Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 211, Numéro 2, 2017
Page(s) 173 - 188
Section Autour de Claude Bernard
DOI https://doi.org/10.1051/jbio/2017022
Publié en ligne 13 décembre 2017
  • Antolin-Fontes, B., Ables, J.L., Görlich, A., Ibañez-Tallon, I. (2015). The habenulo-interpeduncular pathway in nicotine aversion and withdrawal. Neuropharmacology, 96, 213-222. [CrossRef] [PubMed] [Google Scholar]
  • Avale, M.E.M., Faure, P., Pons, S., Robledo, P.P., Deltheil, T.T., David, D.J.D., Gardier, A.M.A., Maldonado, R.R., Granon, S.S., Changeux, J.-P., Maskos, U. (2008). Interplay of beta2* nicotinic receptors and dopamine pathways in the control of spontaneous locomotion. Proc Nat Acad Sci USA, 105, 15991-15996. [CrossRef] [Google Scholar]
  • Banghart, M.R., Borges, K., Isacoff, E.Y., Trauner, D., Kramer, R.H. (2004). Light-activated ion channels for remote control of neuronal firing. Nat Neurosc, 7, 1381-1386. [CrossRef] [PubMed] [Google Scholar]
  • Banghart, M.R., Mourot, A., Fortin, D.L., Yao, J.Z., Kramer, R.H., Trauner, D. (2009). Photochromic blockers of voltage-gated potassium channels. Angew Chem Int Ed Engl, 48, 9097-9101. [CrossRef] [PubMed] [Google Scholar]
  • Barber, D.M., Schönberger, M., Burgstaller, J., Levitz, J., Weaver, C.D., Isacoff, E.Y., Baier, H., Trauner, D. (2016). Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO). Chem Sci, 7, 2347-2352. [CrossRef] [PubMed] [Google Scholar]
  • Bartels, E., Wassermann, N.H., Erlanger, B.F. (1971). Photochromic activators of the acetylcholine receptor. Proc Nat Acad Sci USA, 68, 1820-1823. [CrossRef] [Google Scholar]
  • Berlin, S., Isacoff, E.Y. (2017) Synapses in the spotlight with synthetic optogenetics. EMBO Rep, 18, 677-692. [CrossRef] [PubMed] [Google Scholar]
  • Berlin, S., Szobota, S., Reiner, A., Carroll, E.C., Kienzler, M.A., Guyon, A., Xiao, T., Trauner, D., Isacoff, E.Y. (2016). A family of photoswitchable NMDA receptors. eLife, 5, e12040, 2016 Mar 1, doi: 10.7554/eLife.12040. [CrossRef] [PubMed] [Google Scholar]
  • Borowiak, M., Nahaboo, W., Reynders, M., Nekolla, K., Jalinot, P., Hasserodt, J., Rehberg, M., Delattre, M., Zahler, S., Vollmar, A., Trauner, D., Thorn-Seshold, O. (2015). Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell, 162, 403-411. [CrossRef] [PubMed] [Google Scholar]
  • Bourgeois, J.P., Meas-Yeadid, V., Lesourd, A.M., Faure, P., Pons, S., Maskos, U., Changeux, J.-P., Olivo-Marin, J.C., Granon, S. (2012). Modulation of the mouse prefrontal cortex activation by neuronal nicotinic receptors during novelty exploration but not by exploration of a familiar environment. Cereb Cortex, 22, 1007-1015. [CrossRef] [PubMed] [Google Scholar]
  • Brejc, K., van Dijk, W.J., Klaassen, R.V., Schuurmans, M., van Der Oost, J., Smit, A.B., Sixma, T.K. (2001). Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature, 411, 269-276. [CrossRef] [PubMed] [Google Scholar]
  • Broichhagen, J., Damijonaitis, A., Levitz, J., Sokol, K.R., Leippe, P., Konrad, D., Isacoff, E.Y., Trauner, D. (2015). Orthogonal optical control of a G Protein-coupled receptor with a SNAP-tethered photochromic ligand. ACS Cent Sci, 1, 383-393. [CrossRef] [PubMed] [Google Scholar]
  • Caporale, N., Kolstad, K.D., Lee, T., Tochitsky, I., Dalkara, D., Trauner, D., Kramer, R.H., Dan, Y., Isacoff, E.Y., Flannery, J.G. (2009). LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther, 19, 1212-1219. [CrossRef] [PubMed] [Google Scholar]
