Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 211, Numéro 2, 2017
|
|
---|---|---|
Page(s) | 149 - 154 | |
Section | Nouvelles stratégies antibactériennes | |
DOI | https://doi.org/10.1051/jbio/2017020 | |
Publié en ligne | 13 décembre 2017 |
- Allam A., Maigre L., Vergalli J., Dumont E., Cinquin B., Alves de Sousa R., Pajovic J., Pinet E., Smith N., Herbeuval J.-P., Réfrégiers M., Artaud I., Pagès J.-M. (2017). Microspectrofluorimetry to dissect the permeation of ceftazidime in Gram-negative bacteria. Sci Rep, 7, 986. [CrossRef] [PubMed] [Google Scholar]
- Bhat J., Narayan A., Venkatraman J., Chatterji M. (2013). LC-MS based assay to measure intracellular compound levels in Mycobacterium smegmatis: linking compound levels to cellular potency. J Microbiol Methods, 94, 152-158. [CrossRef] [PubMed] [Google Scholar]
- Blair J.M., Webber M.A., Baylay A.J., Ogbolu D.O., Piddock L.J. (2015). Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol, 13, 42-51. [CrossRef] [PubMed] [Google Scholar]
- Bolla J.-M., Alibert-Franco S., Handzlik J., Chevalier J., Mahamoud A., Boyer G., Kieć-Kononowicz K., Pagès J.-M. (2011). Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS Lett, 585, 1682-1690. [CrossRef] [PubMed] [Google Scholar]
- Boucher H.W., Talbot G.H., Bradley J.S., Edwards J.E., Gilbert D., Rice L.B., Scheld M., Spellberg B., Bartlett J. (2009). Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis, 48, 1-12. [CrossRef] [PubMed] [Google Scholar]
- Boucher H.W., Talbot G.H., Benjamin D.K., Jr., Bradley J., Guidos R.J., Jones R.N., Murray B.E., Bonomo R.A., Gilbert D. (2013). Infectious Diseases Society of America. 10 × '20 Progress-development of new drugs active against Gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis, 56, 1685-1694. [CrossRef] [PubMed] [Google Scholar]
- Bradford P.A. (2001). Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev, 14, 933-951. [CrossRef] [PubMed] [Google Scholar]
- Brown A.R., Ettefagh K.A., Todd D., Cole P.S., Egan J.M., Foil D.H., Graf T.N., Schindler B.D., Kaatz G.W., Cech N.B. (2015). A mass spectrometry-based assay for improved quantitative measurements of efflux pump inhibition. PLoS One, 10, e0124814. [CrossRef] [PubMed] [Google Scholar]
- Bush K. (2015). A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Int J Antimicrob Agents, 46, 483-493. [CrossRef] [PubMed] [Google Scholar]
- Bush K., Bradford P.A. (2016). β-Lactams and β-Lactamase Inhibitors: an overview. Cold Spring Harb Perspect Med, 6, a025247. [CrossRef] [PubMed] [Google Scholar]
- Cai H., Rose K., Liang L.H., Dunham S., Stover C. (2009). Development of a liquid chromatography/mass spectrometry-based drug accumulation assay in Pseudomonas aeruginosa. Anal Biochem, 385, 321-325. [CrossRef] [PubMed] [Google Scholar]
- Centers for Disease Control and Prevention (CDC), Antibiotic resistance threats in the United States, Atlanta, GA, USA, 2013. [Google Scholar]
- Cinquin B., Maigre L., Pinet E., Chevalier J., Stavenger R.A., Mills S., Réfrégiers M., Pagès J.-M. (2015). Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level. Sci Rep, 5, 17968. [CrossRef] [PubMed] [Google Scholar]
- Collu F., Vargiu A.V., Dreier J., Cascella M., Ruggerone P. (2012). Recognition of imipenem and meropenem by the RND-transporter MexB studied by computer simulations. J Am Chem Soc, 134, 19146-19158. [CrossRef] [PubMed] [Google Scholar]
- Daury L., Orange F., Taveau J.-C., Verchère A., Monlezun L., Gounou C., Marreddy R.K., Picard M., Broutin I., Pos K.M., Lambert O. (2016). Tripartite assembly of RND multidrug efflux pumps. Nat Commun, 7, 10731. [CrossRef] [PubMed] [Google Scholar]
- Davin-Regli A., Bolla J.-M., James C.E., Lavigne J.P., Chevalier J., Garnotel E., Molitor A., Pagès J.-M. (2008). Membrane permeability and regulation of drug “influx and efflux” in enterobacterial pathogens. Curr Drug Targets, 9, 750-759. [CrossRef] [PubMed] [Google Scholar]
- Davis T.D., Gerry C.J., Tan D.S. (2014). General platform for systematic quantitative evaluation of small-molecule permeability in bacteria. ACS Chem Biol, 9, 2535-2544. [CrossRef] [PubMed] [Google Scholar]
- Delcour A.H. (2009). Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta, 1794, 808-816. [CrossRef] [PubMed] [Google Scholar]
- Dörr T., Vuli C.M., Lewis K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol, 8, e1000317. [CrossRef] [PubMed] [Google Scholar]
