar]
  • Blij, S., Frum, T., Akyol, A., Fearon, E., Ralston, A. (2012). Maternal Cdx2 is dispensable for mouse development. Development, 139, 3969-3972. [CrossRef] [PubMed] [Google Scholar]
  • Brodland, G. (2002). The differential interfacial tension hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J Biomech Eng, 124, 188-197. [CrossRef] [PubMed] [Google Scholar]
  • Chan, E.H., Chavadimane Shivakumar, P., Clément, R., Laugier, E., Lenne, P.-F. (2017). Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye. Elife, 6. doi: 10.7554/eLife.22796. [CrossRef] [Google Scholar]
  • Charras, G., Paluch, E. (2008). Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol, 9, 730-736. [CrossRef] [PubMed] [Google Scholar]
  • Charras, G., Coughlin, M., Mitchison, T., Mahadevan, L. (2007). Life and times of a cellular bleb. Biophys J, 94, 1836-1853. [CrossRef] [PubMed] [Google Scholar]
  • Chazaud, C., Yamanaka, Y. (2016). Lineage specification in the mouse preimplantation embryo. Development, 143, 1063-1074. [CrossRef] [PubMed] [Google Scholar]
  • Clark, A.G., Wartlick, O., Salbreux, G., Paluch, E.K. (2014). Stresses at the cell surface during animal cell morphogenesis. Curr Biol, 24, R484-R494. [CrossRef] [PubMed] [Google Scholar]
  • Cockburn, K., Biechele, S., Garner, J., Rossant, J. (2013). The Hippo pathway member Nf2 is required for inner cell mass specification. Curr Biol, 23, 1195-1201. [CrossRef] [PubMed] [Google Scholar]
  • Conti, M.A., Even-Ram, S., Liu, C., Yamada, K.M., Adelstein, R.S. (2004). Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J Biol Chem, 279, 41263-41266. [CrossRef] [PubMed] [Google Scholar]
  • Dard, N., Le, T., Maro, B., Louvet-Vallée, S. (2009a). Inactivation of aPKClambda reveals a context dependent allocation of cell lineages in preimplantation mouse embryos. PLoS ONE, 4, e7117. [CrossRef] [Google Scholar]
  • Dard, N., Louvet-Vallée, S., Maro, B. (2009b). Orientation of mitotic spindles during the 8- to 16-cell stage transition in mouse embryos. PLoS ONE, 4, e8171. [CrossRef] [Google Scholar]
  • David, R., Luu, O., Damm, E.W., Wen, J.W.H., Nagel, M., Winklbauer, R. (2014). Tissue cohesion and the mechanics of cell rearrangement. Development, 141, 3672-3682. [CrossRef] [PubMed] [Google Scholar]
  • de Laplace, P.M. Traité de mécanique céleste, Gauthier-Villars, Paris, 1825. [Google Scholar]
  • de Vries, W.N., Evsikov, A.V., Haac, B.E., Fancher, K.S., Holbrook, A.E., Kemler, R., Solter, D., Knowles, B.B. (2004). Maternal beta-catenin and E-cadherin in mouse development. Development, 131, 4435-4445. [CrossRef] [PubMed] [Google Scholar]
  • Dietrich, J.-E., Hiiragi, T. (2007). Stochastic patterning in the mouse pre-implantation embryo. Development, 134, 4219-4231. [CrossRef] [PubMed] [Google Scholar]
  • Diz-Muñoz, A., Krieg, M., Bergert, M., Ibarlucea-Benitez, I., Muller, D.J., Paluch, E., Heisenberg, C.-P. (2010). Control of Directed cell migration in vivo by membrane-to-Cortex Attachment. PLoS Biol, 8, e1000544. [CrossRef] [PubMed] [Google Scholar]
  • Ducibella, T., Ukena, T., Karnovsky, M., Anderson, E. (1977). Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo. J Cell Biol, 74, 153-167. [CrossRef] [PubMed] [Google Scholar]
  • Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., Elvassore, N., Piccolo, S. (2011). Role of YAP/TAZ in mechanotransduction. Nature, 474, 179-183. [CrossRef] [PubMed] [Google Scholar]
  • Dupré, A., Dupré, P. Théorie mécanique de la chaleur. Annales de Chimie et de Physique, Gauthier-Villars, Paris, 1869. [Google Scholar]
  • Evans, E., Yeung, A. (1989). Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J, 56, 151-160. [Google Scholar]