  • Carroll, E.C., Berlin, S., Levitz, J., Kienzler, M.A., Yuan, Z., Madsen, D., Larsen, D.S., Isacoff, E.Y. (2015). Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc Nat Acad Sci USA, 112, E776-785 [CrossRef] [Google Scholar]
  • Celie, P.H.N., van Rossum-Fikkert, S.E., van Dijk, W.J., Brejc, K., Smit, A.B., Sixma, T.K. (2004). Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP Crystal structures. Neuron, 41, 8-8. [CrossRef] [Google Scholar]
  • Chabala, L.D., Lester, H.A. (1986). Activation of Acetylcholine receptor channels by covalently bound agonists in cultured rat myoballs. J Physiol, 379, 83-108. [CrossRef] [PubMed] [Google Scholar]
  • Chabala, L.D.L., Gurney, A.M., Lester, H.A. (1986). Dose-response of acetylcholine receptor channels opened by a flash-activated agonist in voltage-clamped rat myoballs. J Physiol, 371, 407-433. [CrossRef] [PubMed] [Google Scholar]
  • Champtiaux, N., Han, Z.-Y., Bessis, A., Rossi, F.M., Zoli, M., Marubio, L., McIntosh, J.M., Changeux, J.-P. (2002). Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J Neurosci, 22, 1208-1217. [CrossRef] [PubMed] [Google Scholar]
  • Changeux, J.-P. (2010a). Allosteric receptors: from electric organ to cognition. Ann Rev Pharmacol Toxicol, 50, 1-38. [CrossRef] [PubMed] [Google Scholar]
  • Changeux, J.-P. (2010b). Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat Rev Neurosci, 11, 1-13. [CrossRef] [Google Scholar]
  • Damijonaitis, A., Broichhagen, J., Urushima, T., Hüll, K., Nagpal, J., Laprell, L., Schönberger, M., Woodmansee, D.H., Rafiq, A., Sumser, M.P., Kummer, W., Gottschalk, A., Trauner, D. (2015). AzoCholine enables optical control of alpha 7 nicotinic acetylcholine receptors in neural networks. ACS Chem Neurosci, 6, 701-707. [CrossRef] [PubMed] [Google Scholar]
  • Damijonaitis, A., Barber, D.M., Trauner, D. (2016). The photopharmacology of nicotinic acetylcholine receptors. Neurotransmitter, 3, e1292. [Google Scholar]
  • Dani, J.A., De Biasi, M. (2013). Mesolimbic dopamine and habenulo-interpeduncular pathways in nicotine withdrawal. Cold Spring Harb Perspect Med, 3, a012138-8. [CrossRef] [PubMed] [Google Scholar]
  • Deal, W.J., Erlanger, B.F., Nachmansohn, D.D. (1969). Photoregulation of biological activity by photochromic reagents. 3. Photoregulation of bioelectricity by acetylcholine receptor inhibitors. Proc Nat Acad Sci USA, 64, 1230-1234. [CrossRef] [Google Scholar]
  • Deisseroth, K. (2015). Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci, 18, 1213-1225. [CrossRef] [PubMed] [Google Scholar]
  • Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A.A., Woolley, G.A. (2015). Red-shifting azobenzene photoswitches for in vivo use. Acc Chem Res, 48, 2662-2670. [CrossRef] [PubMed] [Google Scholar]
  • Drenan, R.M., Lester, H.A. (2012). Insights into the neurobiology of the nicotinic cholinergic system and nicotine addiction from mice expressing nicotinic receptors harboring gain-of-function mutations. Pharmacol Rev, 64, 869-879. [CrossRef] [PubMed] [Google Scholar]
  • Drenan, R.M., Grady, S.R., Whiteaker, P., McClure-Begley, T., McKinney, S., Miwa, J.M., Bupp, S., Heintz, N., McIntosh, J.M., Bencherif, M., Marks, M.J., Lester, H.A. (2008). In vivo activation of midbrain dopamine neurons via sensitized, high-affinity α6 nicotinic acetylcholine receptors. Neuron, 60, 123-136. [CrossRef] [PubMed] [Google Scholar]
  • Drenan, R.M., Grady, S.R., Steele, A.D., McKinney, S., Patzlaff, N.E., McIntosh, J.M., Marks, M.J., Miwa, J.M., Lester, H.A. (2010). Cholinergic modulation of locomotion and striatal dopamine release is mediated by α6α4* nicotinic acetylcholine receptors. J Neurosci, 30, 9877-9889. [CrossRef] [PubMed] [Google Scholar]
