Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 211, Numéro 4, 2017
Page(s) 271 - 280
Section CRISPR : d’un système immunitaire procaryote à une révolution technologique (Journée Claude Bernard)
DOI https://doi.org/10.1051/jbio/2018015
Publié en ligne 29 juin 2018
  • Akhtar-Zaidi, B., Cowper-Sal-lari, R., Corradin, O., Saiakhova, A., Bartels, C.F., Balasubramanian, D., Myeroff, L., Lutterbaugh, J., Jarrar, A., Kalady, M.F., Willis J., Moore J.H., Tesar P.J., Laframboise T., Markowitz S., Lupien M., Scacheri P.C. (2012). Epigenomic enhancer profiling defines a signature of colon cancer. Science , 336, 736-739. [CrossRef] [PubMed] [Google Scholar]
  • Andersson, R. (2015). Promoter or enhancer, what’s the difference? Deconstruction of established distinctions and presentation of a unifying model. BioEssays , 37, 314-323. [CrossRef] [PubMed] [Google Scholar]
  • Arnold, C.D., Gerlach, D., Stelzer, C., Boryń, M., Rath, M., Stark, A. (2013). Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science, 339, 1074-1077. [CrossRef] [Google Scholar]
  • Arnold, C.D., Gerlach, D., Spies, D., Matts, J.A., Sytnikova, Y.A., Pagani, M., Lau, N.C., Stark, A. (2014). Quantitative genome-wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover during cis-regulatory evolution. Nat Genet , 46, 685-692. [CrossRef] [Google Scholar]
  • Barakat, T.S., Halbritter, F., Zhang, M., Rendeiro, A.F., Bock, C., Chambers, I. (2017). Functional dissection of the enhancer repertoire in human embryonic stem cells. BioRxiv, 146696. [Google Scholar]
  • Bevington, S.L., Cauchy, P., Cockerill, P.N. (2017). Chromatin priming elements establish immunological memory in T cells without activating transcription. BioEssays, 39(2), 1600184. [Google Scholar]
  • Canver, M.C., Smith, E.C., Sher, F., Pinello, L., Sanjana, N.E., Shalem, O., Chen, D.D., Schupp, P.G., Vinjamur, D.S., Garcia, S.P., Luc S., Kurita R., Nakamura Y., Fujiwara Y., Maeda T., Yuan G.C., Zhang F., Orkin S.H., Bauer D.E. (2015). BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature , 527, 192-197. [CrossRef] [PubMed] [Google Scholar]
  • Chatterjee, S., Ahituv, N. (2017). Gene regulatory elements, major drivers of human disease. Annu Rev Genomics Hum Genet, 18, 45-63. [CrossRef] [PubMed] [Google Scholar]
  • Core, L.J., Martins, A.L., Danko, C.G., Waters, C., Siepel, A., Lis, J.T. (2014). Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat Genet, 46, 1311-1320. [CrossRef] [Google Scholar]
  • Dailey, L. (2015). High throughput technologies for the functional discovery of mammalian enhancers: New approaches for understanding transcriptional regulatory network dynamics. Genomics , 106, 151-158. [CrossRef] [PubMed] [Google Scholar]
  • Dao, L.T.M., Galindo-Albarrán, A.O., Castro-Mondragon, J.A., Andrieu-Soler, C., Medina-Rivera, A., Souaid, C., Charbonnier, G., Griffon, A., Vanhille, L., Stephen, T., Alomairi J., Martin D., Torres M., Fernandez N., Soler E., van Helden J., Puthier D., Spicuglia S. (2017). Genome-wide characterization of mammalian promoters with distal enhancer functions. Nat Genet, 49, 1073-1081 [CrossRef] [Google Scholar]
  • Diao, Y., Li, B., Meng, Z., Jung, I., Lee, A.Y., Dixon, J., Maliskova, L., Guan, K., Shen, Y., Ren, B. (2016). A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Res, 26, 397-405. [CrossRef] [PubMed] [Google Scholar]