  • Fierro-González, J.C., White, M.D., Silva, J.C., Plachta, N. (2013). Cadherin-dependent filopodia control preimplantation embryo compaction. Nat Cell Biol, 15, 1-10. [CrossRef] [PubMed] [Google Scholar]
  • Fink, J., Carpi, N., Betz, T., Bétard, A., Chebah, M., Azioune, A., Bornens, M., Sykes, C., Fetler, L., Cuvelier, D., Piel, M. (2011). External forces control mitotic spindle positioning. Nat Cell Biol, 13, 771-778. [CrossRef] [PubMed] [Google Scholar]
  • Frankenberg, S.R., de Barros, F.R.O., Rossant, J., Renfree, M.B. (2016). The mammalian blastocyst. WIREs Dev Biol, 5, 210-232. [Google Scholar]
  • Fujinami, N., Kageyama, T. (1975). Circus movement in dissociated embryonic cells of a teleost Oryzias latipes. J Cell Sci, 19, 169-182. [PubMed] [Google Scholar]
  • Goehring, N.W., Trong, P.K., Bois, J.S., Chowdhury, D., Nicola, E.M., Hyman, A.A., Grill, S.W. (2011). Polarization of PAR proteins by advective triggering of a pattern-forming system. Science, 334, 1137-1141. [CrossRef] [PubMed] [Google Scholar]
  • Goel, N.S., Doggenweiler, C.F., Thompson, R.L. (1986). Simulation of cellular compaction and internalization in mammalian embryo development as driven by minimization of surface energy. Bull Math Biol, 48, 167-187. [CrossRef] [PubMed] [Google Scholar]
  • Graham, S.J.L., Zernicka-Goetz, M. (2016). The acquisition of cell fate in mouse development: how do cells first become heterogeneous? Curr Top Dev Biol, 117, 671-695. [CrossRef] [PubMed] [Google Scholar]
  • Graner, F., Glazier, J. (1992). Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett, 69, 2013-2016. [CrossRef] [PubMed] [Google Scholar]
  • Guevorkian, K., Maître, J.L. (2017). Micropipette aspiration: A unique tool for exploring cell and tissue mechanics in vivo. Methods Cell Biol, 139, 187-201. [CrossRef] [PubMed] [Google Scholar]
  • Halder, G., Dupont, S., Piccolo, S. (2012). Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol, 13, 591-600. [CrossRef] [PubMed] [Google Scholar]
  • Heisenberg, C.-P., Bellaïche, Y. (2013). Forces in tissue morphogenesis and patterning. Cell, 153, 948-962. [CrossRef] [PubMed] [Google Scholar]
  • Hirate, Y., Cockburn, K., Rossant, J., Sasaki, H. (2012). Tead4 is constitutively nuclear, while nuclear vs. cytoplasmic Yap distribution is regulated in preimplantation mouse embryos. Proc Natl Acad Sci USA, 109, E3389–90–author reply E3391–2. [CrossRef] [Google Scholar]
  • Hirate, Y., Hirahara, S., Inoue, K.-I., Suzuki, A., Alarcon, V.B., Akimoto, K., Hirai, T., Hara, T., Adachi, M., Chida, K., Ohno, S., Marikawa, Y., Nakao, K., Shimono, A., Sasaki, H. (2013). Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol, 23, 1181-1194. [CrossRef] [PubMed] [Google Scholar]
  • Honda, H. (1983). Geometrical models for cells in tissues. Int Rev Cytol, 81, 191-248. [CrossRef] [PubMed] [Google Scholar]
  • Hyafil, F., Morello, D., Babinet, C., Jacob, F. (1980). A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell, 21, 927-934. [CrossRef] [PubMed] [Google Scholar]
  • Johnson, M.H., Ziomek, C.A. (1981). The foundation of two distinct cell lineages within the mouse morula. Cell, 24, 71-80. [CrossRef] [PubMed] [Google Scholar]
  • Kaneko, K.J., DePamphilis, M.L. (2013). TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development, 140, 3680-3690. [CrossRef] [PubMed] [Google Scholar]
  • Kemler, R., Babinet, C., Eisen, H., Jacob, F. (1977). Surface antigen in early differentiation. Proc Natl Acad Sci USA, 74, 4449-4452. [CrossRef] [Google Scholar]
  • Kim, H.Y., Davidson, L.A. (2011). Punctuated actin contractions during convergent extension and their permissive regulation by the non-canonical Wnt-signaling pathway. J Cell Sci, 124, 635-646. [CrossRef] [PubMed] [Google Scholar]