  • Ellis-Davies, G.C.R. (2007). Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Methods, 4, 619-628. [CrossRef] [PubMed] [Google Scholar]
  • Exley, R., Maubourguet, N., David, V., Eddine, R., Evrard, A., Pons, S., Marti, F., Threlfell, S., Cazala, P., McIntosh, J.M., Changeux, J.-P., Maskos, U., Cragg, S.J., Faure, P. (2011). Distinct contributions of nicotinic acetylcholine receptor subunit alpha4 and subunit alpha6 to the reinforcing effects of nicotine. Proc Nat Acad Sci USA, 108, 7577-7582. [CrossRef] [Google Scholar]
  • Fortin, D.L., Dunn, T.W., Fedorchak, A., Allen, D., Montpetit, R., Banghart, M.R., Trauner, D., Adelman, J.P., Kramer, R.H. (2011). Optogenetic photochemical control of designer K+ channels in mammalian neurons. J Neurophysiol, 106, 488-496. [CrossRef] [PubMed] [Google Scholar]
  • Fowler, C.D., Lu, Q., Johnson, P.M., Marks, M.J., Kenny, P.J. (2011). Habenular Α5 nicotinic receptor subunit signalling controls nicotine intake. Nature, 471, 597-601. [CrossRef] [PubMed] [Google Scholar]
  • Frahm, S., Ślimak, M.A., Ferrarese, L., Santos-Torres, J., Antolin-Fontes, B., Auer, S., Filkin, S., Pons, S., Fontaine, J.-F., Tsetlin, V., Maskos, U., Ibañez-Tallon, I. (2011). Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron, 70, 522-535. [CrossRef] [PubMed] [Google Scholar]
  • Frank, J.A., Moroni, M., Moshourab, R., Sumser, M., Lewin, G.R., Trauner, D. (2015). Photoswitchable fatty acids enable optical control of TRPV1. Nat Commun, 6, 1-11. [Google Scholar]
  • Glick, S.D., Sell, E.M., McCallum, S.E., Maisonneuve, I.M. (2011). Brain regions mediating Α3β4 nicotinic antagonist effects of 18-MC on nicotine self-administration. Eur J Pharmacol, 669, 71-75. [CrossRef] [PubMed] [Google Scholar]
  • Gotti, C., Balestra, B., Moretti, M., Rovati, G.E., Maggi, L., Rossoni, G., Berti, F., Villa, L., Pallavicini, M., Clementi, F. (1998). 4-Oxystilbene compounds are selective ligands for neuronal nicotinic alphabungarotoxin receptors. Brit J Pharmacol, 124, 1197-1206. [CrossRef] [Google Scholar]
  • Granon, S., Faure, P., Changeux, J.-P. (2003). Executive and social behaviors under nicotinic receptor regulation. Proc Nat Acad Sci USA, 100, 9596-9601. [CrossRef] [Google Scholar]
  • Guillem, K., Bloem, B., Poorthuis, R.B., Loos, M., Smit, A.B., Maskos, U., Spijker, S., Mansvelder, H.D. (2011). Nicotinic acetylcholine receptor beta2 subunits in the medial prefrontal cortex control attention. Science, 333, 888-891. [CrossRef] [PubMed] [Google Scholar]
  • Gurney, A.M., Lester, H.A. (1987). Light-flash physiology with synthetic photosensitive compounds. Physiol Rev, 67, 583-617. [CrossRef] [PubMed] [Google Scholar]
  • Harrington, L., Viñals, X., Herrera-Solís, A., Flores, A., Morel, C., Tolu, S., Faure, P., Maldonado, R., Maskos, U., Robledo, P. (2016). Role of β4* nicotinic acetylcholine receptors in the habenulo-interpeduncular pathway in nicotine reinforcement in mice. Neuropsychopharmacology, 41, 1790-1802. [CrossRef] [PubMed] [Google Scholar]
  • Jackson, K.J., Sanjakdar, S.S., Muldoon, P.P., McIntosh, J.M., Damaj, M.I. (2013). The Α3β4* nicotinic acetylcholine receptor subtype mediates nicotine reward and physical nicotine withdrawal signs independently of the Α5 subunit in the mouse. Neuropharmacology, 70, 228-235. [CrossRef] [PubMed] [Google Scholar]
