Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 211, Numéro 4, 2017
|
|
---|---|---|
Page(s) | 255 - 264 | |
Section | CRISPR : d’un système immunitaire procaryote à une révolution technologique (Journée Claude Bernard) | |
DOI | https://doi.org/10.1051/jbio/2018005 | |
Publié en ligne | 29 juin 2018 |
- Andersson, A.F., Banfield J.F. (2008). Virus population dynamics and acquired virus resistance in natural microbial communities. Science, 320, 1047-1050. [CrossRef] [PubMed] [Google Scholar]
- Anderson, R.E., Brazelton, W.J., Baross J.A. (2011). Using CRISPRs as a metagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage. FEMS Microbiol Ecol, 77, 120-133. [CrossRef] [PubMed] [Google Scholar]
- Barrangou, R., Frémaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., Horvath P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709-1712. [CrossRef] [Google Scholar]
- Berezovskaya, F.S., Wolf, Y.I., Koonin, E.V., Karev, G.P. (2014). Pseudo-chaotic oscillations in CRISPR-virus coevolution predicted by bifurcation analysis. Biology Direct, 9(1), 13. [CrossRef] [PubMed] [Google Scholar]
- Bernheim, A., The distribution of CRISPR-Cas systems is affected by interactions with DNA repair pathways, PhD Thesis, Université Paris-Descartes, 2017. [Google Scholar]
- Bikard, D., Hatoum-Aslan, A., Mucida, D., Marraffini, L.A. (2012). CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe, 12, 177-186. [CrossRef] [PubMed] [Google Scholar]
- Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S.D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151, 2551-2561. [CrossRef] [PubMed] [Google Scholar]
- Bondy-Denomy, J., Pawluk, A., Maxwell, K.L., Davidson, A.R. (2013). Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature, 493, 429-432. [CrossRef] [PubMed] [Google Scholar]
- Bondy-Denomy, J., Maxwell, K.L., Garcia, B., Rollins, M. (2015). Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature, 526, 136-139. [CrossRef] [PubMed] [Google Scholar]
- Borges, A.L., Davidson, A.R., Bondy-Denomy, J. (2017). The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Ann Rev Virol, 4. doi: 10.1146/annurev-virology-101416-041616. [Google Scholar]
- Briner, A.E., Lugli, G.A., Milani, C., Duranti, S, Turroni, F., Gueimonde, M., Margolles, A., van Sinderen, D., Ventura, M., Barrangou, R. (2015). Occurrence and diversity of CRISPR-Cas systems in the genus Bifidobacterium. Plos One, 10, e0133661. [CrossRef] [PubMed] [Google Scholar]
- Brouns, S.J.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J.H., Snijders, A.P.L., Dickman, M.J., Makarova, K.S., Koonin, E.V., van der Oost, J. (2008). Small CRISPR RNAs guide antiviral defense in Prokaryotes. Science, 321, 960-964. [CrossRef] [Google Scholar]
- Bryson, A., Hwang, Y., Sherrill-Mix, S., Wu, G.D., Lewis, J.D., Black, L., Clark, T.A., Bushman, F.D. (2015). Covalent modification of bacteriophage T4 DNA inhibits CRISPR-Cas9. mBio 6(32), 1-9. [CrossRef] [Google Scholar]
- Burstein, D., Sun, L.C., Brown, C.T., Sharon, I., Anantharaman, K., Probst, A.J., Thomas, B.C., Banfield J.B. (2016a). Major bacterial lineages are essentially devoid of CRISPR-Cas viral defense systems. Nat Commun, 7, 10613. [CrossRef] [PubMed] [Google Scholar]
- Burstein, D., Harrington, L.B., Strutt, S.C., Probst, A.J. (2016b). New CRISPR-Cas systems from uncultivated microbes. Nature, 542, 237-241. [Google Scholar]
- Chakraborty, S., Snijders, A.P., Chakravorty, R., Ahmed, M., Tarek, A.M, Hossain, M.A. (2010). Comparative network clustering of Direct Repeats (DRs) and Cas Genes confirms the possibility of the horizontal transfer of CRISPR Locus among Bacteria. Mol Phylogenet Evol, 56, 878-887. [CrossRef] [Google Scholar]