  • Klompstra, D., Anderson, D.C., Yeh, J.Y., Zilberman, Y., Nance, J. (2015). An instructive role for C. elegans E-cadherin in translating cell contact cues into cortical polarity. Nat Cell Biol, 17, 726-735. [CrossRef] [PubMed] [Google Scholar]
  • Korotkevich, E., Niwayama, R., Courtois, A., Friese, S., Berger, N., Buchholz, F., Hiiragi, T. (2017). The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev Cell, 40, 235-247 e237. [CrossRef] [PubMed] [Google Scholar]
  • Krieg, M., Arboleda-Estudillo, Y., Puech, P., Kafer, J., Graner, F., Muller, D., Heisenberg, C. (2008). Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol, 10, 429-436. [CrossRef] [PubMed] [Google Scholar]
  • Kunda, P., Pelling, A., Liu, T., Baum, B. (2008). Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr Biol, 18, 91-101. [CrossRef] [PubMed] [Google Scholar]
  • Larue, L., Ohsugi, M., Hirchenhain, J., Kemler, R. (1994). E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci USA, 91, 8263-8267. [CrossRef] [Google Scholar]
  • Liu, Y., Belkina, N.V., Park, C., Nambiar, R., Loughhead, S.M., Patiño-López, G., Ben-Aissa, K., Hao, J.-J., Kruhlak, M.J., Qi, H., von Andrian, U.H., Kehrl, J.H., Tyska, M.J., Shaw, S. (2012). Constitutively active ezrin increases membrane tension, slows migration, and impedes endothelial transmigration of lymphocytes in vivo in mice. Blood, 119, 445-453. [CrossRef] [Google Scholar]
  • Lorthongpanich, C., Doris, T.P.Y., Limviphuvadh, V., Knowles, B.B. Solter, D. (2012). Developmental fate and lineage commitment of singled mouse blastomeres. Development, 139, 3722-3731. [CrossRef] [PubMed] [Google Scholar]
  • Louvet, S., Aghion, J., Santa-Maria, A., Mangeat, P., Maro, B. (1996). Ezrin becomes restricted to outer cells following asymmetrical division in the preimplantation mouse embryo. Dev Biol, 177, 568-579. [CrossRef] [PubMed] [Google Scholar]
  • Maître, J.L., Berthoumieux, H., Krens, S.F.G., Salbreux, G., Julicher, F., Paluch, E., Heisenberg, C.P. (2012). Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science, 338, 253-256. [CrossRef] [PubMed] [Google Scholar]
  • Maître, J.-L., Heisenberg, C.-P. (2013). Three functions of cadherins in cell adhesion. Curr Biol, 23, R626-R633. [CrossRef] [PubMed] [Google Scholar]
  • Maître, J.-L., Niwayama, R., Turlier, H., Nédélec, F., Hiiragi, T. (2015). Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat Cell Biol, 17, 849-855. [CrossRef] [PubMed] [Google Scholar]
  • Maître, J.-L., Turlier, H., Illukkumbura, R., Eismann, B., Niwayama, R., Nédélec, F., Hiiragi, T. (2016). Asymmetric division of contractile domains couples cell positioning and fate specification. Nature, 536, 344-348. [CrossRef] [PubMed] [Google Scholar]
  • Martin, A., Kaschube, M., Wieschaus, E. (2009). Pulsed contractions of an actin-myosin network drive apical constriction. Nature, 457, 495-499. [CrossRef] [PubMed] [Google Scholar]
  • Mayer, M., Depken, M., Bois, J.S., Jülicher, F., Grill, S.W. (2010). Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature, 467, 617-621. [CrossRef] [PubMed] [Google Scholar]
  • Mitchison, J.M., Swann, M.M. (1954). The mechanical properties of the cell surface I. The cell elastimeter. J Exp Biol, 31, 443-460. [Google Scholar]
  • Munro, E., Nance, J., Priess, J. (2004). Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev Cell, 7, 413-424. [CrossRef] [PubMed] [Google Scholar]
  • Natale, D.R., Watson, A.J. (2002). Rac-1 and IQGAP are potential regulators of E-cadherin-catenin interactions during murine preimplantation development. Mech Dev, 119 Suppl (1), S21- S26. [CrossRef] [PubMed] [Google Scholar]
  • Nishioka, N., Yamamoto, S., Kiyonari, H., Sato, H., Sawada, A., Ota, M., Nakao, K., Sasaki, H. (2008). Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev, 125, 270-283. [CrossRef] [PubMed] [Google Scholar]