  • Janovjak, H., Szobota, S., Wyart, C., Trauner, D., Isacoff, E.Y. (2010). A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat Neurosci, 13, 1027-1032. [CrossRef] [PubMed] [Google Scholar]
  • Jeong, J.-W., McCall, J.G., Shin, G., Zhang, Y., Al-Hasani, R., Kim, M., Li, S., Sim, J.Y., Jang, K.-I., Shi, Y., Hong, D.Y., Liu, Y., Schmitz, G.P., Xia, L., He, Z., Gamble, P., Ray, W.Z., Huang, Y., Bruchas, M.R., Rogers, J.A. (2015). Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell, 162, 662-674. [CrossRef] [PubMed] [Google Scholar]
  • Kang, J.-Y., Kawaguchi, D., Coin, I., Xiang, Z., O'Leary, D.D.M., Slesinger, P.A., Wang, L. (2013). In vivo expression of a light-activatable potassium channel using unnatural amino acids. Neuron, 80, 358-370. [CrossRef] [PubMed] [Google Scholar]
  • Kienzler, M.A., Reiner, A., Trautman, E., Yoo, S., Trauner, D., Isacoff, E.Y. (2013). A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J Am Chem Soc, 135, 17683-17686. [CrossRef] [PubMed] [Google Scholar]
  • Kim, C.K., Adhikari, A., Deisseroth, K. (2017). Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci, 18, 222-235. [CrossRef] [PubMed] [Google Scholar]
  • Kramer, R.H., Mourot, A., Adesnik, H. (2013). Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci, 16, 816-823. [CrossRef] [PubMed] [Google Scholar]
  • Krieger, F., Mourot, A., Araoz, R., Kotzyba-Hibert, F., Molgó, J., Bamberg, E., Goeldner, M. (2008). Fluorescent agonists for the torpedo nicotinic acetylcholine receptor. Chem Bio Chem, 9, 1146-1153. [CrossRef] [Google Scholar]
  • Krouse, M.E.M., Lester, H.A., Wassermann, N.H., Erlanger, B.F. (1985). Rates and equilibria for a photoisomerizable antagonist at the acetylcholine receptor of electrophorus electroplaques. J Gen Physiol, 86, 235-256. [CrossRef] [PubMed] [Google Scholar]
  • Labarca, C., Schwarz, J., Deshpande, P., Schwarz, S., Nowak, M.W., Fonck, C., Nashmi, R., Kofuji, P., Dang, H., Shi, W., Fidan, M., Khakh, B.S., Chen, Z., Bowers, B.J., Boulter, J., Wehner, J.M., Lester, H.A. (2001). Point mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety. Proc Nat Acad Sci USA, 98, 2786-2791. [CrossRef] [Google Scholar]
  • Laprell, L., Repak, E., Franckevicius, V., Hartrampf, F., Terhag, J., Hollmann, M., Sumser, M., Rebola, N., DiGregorio, D.A., Trauner, D. (2015). Optical control of NMDA receptors with a diffusible photoswitch. Nat Commun, 6, 1-11. [CrossRef] [Google Scholar]
  • Le Novère, N., Corringer, P.-J., Changeux, J.-P. (2002). The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol, 53, 447-56. [CrossRef] [PubMed] [Google Scholar]
  • Lemoine, D., Durand-de Cuttoli, R., Mourot, A. (2016). Optogenetic control of mammalian ion channels with chemical photoswitches. Methods Mol Biol, 1408, 177-193. [CrossRef] [PubMed] [Google Scholar]
  • Lerch, M.M., Hansen, M.J., van Dam, G.M., Szymański, W., Feringa, B.L. (2016). Emerging targets in photopharmacology. Angew Chem Int Ed Engl, 55, 10978-10999. [CrossRef] [PubMed] [Google Scholar]
  • Lester, H.A., Krouse, M.E., Nass, M.M., Wassermann, N.H., Erlanger, B.F. (1979). Light-activated drug confirms a mechanism of ion channel blockade. Nature, 280, 509-510. [CrossRef] [PubMed] [Google Scholar]
  • Lester, H.A., Krouse, M.E.M., Nass, M.M., Wassermann, N.H., Erlanger, B.F. (1980). A covalently bound photoisomerizable agonist: comparison with reversibly bound agonists at electrophorus electroplaques. J GenPhysiol, 75, 207-232. [Google Scholar]