- Du D., Wang Z., James N.R., Voss J.E., Klimont E., Ohene-Agyei T., Venter H., Chiu W., Luisi BF. (2014). Structure of the AcrAB-TolC multidrug efflux pump. Nature, 509, 512-515. [CrossRef] [PubMed] [Google Scholar]
- Du D., van Veen H.W., Murakami S., Pos K.M., Luisi B.F. (2015). Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol, 33, 76-91. [CrossRef] [PubMed] [Google Scholar]
- Eicher T., Cha H.J., Seeger M.A., Brandstätter L., El-Delik J., Bohnert J.A., Kern W.V., Verrey F., Grütter M.G., Diederichs K., Pos K.M. (2012). Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci USA, 109, 5687-5692. [CrossRef] [Google Scholar]
- Eicher T., Seeger M.A., Anselmi C., Zhou W., Brandstätter L., Verrey F., Diederichs K., Faraldo-Gómez J.D., Pos K.M. (2014). Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. Elife, 3, e03145. [CrossRef] [Google Scholar]
- Fraimow H.S., Tsigrelis C. (2011). Antimicrobial resistance in the intensive care unit: mechanisms, epidemiology, and management of specific resistant pathogens. Crit Care Clin, 27, 163-205. [CrossRef] [Google Scholar]
- Hancock R.E. (1997). The bacterial outer membrane as a drug barrier. Trends Microbiol, 5, 37-42. [CrossRef] [PubMed] [Google Scholar]
- Kaščáková S., Maigre L., Chevalier J., Réfrégiers M., Pagès J.-M. (2012). Antibiotic transport in resistant bacteria: synchrotron UV fluorescence microscopy to determine antibiotic accumulation with single cell resolution. PLoS One, 7, e38624. [CrossRef] [PubMed] [Google Scholar]
- Kojima S., Nikaido H. (2013). Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. Proc Natl Acad Sci USA, 110, 2629-2634. [CrossRef] [Google Scholar]
- Li Z.H., Plesiat P., Nikaido H. (2015). The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Micro Rev, 28, 337-418. [CrossRef] [Google Scholar]
- Liscio J.-L., Mahoney M.V., Hirsch E.B. (2015). Ceftolozane/tazobactam and ceftazidime/avibactam: two novel β-lactam/β-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int J Antimicrob Agents, 46, 266-271. [CrossRef] [PubMed] [Google Scholar]
- Maisonneuve E., Gerdes K. (2014). Molecular mechanisms underlying bacterial persisters. Cell, 157, 539-548. [CrossRef] [PubMed] [Google Scholar]
- Masi M., Réfrégiers M., Pos K.M., Pagès J.-M. (2017). Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat Microbiol, 2, 17001. DOI: 10.1038/nmicrobiol.2017.1. [CrossRef] [PubMed] [Google Scholar]
- Morikawa Y., Kitazato M., Mitsuyama J., Mizunaga S., Minami S., Watanabe Y. (2004). In vitro activities of piperacillin against beta-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother, 48, 1229-1234. [CrossRef] [PubMed] [Google Scholar]
- Murakami S., Nakashima R., Yamashita E., Matsumoto T., Yamaguchi A. (2006). Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature, 443, 173-179. [CrossRef] [PubMed] [Google Scholar]
- Nikaido H. (1985). Role of permeability barriers in resistance to beta-lactams antibiotics. Pharmacol Ther, 27, 197-231. [CrossRef] [PubMed] [Google Scholar]
- Nikaido H. (1989). Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother, 33, 1831-1836. [CrossRef] [PubMed] [Google Scholar]
- Nikaido H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev, 67, 593-656. [CrossRef] [PubMed] [Google Scholar]
- Nikaido H., Normark S. (1987). Sensitivity of Escherichia coli to various beta-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic beta-lactamases: a quantitative predictive treatment. Mol Microbiol, 1, 29-36. [CrossRef] [PubMed] [Google Scholar]
- Nikaido H., Vaara M. (1987). Outer membrane. In: F.C. Neidhardt (Ed.), Escherichia coli and Salmonella typhimurium; Cellular and Molecular Biology, American Society for Microbiology Publishers, Vol. 1, pp. 3-22. [Google Scholar]
- Nikaido H., Pagès J.-M. (2012). Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev, 36, 340-363. [CrossRef] [PubMed] [Google Scholar]
- O'Callaghan C.H., Morris A., Kirby S.M., Shingler A.H. (1972). Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother, 1, 283-288. [CrossRef] [PubMed] [Google Scholar]
- Page M.G.P., Bush K. (2014). Discovery and development of new antibacterial agents targeting Gram-negative bacteria in the era of pandrug resistance: is the future promising? Curr Opin Pharmacol, 18, 91-97. [Google Scholar]
- Pagès J.-M., James C.E., Winterhalter M. (2008). The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol, 6, 893-903. [CrossRef] [PubMed] [Google Scholar]