- Chowdhury, S., Carter, J., Rollins, M.F., Golden S.M., Jackson, N.R., Hoffmann, C., Nosaka, L., Bondy-Denomy, J., Maxwell, K.L., Davidson, A.R., Fischer, E.R., Lander, G.C., Wiedenheft, B. (2017). Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell, 169, 47-57, e11. [CrossRef] [PubMed] [Google Scholar]
- Delaney, N.F., Balenger, S., Bonneaud, C., Marx, C.J., Hill, G.E., Ferguson-Noel, N., Tsai, P., Rodrigo, A., Edwards, S.V. (2012). Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet, 8, e1002511. [CrossRef] [PubMed] [Google Scholar]
- Deveau, H, Barrangou, R., Garneau, J.E., Labonté, J., Frémaux, C., Boyaval, P., Romero, D.A., Horvath, P., Moineau, S. (2008). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol, 190, 1390-1400. [CrossRef] [PubMed] [Google Scholar]
- Díez-Villaseñor, C., Guzmán, N.M., Almendros, C., García-Martínez J., Mojica, F.J.M. (2013). CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli. RNA Biol, 10, 792-802. [CrossRef] [Google Scholar]
- Dong, D., Guo, M., Wang, S., Zhu, Y., Wang, S., Xiong, Z., Yang, J., Xu, Z., Huang, Z. (2017). Structural basis of CRISPR SpyCas9 inhibition by an anti-CRISPR protein. Nature, 546, 436-439. [CrossRef] [PubMed] [Google Scholar]
- Drake, J.W. (1991). A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA, 88, 7160-7164. [CrossRef] [Google Scholar]
- Dupuis, M.E., Villion, M., Magadán, A.H., Moineau, S. (2013). CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nat Commun, 4, 2087. [CrossRef] [PubMed] [Google Scholar]
- Fineran, P.C., Gerritzen, M.J.H., Suárez-Diez, M., Künne, T., Boekhorst, J., van Hijum, S.A., Staals, R.H., Brouns S.J. (2014). Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci USA, 111, E1629-1638. [CrossRef] [Google Scholar]
- Godde, J.S, Bickerton, A. (2006). The repetitive DNA elements called CRISPRs and their associated genes: Evidence of horizontal transfer among Prokaryotes. J Mol Evol, 62, 718-729. [CrossRef] [PubMed] [Google Scholar]
- Guo, P., Cheng, Q., Xie, P., Fan, Y., Jiang, W., Qin, Z. (2011). Characterization of the multiple CRISPR loci on Streptomyces linear plasmid pSHK1. Acta Biochim Biophys Sin, 43, 630-639. [CrossRef] [Google Scholar]
- Heidelberg, J.F., Nelson, W.C., Schoenfeld, T., Bhaya, D. (2009). Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS One 4, e4169. [CrossRef] [PubMed] [Google Scholar]
- Horn, H., Slaby, B., Jahn, M., Bayer, K., Moitinho-Silva, L., Förster, F., Abdelmohsen, U.R., Hentschel, U. (2016). An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes. Front Microbiol, 7, 1751. [PubMed] [Google Scholar]
- Hynes, A.P., Rousseau, G.M., Lemay, M.L., Horvath, P., Romero, D.A., Frémaux, C., Moineau, S. (2017). An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus Pyogenes Cas9. Nat Microbiol, 2, 1374-1380. [CrossRef] [PubMed] [Google Scholar]
- Iranzo, J., Lobkovsky, A.E., Wolf, Y.I., Koonin, E.V. (2013). Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context. J Bacteriol, 195, 3834-3844. [CrossRef] [PubMed] [Google Scholar]
- Jiang, W., Maniv, I., Arain, F., Wang, Y., Levin, B.R., Marraffini, L.A. (2013). Dealing with the evolutionary downside of CRISPR immunity: Bacteria and beneficial plasmids. PLoS Genet, 9, e1003844. [CrossRef] [PubMed] [Google Scholar]
- Kapitonov, V.V., Makarova, K.S., Koonin, E.V. (2015). ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs. J Bacteriol, 198, 797-807. [CrossRef] [PubMed] [Google Scholar]
- Koonin, E.V., Krupovic, M. (2014). Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet, 16, 184-192. [CrossRef] [PubMed] [Google Scholar]
- Koonin, E.V., Makarova, K.S. (2017). Mobile genetic elements and evolution of CRISPR-Cas systems: All the way there and back. Genome Biol Evol, 9, 28-25. [CrossRef] [Google Scholar]