  • Levitz, J., Pantoja, C., Gaub, B., Janovjak, H., Reiner, A., Hoagland, A., Schoppik, D., Kane, B., Stawski, P., Schier, A.F., Trauner, D., Isacoff, E.Y. (2013). Optical control of metabotropic glutamate receptors. Nature Neurosci, 16, 507-516. [CrossRef] [Google Scholar]
  • Levitz, J., Popescu, A.T., Reiner, A., Isacoff, E.Y. (2016). A toolkit for orthogonal and in vivo optical manipulation of ionotropic glutamate receptors. Front Mol Neurosci, 9, 163. [CrossRef] [PubMed] [Google Scholar]
  • Lin, W.-C., Davenport, C.M., Mourot, A., Vytla, D., Smith, C.M., Medeiros, K.A., Chambers, J.J., Kramer, R.H. (2014). Engineering a light-regulated GABAA receptor for optical control of neural inhibition. ACS Chem Biol, 9, 1414-1419. [CrossRef] [PubMed] [Google Scholar]
  • Lin, W.-C., Tsai, M.-C., Davenport, C.M., Smith, C.M., Veit, J., Wilson, N.M., Adesnik, H., Kramer, R.H. (2015). A comprehensive optogenetic pharmacology toolkit for in vivo control of GABA(a) receptors and synaptic inhibition. Neuron, 88, 879-891. [CrossRef] [PubMed] [Google Scholar]
  • Mameli-Engvall, M., Evrard, A., Pons, S., Maskos, U., Svensson, T.H., Changeux, J.-P., Faure, P. (2006). Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron, 50, 911-921. [CrossRef] [PubMed] [Google Scholar]
  • Marubio, L.M., Gardier, A.M., Durier, S., David, D., Klink, R., Arroyo-Jimenez, M.M., McIntosh, J.M., Rossi, F., Champtiaux, N., Zoli, M., Changeux, J.-P. (2003). Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors. Eur J Neurosci, 17, 1329-1337. [CrossRef] [PubMed] [Google Scholar]
  • Maskos, U., Molles, B.E., Pons, S., Besson, M., Guiard, B.P., Guilloux, J.P., Evrard, A., Cazala, P., Cormier, A., Mameli-Engvall, M., Dufour, N., Cloëz-Tayarani, I., Bemelmans, A.P., Mallet, J., Gardier, A.M., David, V., Faure, P., Granon, S., Changeux, J.-P. (2005). Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature, 436, 103-107. [CrossRef] [PubMed] [Google Scholar]
  • McCallum, S.E., Cowe, M.A., Lewis, S.W., Glick, S.D. (2012). Α3β4 Nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo. Neuropharmacology, 63, 434-440. [CrossRef] [PubMed] [Google Scholar]
  • Morales-Perez, C.L., Noviello, C.M., Hibbs, R.E. (2016). X-ray structure of the human Α4β2 nicotinic receptor. Nature, 538, 411-415. [CrossRef] [PubMed] [Google Scholar]
  • Morel, C., Fattore, L., Pons, S., Hay, Y.A., Marti, F., Lambolez, B., De Biasi, M., Lathrop, M., Fratta, W., Maskos, U., Faure, P. (2013). Nicotine consumption is regulated by a human polymorphismin dopamine neurons. Mol Psychiatry, 19, 930-936. [CrossRef] [PubMed] [Google Scholar]
  • Mourot, A., Rodrigo, J., Kotzyba-Hibert, F., Bertrand, S., Bertrand, D., Goeldner, M. (2006). Probing the reorganization of the nicotinic acetylcholine receptor during desensitization by time-resolved covalent labeling using [3H]AC5, a photoactivatable agonist. Mol Pharmacology, 69, 452-461. [CrossRef] [Google Scholar]
  • Mourot, A., Kienzler, M.A., Banghart, M.R., Fehrentz, T., Huber, F.M.E., Stein, M., Kramer, R.H., Trauner, D. (2011). Tuning photochromic ion channel blockers. ACS Chem Neurosci, 2, 536-543. [CrossRef] [PubMed] [Google Scholar]
  • Mourot, A., Fehrentz, T., Le Feuvre, Y., Smith, C.M., Herold, C., Dalkara, D., Nagy, F., Trauner, D., Kramer, R.H. (2012). Rapid optical control of nociception with an ion-channel photoswitch. Nat Methods, 9, 396-402. [CrossRef] [PubMed] [Google Scholar]
  • Mourot, A., Tochitsky, I., Kramer, R.H. (2013). Light at the end of the channel: optical manipulation of intrinsic neuronal excitability with chemical photoswitches. Front Mol Neurosci, 6, 1-15. [CrossRef] [Google Scholar]