  • Diao, Y., Fang, R., Li, B., Meng, Z., Yu, J., Qiu, Y., Lin, K.C., Huang, H., Liu, T., Marina, R.J., Jung I., Shen Y., Guan K.L., Ren B. (2017). A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Nat Methods, 14, 629. [CrossRef] [PubMed] [Google Scholar]
  • Dogan, N., Wu, W., Morrissey, C.S., Chen, K.-B., Stonestrom, A., Long, M., Keller, C.A., Cheng, Y., Jain, D., Visel, A., Pennacchio L.A., Weiss M.J., Blobel G.A., Hardison R.C. (2015). Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility. Epigenetics Chromatin, 8. [Google Scholar]
  • Engreitz, J.M., Haines, J.E., Perez, E.M., Munson, G., Chen, J., Kane, M., McDonel, P.E., Guttman, M., Lander, E.S. (2016). Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature, 539, 452. [CrossRef] [PubMed] [Google Scholar]
  • Ernst, J., Melnikov, A., Zhang, X., Wang, L., Rogov, P., Mikkelsen, T.S., Kellis, M. (2016). Genome-scale high-resolution mapping of activating and repressive nucleotides in regulatory regions. Nat Biotechnol , 34, 1180-1190. [CrossRef] [PubMed] [Google Scholar]
  • Fulco, C.P., Munschauer, M., Anyoha, R., Munson, G., Grossman, S.R., Perez, E.M., Kane, M., Cleary, B., Lander, E.S., Engreitz, J.M. (2016). Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science, 354, 769-773. [CrossRef] [Google Scholar]
  • Hsu, P.D., Lander, E.S., Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell , 157, 1262-1278. [CrossRef] [PubMed] [Google Scholar]
  • Inoue, F., Ahituv, N. (2015). Decoding enhancers using massively parallel reporter assays. Genomics , 106, 159-164. [CrossRef] [PubMed] [Google Scholar]
  • Inoue, F., Kircher, M., Martin, B., Cooper, G.M., Witten, D.M., McManus, M.T., Ahituv, N., Shendure, J. (2017). A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. Genome Res , 27, 38-52. [CrossRef] [PubMed] [Google Scholar]
  • Kheradpour, P., Ernst, J., Melnikov, A., Rogov, P., Wang, L., Zhang, X., Alston, J., Mikkelsen, T.S., Kellis, M. (2013). Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res , 23, 800-811. [CrossRef] [PubMed] [Google Scholar]
  • Kim, T.-K., Shiekhattar, R. (2015). Architectural and functional commonalities between enhancers and promoters. Cell , 162, 948-959. [CrossRef] [PubMed] [Google Scholar]
  • Klann, T.S., Black, J.B., Chellappan, M., Safi, A., Song, L., Hilton, I.B., Crawford, G.E., Reddy, T.E., Gersbach, C.A. (2017). CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol, 35, 561-568. [CrossRef] [PubMed] [Google Scholar]
  • Koch, F., Fenouil, R., Gut, M., Cauchy, P., Albert, T.K., Zacarias-Cabeza, J., Spicuglia, S., de la Chapelle, A.L., Heidemann, M., Hintermair, C., Eick D., Gut I., Ferrier P., Andrau J.C. (2011). Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat Struct Mol Biol, 18, 956. [CrossRef] [PubMed] [Google Scholar]
  • Korkmaz, G., Lopes, R., Ugalde, A.P., Nevedomskaya, E., Han, R., Myacheva, K., Zwart, W., Elkon, R., Agami, R. (2016). Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol , 34, 192. [CrossRef] [PubMed] [Google Scholar]
  • Kwasnieski, J.C., Fiore, C., Chaudhari, H.G., Cohen, B.A. (2014). High-throughput functional testing of ENCODE segmentation predictions. Genome Res, 24, 1595-1602. [CrossRef] [PubMed] [Google Scholar]
  • Liu, Y., Yu, S., Dhiman, V.K., Brunetti, T., Eckart, H., White, K.P. (2017). Functional assessment of human enhancer activities using whole-genome STARR-sequencing. Genome Biol , 18, 219. [CrossRef] [PubMed] [Google Scholar]
  • Lo, A., Qi, L. (2017). Genetic and epigenetic control of gene expression by CRISPR–Cas systems. F1000 Research, 6. [Google Scholar]