  • Ohsugi, M., Butz, S., Kemler, R. (1999). Beta-catenin is a major tyrosine-phosphorylated protein during mouse oocyte maturation and preimplantation development. Dev Dyn, 216, 168-176. [CrossRef] [PubMed] [Google Scholar]
  • Overholtzer, M., Mailleux, A.A., Mouneimne, G., Normand, G., Schnitt, S.J., King, R.W., Cibas, E.S., Brugge, J.S. (2007). A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell, 131, 966-979. [CrossRef] [PubMed] [Google Scholar]
  • Padmanabhan, A., Ong, H.T., Zaidel-Bar, R. (2016). Non-junctional E-Cadherin Clusters Regulate the Actomyosin Cortex in the C. elegans Zygote. Current Biology, 27, 103-112. [CrossRef] [Google Scholar]
  • Perez, T.D., Tamada, M., Sheetz, M.P., Nelson, W.J. (2008). Immediate-early signaling induced by E-cadherin engagement and adhesion. J Biol Chem, 283, 5014-5022. [CrossRef] [PubMed] [Google Scholar]
  • Plusa, B., Frankenberg, S., Chalmers, A., Hadjantonakis, A.-K., Moore, C.A., Papalopulu, N., Papaioannou, V.E., Glover, D.M., Zernicka-Goetz, M. (2005). Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci, 118, 505-515. [CrossRef] [PubMed] [Google Scholar]
  • Pollard, T.D. (2010). Mechanics of cytokinesis in eukaryotes. Curr Opin Cell Biol, 22, 50-56. [CrossRef] [PubMed] [Google Scholar]
  • Pratt, H.P., Ziomek, C.A., Reeve, W.J., Johnson, M.H. (1982). Compaction of the mouse embryo: an analysis of its components. J Embryol Exp Morphol, 70, 113-132. [PubMed] [Google Scholar]
  • Ralston, A., Rossant, J. (2008). Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol, 313, 614-629. [CrossRef] [PubMed] [Google Scholar]
  • Rauzi, M., Verant, P., Lecuit, T., Lenne, P.-F. (2008). Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat Cell Biol, 10, 1401-1410. [CrossRef] [PubMed] [Google Scholar]
  • Roh-Johnson, M., Shemer, G., Higgins, C.D., McClellan, J.H., Werts, A.D., Tulu, U.S., Gao, L., Betzig, E., Kiehart, D.P., Goldstein, B. (2012). Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science, 335, 1232-1235. [CrossRef] [PubMed] [Google Scholar]
  • Rossant, J. (2016). Making the Mouse blastocyst: past, present, and future. Curr Top Dev Biol, 117, 275-288. [CrossRef] [PubMed] [Google Scholar]
  • Samarage, C.R., White, M.D., Álvarez, Y.D., Fierro-González, J.C., Henon, Y., Jesudason, E.C., Bissiere, S., Fouras, A., Plachta, N. (2015). Cortical tension allocates the first inner cells of the mammalian embryo. Dev Cell, 34, 435-447. [CrossRef] [PubMed] [Google Scholar]
  • Sasaki, H. (2015). Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos. Sem Cell Dev Biol, 47-48, 80-87. [CrossRef] [PubMed] [Google Scholar]
  • Sefton, M., Johnson, M.H., Clayton, L. (1992). Synthesis and phosphorylation of uvomorulin during mouse early development. Development, 115, 313-318. [PubMed] [Google Scholar]
  • Sefton, M., Johnson, M.H., Clayton, L., McConnell, J.M. (1996). Experimental manipulations of compaction and their effects on the phosphorylation of uvomorulin. Mol Reprod Dev, 44, 77-87. [CrossRef] [PubMed] [Google Scholar]
  • Shirayoshi, Y., Okada, T.S., Takeichi, M. (1983). The calcium-dependent cell-cell adhesion system regulates inner cell mass formation and cell surface polarization in early mouse development. Cell, 35, 631-638. [CrossRef] [PubMed] [Google Scholar]
  • Solon, J., Kaya-Copur, A., Colombelli, J., Brunner, D. (2009). Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell, 137, 1331-1342. [CrossRef] [PubMed] [Google Scholar]
  • Steinberg, M.S. (1962a). Mechanism of tissue reconstruction by dissociated cells. II. Time-course of events. Science, 137, 762-763. [CrossRef] [Google Scholar]
  • Steinberg, M.S. (1962b). On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the reorganization of fused, heteronomic tissue fragments. Proc Natl Acad Sci USA, 48, 1769-1776. [CrossRef] [PubMed] [Google Scholar]