  • Mourot, A., Herold, C., Kienzler, M.A., Kramer, R.H. (2017). Understanding and improving photo-control of ion channels in nociceptors with azobenzene photoswitches. Brit J Pharmacol, doi: 10.1111/bph.13923, sous presse. [Google Scholar]
  • Nargeot, J., Lester, H.A., Birdsall, N.J., Stockton, J., Wassermann, N.H., Erlanger, B.F. (1982). A photoisomerizable muscarinic antagonist. Studies of binding and of conductance relaxations in frog heart. J Gen Physiol, 79, 657-678. [CrossRef] [PubMed] [Google Scholar]
  • Nass, M.M., Lester, H.A., Krouse, M.E. (1978). Response of acetylcholine receptors to photoisomerizations of bound agonist molecules. Biophys J, 24, 135-160. [CrossRef] [PubMed] [Google Scholar]
  • Naudé, J., Tolu, S., Dongelmans, M., Torquet, N., Valverde, S., Rodriguez, G., Pons, S.E.P., Maskos, U., Mourot, A., Marti, F., Faure, P. (2016). Nicotinic receptors in the ventral tegmental area promote uncertainty-seeking. Nat Neurosci, 19, 471-478. [CrossRef] [PubMed] [Google Scholar]
  • Naylor, C., Quarta, D., Fernandes, C., Stolerman, I.P. (2005). Tolerance to nicotine in mice lacking alpha7 nicotinic receptors. Psychopharmacology, 180, 558-563. [CrossRef] [PubMed] [Google Scholar]
  • Nemecz, Á., Prevost, M.S., Menny, A., Corringer, P.-J. (2016). Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron, 90, 452–470. [CrossRef] [PubMed] [Google Scholar]
  • Nys, M., Kesters, D., Ulens, C. (2013). Structural insights into cys-loop receptor function and ligand recognition. Biochem Pharmacol, 86, 1042-1053. [CrossRef] [PubMed] [Google Scholar]
  • Picciotto, M.R., Zoli, M., Rimondini, R., Léna, C., Marubio, L.M., Pich, E.M., Fuxe, K., Changeux, J.-P. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 391, 173-177. [CrossRef] [PubMed] [Google Scholar]
  • Picciotto, M.R., Higley, M.J., Mineur, Y.S. (2012). Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 76, 116-129. [CrossRef] [PubMed] [Google Scholar]
  • Polosukhina, A., Litt, J., Tochitsky, I., Nemargut, J., Sychev, Y., De Kouchkovsky, I., Huang, T., Borges, K., Trauner, D., Van Gelder, R.N., Kramer, R.H. (2012). Photochemical restoration of visual responses in blind mice. Neuron, 75, 271-82. [CrossRef] [PubMed] [Google Scholar]
  • Pons, S., Fattore, L., Cossu, G., Tolu, S., Porcu, E., McIntosh, J.M., Changeux, J.-P., Maskos, U., Fratta, W. (2008). Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci, 28, 12318-12327. [CrossRef] [PubMed] [Google Scholar]
  • Posadas, I., López-Hernández, B., Ceña, V. (2013). Nicotinic receptors in neurodegeneration. Current Neuropharmacol, 11, 298-314. [CrossRef] [Google Scholar]
  • Quandt, G., Höfner, G., Pabel, J., Dine, J., Eder, M., Wanner, K.T. (2014). First photoswitchable neurotransmitter transporter inhibitor: light-induced control of γ-aminobutyric acid transporter 1 (GAT1) activity in mouse brain. J Med Chem, 57, 6809-6821. [CrossRef] [PubMed] [Google Scholar]
  • Rullo, A., Reiner, A., Reiter, A., Trauner, D., Isacoff, E.Y., Woolley, G.A. (2014). Long wavelength optical control of glutamate receptor ion channels using a tetra-ortho-substituted azobenzene derivative. Chem Commun, 50, 14613-14615. [CrossRef] [Google Scholar]
  • Salas, R., Pieri, F., Fung, B., Dani, J.A., De Biasi, M. (2003). Altered anxiety-related responses in mutant mice lacking the beta4 subunit of the nicotinic receptor. J Neurosci, 23, 6255-6263. [CrossRef] [PubMed] [Google Scholar]