- Pagès J.-M., Kascàkovà S., Maigre L., Allam A., Alimi M., Chevalier J., Galardon E., Réfrégiers M., Artaud I. (2013). New peptide-based antimicrobials for tackling drug resistance in bacteria: single-cell fluorescence imaging. ACS Med Chem Lett, 4, 556-559. [CrossRef] [PubMed] [Google Scholar]
- Pagès J.-M., Peslier S., Keating T.A., Lavigne J.-P., Nichols W.W. (2015). Role of the outer membrane and porins in susceptibility of β-lactamase-producing enterobacteriaceae to ceftazidime-avibactam. Antimicrob Agents Chemother, 60, 1349-1359. [CrossRef] [PubMed] [Google Scholar]
- Paulsen I.T., Chen J., Nelson K.E., Saier M.H. Jr. (2001). Comparative genomics of microbial drug efflux systems. J Mol Microbiol Biotechnol, 3, 145-150. [PubMed] [Google Scholar]
- Philippe N., Maigre L., Santini S., Pinet E., Claverie J.-M., Davin-Regli A., Pagès J.-M., Masi M. (2015). In vivo evolution of bacterial resistance in two cases of Enterobacter aerogenes infections during treatment with imipenem. PLoS One, 10, e0138828. [CrossRef] [PubMed] [Google Scholar]
- Pierluigi V., Maddalena G., Sara T., Russell L. (2015). Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians. Curr Opin Pharmaco, 24, 30-37. [CrossRef] [Google Scholar]
- Pos K.M. (2009). Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta, 1794, 782-793. [CrossRef] [PubMed] [Google Scholar]
- Pu Y., Zhao Z., Li Y., Zou J., Ma Q., Zhao Y., Ke Y., Zhu Y., Chen H., Baker M.A., Ge H., Sun Y., Xie X.S., Bai F. (2016). Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell, 62, 284-294. [CrossRef] [PubMed] [Google Scholar]
- Pucci M.J., Bush K. (2013). Investigational antimicrobial agents of 2013. Clin Microbiol Rev, 26, 792-821. [CrossRef] [PubMed] [Google Scholar]
- Ramaswamy V.K., Cacciotto P., Malloci G., Vargiu A.V., Ruggerone P. (2017). Computational modelling of efflux pumps and their inhibitors. Essays Biochem, 61, 141-156. [CrossRef] [PubMed] [Google Scholar]
- Sánchez-Romero M.A., Casadesús J. (2014). Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc Natl Acad Sci USA, 111, 355-360. [CrossRef] [Google Scholar]
- Shuster Y., Steiner-Mordoch S., Alon-Cudkowicz N., Schuldiner S.A. (2016). Transporter interactome is essential for the acquisition of antimicrobial resistance to antibiotics. PLoS One, 11, e0152917. [CrossRef] [PubMed] [Google Scholar]
- Silhavy T.J., Kahne D., Walker S. (2010). The bacterial cell envelope. Cold Spring Harb Perspect Biol, 2010, 2, a000414. [Google Scholar]
- Silver L.L. (2011). Challenges of antibacterial discovery. Clin Micro Rev, 24, 71-109. [CrossRef] [Google Scholar]
- Sjuts H., Vargiu A.V., Kwasny S.M., Nguyen S.T., Kim H.S., Ding X., Ornik A.R., Ruggerone P., Bowlin T.L., Nikaido H., Pos K.M., Opperman T.J. (2016). Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc Natl Acad Sci USA, 113, 3509-3514. [CrossRef] [Google Scholar]
- Stavenger R., Winterhalter M. (2014). How to get good drugs into bad bugs. Sci Transl Med, 6, 228ed7. [CrossRef] [PubMed] [Google Scholar]
- Vargiu A.V., Nikaido H. (2012). Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc Natl Acad Sci USA, 109, 20637-20642. [CrossRef] [Google Scholar]
- Verchère A., Dezi M., Adrien V., Broutin I., Picard M. (2015). In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa. Nat Commun, 6, 6890. [CrossRef] [PubMed] [Google Scholar]
- Wang Z., Fan G., Hryc C.F., Blaza J.N., Serysheva I.I., Schmid M.F., Chiu W., Luisi B.F., Du D. (2017). An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. Elife, 6, e24905. [PubMed] [Google Scholar]
- Watkins R.R., Bonomo, R.A. (2016). Overview: global and local impact of antibiotic resistance. Infect Dis Clin North A, 30, 313-322. [CrossRef] [Google Scholar]
- Zgurskaya H.I., López C.A., Gnanakaran S. (2015). Permeability barrier of Gram-negative cell envelopes and approaches to bypass it. ACS Infect Dis, 1, 512-522. [CrossRef] [Google Scholar]
- Zhao G., Meier T.I., Kahl S.D., Gee K.R., Blaszczak L.C. (1999). Bocillin FL, a sensitive and commercially available reagent for detection of penicillin-binding proteins. Antimicrob Agents Chemother, 43, 1124-1128. [PubMed] [Google Scholar]
- Zhou Y., Joubran C., Miller-Vedam L., Isabella V., Nayar A., Tentarelli S., Miller A. (2015). Thinking outside the “bug”: a unique assay to measure intracellular drug penetration in Gram-negative bacteria. Anal Chem, 87, 3579-3584. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.