Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 211, Numéro 4, 2017
Page(s) 265 - 270
Section CRISPR : d’un système immunitaire procaryote à une révolution technologique (Journée Claude Bernard)
DOI https://doi.org/10.1051/jbio/2018004
Publié en ligne 29 juin 2018
  • Ando, H., Lemire, S., Pires, D.P., Lu, T.K. (2015). Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst, 1, 187-196. [Google Scholar]
  • Barrangou, R., Doudna, J.A. (2016). Applications of CRISPR technologies in research and beyond. Nat Biotechnol, 34, 933-941. [CrossRef] [PubMed] [Google Scholar]
  • Barrangou, R., Frémaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709-1712. [CrossRef] [Google Scholar]
  • Beloglazova, N., Petit, P., Flick, R., Brown, G., Savchenko, A., Yakunin, A.F. (2011). Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J, 30, 4616-4627. [CrossRef] [PubMed] [Google Scholar]
  • Bikard, D., Barrangou, R. (2017). Using CRISPR-Cas systemes as antimicrobials. Curr Opin Microbiol, 37, 155-160. [CrossRef] [PubMed] [Google Scholar]
  • Bikard, D., Hatoum-Aslan, A., Mucida, D., Marraffini, L.A. (2012). CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe, 12, 177-186. [CrossRef] [PubMed] [Google Scholar]
  • Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., Marraffini, L.A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res, 41, 7429-7437. [CrossRef] [PubMed] [Google Scholar]
  • Bikard, D., Euler, C.W., Jiang, W., Nussenzweig, P.M., Goldberg, G.W., Duportet, X., Fischetti, V.A., Marraffini, L.A. (2014). Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol, 32, 1146-1150. [CrossRef] [PubMed] [Google Scholar]
  • Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., Dickman, M.J., Makarova, K.S., Koonin, E.V., van der Oost, J. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321, 960-964. [CrossRef] [Google Scholar]
  • Caliando, B.J., Voigt, C.A. (2015). Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nat Commun, 6, 6989. [CrossRef] [PubMed] [Google Scholar]
  • Citorik, R.J., Mimee, M., Lu, T.K. (2014). Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol, 32, 1141-1145. [CrossRef] [PubMed] [Google Scholar]
  • Cui, L., Bikard, D. (2016). Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res, 44, 4243-4251. [CrossRef] [PubMed] [Google Scholar]
  • Deltcheva, E., Chylinski, K., Sharma, C.M., Gonzales, K., Chao, Y., Pirzada, Z.A., Eckert, M.R., Vogel, J., Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471, 602-607. [CrossRef] [PubMed] [Google Scholar]
  • Edgar, R., Qimron, U. (2010). The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction. J Bacteriol, 192, 6291-6294. [CrossRef] [PubMed] [Google Scholar]
  • Garneau, J.E., Dupuis, M.E., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Frémaux, C., Horvath, P., Magadan, A.H., Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67-71. [CrossRef] [PubMed] [Google Scholar]
  • Gasiunas, G., Barrangou, R., Horvath, P., Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA, 109, 15539-15540. [Google Scholar]
  • Gomaa, A.A., Klumpe, H.E., Luo, M.L., Selle, K., Barrangou, R., Beisel, C.L. (2013). Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio, 5, e00928-13. [Google Scholar]
  • Goren, M., Yosef, I., Qimron, U. (2017). Sensitizing pathogens to antibiotics using the CRISPR-Cas system. Drug Resist Updat, 30, 1-6. [CrossRef] [PubMed] [Google Scholar]
  • Hagens, S., Bläsi, U. (2003). Genetically modified filamentous phage as bactericidal agents: a pilot study. Lett Appl Microbiol, 37, 318-323. [CrossRef] [PubMed] [Google Scholar]
  • Hagens, S., Habel, A., von Ahsen, U., von Gabain, A., Bläsi, U. (2004). Therapy of experimental Pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother, 48, 3817-3822. [CrossRef] [PubMed] [Google Scholar]
  • Hsu, P.D., Lander, E.S., Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262-1278. [CrossRef] [PubMed] [Google Scholar]
  • Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L.A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 31, 233-239. [CrossRef] [PubMed] [Google Scholar]
  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-821. [CrossRef] [PubMed] [Google Scholar]