  • Salas, R., Pieri, F., De Biasi, M. (2004). Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit. J Neurosci, 24, 10035-10039. [CrossRef] [PubMed] [Google Scholar]
  • Salas, R., Sturm, R., Boulter, J., De Biasi, M. (2009). Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J Neurosci, 29, 3014-3018. [CrossRef] [PubMed] [Google Scholar]
  • Sandoz, G., Levitz, J., Kramer, R.H., Isacoff, E.Y. (2012). Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABAB signaling. Neuron, 74, 1005-1014. [CrossRef] [PubMed] [Google Scholar]
  • Schönberger, M., Trauner, D. (2014). A photochromic agonist for µ-opioid receptors. Angew Chem Int Ed Engl, 53, 3264-3267. [CrossRef] [PubMed] [Google Scholar]
  • Schönberger, M., Althaus, M., Fronius, M., Clauss, W., Trauner, D. (2014). Controlling epithelial sodium channels with light using photoswitchable amilorides. Nat Chem, 6, 712-719. [CrossRef] [PubMed] [Google Scholar]
  • Sheridan, R.E., Lester, H.A. (1982). Functional stoichiometry at the nicotinic receptor. The photon cross section for phase 1 corresponds to two Bis-Q molecules per channel. J Gen Physiol, 80, 499-515. [CrossRef] [PubMed] [Google Scholar]
  • Shields, B.C., Kahuno, E., Kim, C., Apostolides, P.F., Brown, J., Lindo, S., Mensh, B.D., Dudman, J.T., Lavis, L.D., Tadross, M.R. (2017). Deconstructing behavioral neuropharmacology with cellular specificity. Science, 356. [Google Scholar]
  • Silman, I., Karlin, A. (1969). Acetylcholine receptor: covalent attachment of depolarizing groups at the active site. Science, 164, 1420-1421. [CrossRef] [PubMed] [Google Scholar]
  • Stein, M., Middendorp, S.J., Carta, V., Pejo, E., Raines, D.E., Forman, S.A., Sigel, E., Trauner, D. (2012). Azo-propofols: photochromic potentiators of GABAA receptors. Angew Chem Int Ed Engl, 51, 10500-10504. [CrossRef] [PubMed] [Google Scholar]
  • Stein, M., Breit, A., Fehrentz, T., Gudermann, T., Trauner, D. (2013). Optical control of TRPV1 channels. Angew Chem Int Ed Engl, 52, 9845-9848. [CrossRef] [PubMed] [Google Scholar]
  • Szobota, S., Gorostiza, P., Del Bene, F., Wyart, C., Fortin, D.L., Kolstad, K.D., Tulyathan, O., Volgraf, M., Numano, R., Aaron, H.L., Scott, E.K., Kramer, R.H., Flannery, J.G., Baier, H., Trauner, D., Isacoff, E.Y. (2007). Remote control of neuronal activity with a light-gated glutamate receptor. Neuron, 54, 535-545. [CrossRef] [PubMed] [Google Scholar]
  • Taly, A., Corringer, P.-J., Guedin, D., Lestage, P., Changeux, J.-P. (2009). Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov, 8, 1-18. [CrossRef] [Google Scholar]
  • Tapper, A.R., McKinney, S.L., Nashmi, R., Schwarz, J., Deshpande, P., Labarca, C., Whiteaker, P., Marks, M.J., Collins, A.C., Lester, H.A. (2004). Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science, 306, 1029-1032. [CrossRef] [PubMed] [Google Scholar]
  • Tochitsky, I., Banghart, M.R., Mourot, A., Yao, J.Z., Gaub, B., Kramer, R.H., Trauner, D. (2012). Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors. Nat Chem, 4, 105-111. [CrossRef] [PubMed] [Google Scholar]
  • Tochitsky, I., Polosukhina, A., Degtyar, V.E., Gallerani, N., Smith, C.M., Friedman, A., Van Gelder, R.N., Trauner, D., Kaufer, D., Kramer, R.H. (2014). Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron, 81, 800-813. [CrossRef] [PubMed] [Google Scholar]
  • Tolu, S., Eddine, R., Marti, F., David, V., Graupner, M., Pons, S., Baudonnat, M., Husson, M., Besson, M., Reperant, C., Zemdegs, J., Pagès, C., Hay, Y.A.H., Lambolez, B., Caboche, J., Gutkin, B., Gardier, A.M., Changeux, J.-P., Faure, P., Maskos, U. (2012). Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement. Mol Psychiatry, 18, 382-393. [CrossRef] [PubMed] [Google Scholar]