  • Steinberg, M.S. (1963). Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science, 141, 401-408. [CrossRef] [PubMed] [Google Scholar]
  • Steinberg, M.S., Takeichi, M. (1994). Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc Natl Acad Sci USA, 91, 206-209. [CrossRef] [Google Scholar]
  • Stephenson, R.O., Yamanaka, Y., Rossant, J. (2010). Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development, 137, 3383-3391. [CrossRef] [PubMed] [Google Scholar]
  • Stirbat, T.V., Mgharbel, A., Bodennec, S., Ferri, K., Mertani, H.C., Rieu, J.-P., Delanoë-Ayari, H. (2013). Fine Tuning of tissues' viscosity and surface tension through contractility suggests a new role for α-Catenin. PLoS ONE, 8, e52554. [CrossRef] [PubMed] [Google Scholar]
  • Strnad, P., Gunther, S., Reichmann, J., Krzic, U., Balazs, B., de Medeiros, G., Norlin, N., Hiiragi, T., Hufnagel, L., Ellenberg, J. (2016). Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat Methods, 13, 139-142. [CrossRef] [PubMed] [Google Scholar]
  • Sun, Q., Luo, T., Ren, Y., Florey, O., Shirasawa, S., Sasazuki, T., Robinson, D.N., Overholtzer, M. (2014). Competition between human cells by entosis. Cell Res, 24, 1299-1310. [CrossRef] [PubMed] [Google Scholar]
  • Turing, A. (1952). The chemical basis of morphogenesis. Phil Trans R Soc Lond, 237, 37-72. [Google Scholar]
  • Urushihara, H., Takeichi, M. (1980). Cell-cell adhesion molecule: identification of a glycoprotein relevant to the Ca2+-independent aggregation of Chinese hamster fibroblasts. Cell, 20, 363-371. [CrossRef] [PubMed] [Google Scholar]
  • Vinot, S., Le, T., Maro, B., Louvet-Vallée, S. (2004). Two PAR6 proteins become asymmetrically localized during establishment of polarity in mouse oocytes. Curr Biol, 14, 520-525. [CrossRef] [PubMed] [Google Scholar]
  • Wada, K.-I., Itoga, K., Okano, T., Yonemura, S., Sasaki, H. (2011). Hippo pathway regulation by cell morphology and stress fibers. Development, 138, 3907-3914. [CrossRef] [PubMed] [Google Scholar]
  • Watanabe, T., Biggins, J.S., Tannan, N.B., Srinivas, S. (2014). Limited predictive value of blastomere angle of division in trophectoderm and inner cell mass specification. Development, 141, 2279-2288. [CrossRef] [PubMed] [Google Scholar]
  • Wicklow, E., Blij, S., Frum, T., Hirate, Y., Lang, R.A., Sasaki, H., Ralston, A. (2014). HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLoS Genet, 10, e1004618. [CrossRef] [PubMed] [Google Scholar]
  • Wildenberg, G.A., Dohn, M.R., Carnahan, R.H., Davis, M.A., Lobdell, N.A., Settleman, J., Reynolds, A.B. (2006). p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell, 127, 1027-1039. [CrossRef] [PubMed] [Google Scholar]
  • Winkel, G.K., Ferguson, J.E., Takeichi, M., Nuccitelli, R. (1990). Activation of protein kinase C triggers premature compaction in the four-cell stage mouse embryo. Dev Biol, 138, 1-15. [CrossRef] [PubMed] [Google Scholar]
  • Yanagisawa, M., Anastasiadis, P.Z. (2006). p120 catenin is essential for mesenchymal cadherin-mediated regulation of cell motility and invasiveness. J Cell Biol, 174, 1087-1096. [CrossRef] [PubMed] [Google Scholar]
  • Young, T. (1805). An essay on the cohesion of fluids. Phil Trans R Soc Lond, 95, 65-87. [Google Scholar]
  • Yu, H.H., Dohn, M.R., Markham, N.O., Coffey, R.J., Reynolds, A.B. (2015). p120-catenin controls contractility along the vertical axis of epithelial lateral membranes. J Cell Sci, 129, 80-94. [CrossRef] [PubMed] [Google Scholar]
  • Zaidel-Bar, R. (2013). Cadherin adhesome at a glance. J Cell Sci, 126, 373-378. [CrossRef] [PubMed] [Google Scholar]
  • Ziomek, C.A., Johnson, M.H. (1980). Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell, 21, 935-942. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.