  • Labrie, S.J., Samson, J.E., Moineau, S. (2010). Bacteriophage resistance mechanisms. Nat Rev Microbiol, 8, 317-327. [CrossRef] [PubMed] [Google Scholar]
  • Luo, M.L., Mullis, A.S., Leenay, R.T., Beisel, C.L. (2015). Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res, 43, 674-681. [CrossRef] [PubMed] [Google Scholar]
  • Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J.J., Charpentier, E., Haft, D.H., Horvath, P., Moineau, S., Mojica, F.J., Terns, R.M., Terns, M.P., White, M.F., Yakunin, A.F., Garrett, R.A., van der Oost, J., Backofen, R., Koonin, E.V. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 13, 722-736. [CrossRef] [PubMed] [Google Scholar]
  • Mapes, A.C., Trautner, B.W., Liao, K.S., Ramig, R.F. (2016). Development of expanded host range phage active on biofilms of multi-drug resistant Pseudomonas aeruginosa. Bacteriophage, 6, e1096995. [CrossRef] [PubMed] [Google Scholar]
  • Marraffini, L.A., Sontheimer, E.J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 322, 1843-1845. [CrossRef] [Google Scholar]
  • Moradpour, Z., Sepehrizadeh, Z., Rahbarizadeh, F., Ghasemian, A., Yazdi, M.T., Shahverdi, A.R. (2009). Genetically engineered phage harbouring the lethal catabolite gene activator protein gene with an inducer-independent promoter for biocontrol of Escherichia coli. FEMS Microbiol Lett, 296, 67-71. [Google Scholar]
  • Pawluk, A., Staals, R.H.J., Taylor, C., Watson, B.N.J., Saha, S., Fineran, P.C., Maxwell, K.L., Davidson, A.R. (2016). Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol, 1, 16085. [CrossRef] [PubMed] [Google Scholar]
  • Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., Lim, W.A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173-1183. [CrossRef] [PubMed] [Google Scholar]
  • Selle, K., Klaenhammer, T.R., Barrangou, R. (2015). CRISPR-based screening of genomic island excision events in bacteria. Proc Natl Acad Sci USA, 112, 8076-8081. [CrossRef] [Google Scholar]
  • Sinkunas, T., Gasiunas, G., Frémaux, C., Barrangou, R., Horvath, P., Siksnys, V. (2011). Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J, 30, 1335-1342. [CrossRef] [PubMed] [Google Scholar]
  • Sinkunas, T., Gasiunas, G., Waghmare, S.P., Dickman, M.J., Barrangou, R., Horvath, P., Siksnys, V. (2013). In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J, 32, 385-394. [CrossRef] [PubMed] [Google Scholar]
  • Sulakvelidze, A., Alavidze, Z., Morris, J.G. (2001). Bacteriophage therapy. Antimicrob Agents Chemother, 45, 649-659. [CrossRef] [PubMed] [Google Scholar]
  • Vercoe, R.B., Chang, J.T., Dy, R.L., Taylor, C., Gristwood, T., Clulow, J.S., Richter, C., Przybilski, R., Pitman, A.R., Fineran, P.C. (2013). Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet, 9, e1003454. [CrossRef] [PubMed] [Google Scholar]
  • Westra, E.R., Pul, Ü., Heidrich, N., Jore, M.M., Lundgren, M., Stratmann, T., Wurm, R., Raine, A., Mescher, M., van Heereveld, L., Mastop, M., Wagner, E.G., Schnetz, K., van Der Oost, J., Wagner, R., Brouns, S.J. (2010). H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol, 77, 1380-1393. [CrossRef] [PubMed] [Google Scholar]
  • Westra, E.R., van Erp, P.B., Kunne, T., Wong, S.P., Staals, R.H., Seegers, C.L., Bollen, S., Jore, M.M., Semenova, E., Severinov, K., de Vos W.M., Dame R.T., de Vries R., Brouns S.J., van der Oost J. (2012). CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell, 46, 595-605. [Google Scholar]
  • Westwater, C., Kasman, L.M., Schofield, D.A., Werner, P.A., Dolan, J.W., Schmidt, M.G., Norris, J.S. (2003). Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemother, 47, 1301-1307. [CrossRef] [PubMed] [Google Scholar]
  • Wigley, D.B. (2013). Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol, 11, 9-13. [CrossRef] [PubMed] [Google Scholar]
  • Yosef, I., Manor, M., Kiro, R., Qimron, U. (2015). Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA, 112, 7267-7272. [CrossRef] [Google Scholar]
  • Yosef, I., Goren, M.G., Globus, R., Molshanski-Mor, S., Qimron, U. (2017). Extending the host range of bacteriophage particles for DNA transduction. Mol Cell, 66, 721-728.e3. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.