  • Vaziri, A., Emiliani, V. (2012) Reshaping the optical dimension in optogenetics. Curr Opin Neurobiol, 22, 128-137. [CrossRef] [PubMed] [Google Scholar]
  • Volgraf, M., Gorostiza, P., Numano, R., Kramer, R.H., Isacoff, E.Y., Trauner, D. (2005). Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol, 2, 47-52. [CrossRef] [Google Scholar]
  • Volgraf, M., Gorostiza, P., Szobota, S., Helix, M.R., Isacoff, E.Y., Trauner, D. (2007). Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J Am Chem Soc, 129, 260-261. [CrossRef] [PubMed] [Google Scholar]
  • Walters, C.L., Brown, S., Changeux, J.-P., Martin, B., Damaj, M.I. (2006). The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology, 184, 339-344. [CrossRef] [PubMed] [Google Scholar]
  • Wassermann, N.H., Erlanger, B.F. (1981). Agents related to a potent activator of the acetylcholine receptor of electrophorus electricus. Chem Bioll Interact, 36, 251-258. [CrossRef] [Google Scholar]
  • Wassermann, N.H., Bartels, E., Erlanger, B.F. (1979). Conformational properties of the acetylcholine receptor as revealed by studies with constrained depolarizing ligands. Proc Nat Acad Sci USA, 76, 256-9. [CrossRef] [Google Scholar]
  • Wonnacott, S., Barik, J. (2007) Nicotinic ACh Receptors. Tocris Reviews, 28, 1-20. [Google Scholar]
  • Wu, J., Liu, Q., Tang, P., Mikkelsen, J.D., Shen, J., Whiteaker, P., Yakel, J.L. (2016). Heteromeric /7b2 Nicotinic acetylcholine receptors in the brain. Trends Pharmacol Sci, 37, 562-574. [CrossRef] [PubMed] [Google Scholar]
  • Wyart, C., Del Bene, F., Warp, E., Scott, E.K., Trauner, D., Baier, H., Isacoff, E.Y. (2009). Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature, 461, 407-410. [CrossRef] [PubMed] [Google Scholar]
  • Xu, W., Gelber, S., Orr-Urtreger, A., Armstrong, D., Lewis, R.A., Ou, C.N., Patrick, J., Role, L., De Biasi, M., Beaudet, A.L. (1999). Megacystis, mydriasis, and ion channel defect in mice lacking the alpha3 neuronal nicotinic acetylcholine receptor. Proc Nat Acad Sci USA, 96, 5746-51. [CrossRef] [Google Scholar]
  • Young, J.W., Finlayson, K., Spratt, C., Marston, H.M., Crawford, N., Kelly, J.S., Sharkey, J. (2004). Nicotine improves sustained attention in mice: evidence for involvement of the alpha7 nicotinic acetylcholine receptor. Neuropsychopharmacology, 29, 891-900. [CrossRef] [PubMed] [Google Scholar]
  • Yue, L., Pawlowski, M., Dellal, S.S., Xie, A., Feng, F., Otis, T.S., Bruzik, K.S., Qian, H., Pepperberg, D.R. (2012). Robust photoregulation of GABAA receptors by allosteric modulation with a propofol analogue. Nat Commun, 3, 1095. [CrossRef] [PubMed] [Google Scholar]
  • Zhou, X.X., Pan, M., Lin, M.Z. (2015). Investigating neuronal function with optically controllable proteins. Front Mol Neurosci, 8, 37. [CrossRef] [PubMed] [Google Scholar]
  • Zoli, M., Pistillo, F., Gotti, C. (2015). Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology, 96, 302-311. [CrossRef] [PubMed] [Google Scholar]
  • Zussy, C., Gómez-Santacana, X., Rovira, X., De Bundel, D., Ferrazzo, S., Bosch, D., Asede, D., Malhaire, F., Acher, F., Giraldo, J., Valjent, E., Ehrlich, I., Ferraguti, F., Pin, J.-P., Llebaria, A., Goudet, C. (2016). Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4. Mol Psychiatry, doi: 10.1038/mp.2016.223. (sous presse) [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.