  • Medina-Rivera, A., Santiago-Algarra, D., Puthier, D., Spicuglia, S. (2018). Widespread enhancer activity from core promoters. Trends Biochem Sci , 43, 452-468. [CrossRef] [PubMed] [Google Scholar]
  • Melnikov, A., Murugan, A., Zhang, X., Tesileanu, T., Wang, L., Rogov, P., Feizi, S., Gnirke, A., Callan, C.G., Kinney, J.B., Kellis M., Lander E.S., Mikkelsen T.S. (2012). Rapid dissection and model-based optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol , 30, 271-277. [CrossRef] [PubMed] [Google Scholar]
  • Montalbano, A., Canver, M.C., Sanjana, N.E. (2017). High-throughput approaches to pinpoint function within the noncoding genome. Mol Cell, 68, 44-59. [CrossRef] [PubMed] [Google Scholar]
  • Muerdter, F., Boryń, M., Arnold, C.D. (2015). STARR-seq – principles and applications. Genomics , 106, 145-150. [CrossRef] [PubMed] [Google Scholar]
  • Muerdter, F., Boryń, M., Woodfin, A.R., Neumayr, C., Rath, M., Zabidi, M.A., Pagani, M., Haberle, V., Kazmar, T., Catarino, R.R., Schernhuber K., Arnold C.D., Stark A. (2018). Resolving systematic errors in widely used enhancer activity assays in human cells. Nat Methods , 15, 141-149. [CrossRef] [PubMed] [Google Scholar]
  • Murtha, M., Tokcaer-Keskin, Z., Tang, Z., Strino, F., Chen, X., Wang, Y., Xi, X., Basilico, C., Brown, S., Bonneau, R., Kluger Y., Dailey L. (2014). FIREWACh: High-throughput functional detection of transcriptional regulatory modules in mammalian cells. Nat Methods , 11, 559-565. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen, T.A., Jones, R.D., Snavely, A.R., Pfenning, A.R., Kirchner, R., Hemberg, M., Gray, J.M. (2016). High-throughput functional comparison of promoter and enhancer activities. Genome Res , 26, 1023-1033. [Google Scholar]
  • Patwardhan, R.P., Hiatt, J.B., Witten, D.M., Kim, M.J., Smith, R.P., May, D., Lee, C., Andrie, J.M., Lee, S.-I., Cooper, G.M., Ahituv N., Pennacchio L.A., Shendure J. (2012). Massively parallel functional dissection of mammalian enhancers in vivo. Nat Biotechnol, 30, 265-270. [Google Scholar]
  • Pekowska, A., Benoukraf, T., Zacarias-Cabeza, J., Belhocine, M., Koch, F., Holota, H., Imbert, J., Andrau, J.-C., Ferrier, P., Spicuglia, S. (2011). H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J , 30, 4198-4210. [CrossRef] [PubMed] [Google Scholar]
  • Rajagopal, N., Srinivasan, S., Kooshesh, K., Guo, Y., Edwards, M.D., Banerjee, B., Syed, T., Emons, B.J., Gifford, D.K., Sherwood, R.I. (2016). High-throughput mapping of regulatory DNA. Nat Biotechnol , 34, 167-174. [CrossRef] [PubMed] [Google Scholar]
  • Ruf, S., Symmons, O., Uslu, V.V., Dolle, D., Hot, C., Ettwiller, L., Spitz, F. (2011). Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nat Genet , 43, 379. [CrossRef] [Google Scholar]
  • Sanjana, N.E., Wright, J., Zheng, K., Shalem, O., Fontanillas, P., Joung, J., Cheng, C., Regev, A., Zhang, F. (2016). High-resolution interrogation of functional elements in the noncoding genome. Science , 353, 1545-1549. [CrossRef] [Google Scholar]
  • Sati, S., Cavalli, G. (2017). Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma , 126, 33-44. [CrossRef] [Google Scholar]
  • Shen, S.Q., Myers, C.A., Hughes, A.E.O., Byrne, L.C., Flannery, J.G., Corbo, J.C. (2016). Massively parallel cis-regulatory analysis in the mammalian central nervous system. Genome Res , 26, 238-255. [CrossRef] [PubMed] [Google Scholar]
  • Shlyueva, D., Stelzer, C., Gerlach, D., Yáñez-Cuna, J.O., Rath, M., Boryń, M., Arnold, C.D., Stark, A. (2014). Hormone-responsive enhancer-activity maps reveal predictive motifs, indirect repression, and targeting of closed chromatin. Mol Cell , 54, 180-192. [CrossRef] [PubMed] [Google Scholar]
  • Smith, R.P., Taher, L., Patwardhan, R.P., Kim, M.J., Inoue, F., Shendure, J., Ovcharenko, I., Ahituv, N. (2013). Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. Nat Genet , 45, 1021-1028. [CrossRef] [Google Scholar]
  • Symmons, O., Uslu, V.V., Tsujimura, T., Ruf, S., Nassari, S., Schwarzer, W., Ettwiller, L., Spitz, F. (2014). Functional and topological characteristics of mammalian regulatory domains. Genome Res , 24, 390-400. [CrossRef] [PubMed] [Google Scholar]
  • Tewhey, R., Kotliar, D., Park, D.S., Liu, B., Winnicki, S., Reilly, S.K., Andersen, K.G., Mikkelsen, T.S., Lander, E.S., Schaffner, S.F., Sabeti P.C. (2016). Direct identification of hundreds of expression-modulating variants using a multiplexed reporter assay. Cell , 165, 1519-1529. [CrossRef] [PubMed] [Google Scholar]
  • Ulirsch, J.C., Nandakumar, S.K., Wang, L., Giani, F.C., Zhang, X., Rogov, P., Melnikov, A., McDonel, P., Do, R., Mikkelsen, T.S., Sankaran V.G. (2016). Systematic functional dissection of common genetic variation affecting red blood cell traits. Cell , 165, 1530-1545. [CrossRef] [PubMed] [Google Scholar]
  • Vanhille, L., Griffon, A., Maqbool, M.A., Zacarias-Cabeza, J., Dao, L.T.M., Fernandez, N., Ballester, B., Andrau, J.C., Spicuglia, S. (2015). High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq. Nat Commun, 6, 6905. [CrossRef] [PubMed] [Google Scholar]
  • Vernimmen, D., Bickmore, W.A. (2015). The hierarchy of transcriptional activation: From enhancer to promoter. Trends Genet TIG , 31, 696-708. [CrossRef] [Google Scholar]
  • Vierstra, J., Reik, A., Chang, K.-H., Stehling-Sun, S., Zhou, Y.-Y., Hinkley, S.J., Paschon, D.E., Zhang, L., Psatha, N., Bendana, Y.R., O’Neil C.M., Song A.H., Mich A.K., Liu P.Q., Lee G., Bauer D.E., Holmes M.C., Orkin S.H., Papayannopoulou T., Stamatoyannopoulos G., Rebar E.J., Gregory P.D., Urnov F.D., Stamatoyannopoulos J.A. (2015). Functional footprinting of regulatory DNA. Nat Methods , 12, 927-930. [CrossRef] [PubMed] [Google Scholar]
  • Vockley, C.M., Guo, C., Majoros, W.H., Nodzenski, M., Scholtens, D.M., Hayes, M.G., Lowe, W.L., Reddy, T.E. (2015). Massively parallel quantification of the regulatory effects of noncoding genetic variation in a human cohort. Genome Res , 25, 1206-1214. [CrossRef] [PubMed] [Google Scholar]
  • Wang, X., He, L., Goggin, S., Saadat, A., Wang, L., Claussnitzer, M., Kellis, M. (2017). High-resolution genome-wide functional dissection of transcriptional regulatory regions in human. BioRxiv, 193136. [Google Scholar]
  • White, M.A. (2015). Understanding how cis-regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences. Genomics , 106, 165-170. [CrossRef] [PubMed] [Google Scholar]
  • Xie, S., Duan, J., Li, B., Zhou, P., Hon, G.C. (2017). Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol Cell, 66, 285-299.e5. [Google Scholar]
  • Yáñez-Cuna, J.O., Arnold, C.D., Stampfel, G., Boryń, M., Gerlach, D., Rath, M., Stark, A. (2014). Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features. Genome Res , 24, 1147-1156. [CrossRef] [PubMed] [Google Scholar]
  • Zabidi, M.A., Arnold, C.D., Schernhuber, K., Pagani, M., Rath, M., Frank, O., Stark, A. (2015). Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. Nature , 518, 556-559. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.