- Krupovic, M., Makarova, K.S., Forterre, P., Prangishvili, D., Koonin, E.V. (2014). Casposons: A new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol, 12, 36. [CrossRef] [PubMed] [Google Scholar]
- Levy, A., Goren, M.G., Yosef, I., Auster, O., Manor, M., Amitai, G., Edgar, R., Qimron, U., Sorek, R. (2015). CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature, 520, 505-510. [CrossRef] [PubMed] [Google Scholar]
- Lin, T.L., Pan Y.J., Hsieh, P.F., Hsu, C.R., Wu, M.C., Wang, J.T. (2016). Imipenem represses CRISPR-Cas interference of DNA acquisition through H-NS stimulation in Klebsiella pneumoniae. Sci Rep, 6, 31644. [CrossRef] [PubMed] [Google Scholar]
- Lopatina, A., Medvedeva, S., Shmakov, S., Logacheva, M.D., Krylenkov, V., Severinov, K. (2016). Metagenomic analysis of bacterial communities of antarctic surface snow. Front Microbiol, 7, 1-13. [Google Scholar]
- Louwen, R., Horst-Kreft, D., De Boer, A.G., Van Der Graaf, L., De Knegt, G., Hamersma, M., Heikema, A.P., Timms, A.R., Jacobs, B.C., Wagenaar, J.A., Endtz, H.P., van der Oost, J., Wells J.M., Nieuwenhuis E.E., van Vliet A.H., Willemsen P.T., van Baarlen P., van Belkum, A. (2013). A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur J Clin Microbiol Infect Dis, 32, 207-226. [CrossRef] [PubMed] [Google Scholar]
- Mai, G., Ge, R., Sun, G., Meng, Q., Zhou, F. (2016). A comprehensive curation shows the dynamic evolutionary patterns of prokaryotic CRISPRs. BioMed Res Int. doi: 10.1155/2016/7237053. [Google Scholar]
- Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I., Koonin, E.V. (2006). A putative RNA-interference-based immune system in Prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 16, 1-7. [Google Scholar]
- Makarova, K.S., Wolf, Y.I., Koonin, E.V. (2013). The basic building blocks and evolution of CRISPR-Cas systems. Biochem Soc Trans, 41, 1392-1400. [CrossRef] [PubMed] [Google Scholar]
- Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J., Charpentier, E., Haft, D.H., Horvath, P., Moineau, S., Mojica, F.J., Terns, R.M. Terns, M.P., White, M.F., Yakunin, A.F., Garrett, R.A., van der Oost, J., Backofen, R., Koonin, E.V. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736. [CrossRef] [PubMed] [Google Scholar]
- Marraffini, L.A. (2015). CRISPR-Cas immunity in Prokaryotes. Nature, 526, 55-61. [CrossRef] [PubMed] [Google Scholar]
- Marraffini, L.A., Sontheimer, E.J. (2008). CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science, 322, 1843-1845. [CrossRef] [Google Scholar]
- Medina-Aparicio, L., Rebollar-Flores J.E., Gallego-Hernández, A.L., Vázquez, A., Olvera, L., Gutiérrez-Ríos, R.M., Calva, E., Hernández-Lucas, I. (2011). The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and leucine-responsive regulatory rrotein in Salmonella enterica serovar Typhi. J Bacteriol, 193, 2396-2407. [CrossRef] [PubMed] [Google Scholar]
- Millen, A.M., Horvath, P., Boyaval, P., Romero, D.A. (2012). Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis. PLoS One, 7, e51663. [CrossRef] [PubMed] [Google Scholar]
- Mohanraju, P., Makarova, K.S., Zetsche, B., Zhang, F., Koonin, E.V., van der Oost J. (2016). Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 353, aad5147. [CrossRef] [Google Scholar]
- Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J., Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 60, 174-182. [CrossRef] [PubMed] [Google Scholar]
- Oliveira, P.H., Touchon, M., Rocha E.P.C. (2016). Regulation of genetic flux between bacteria by restriction modification systems. Proc Natl Acad Sci USA, 113, 5658-5663. [CrossRef] [Google Scholar]
- Paez-Espino, D., Sharon, I., Morovic, W., Stahl, B., Thomas, B.C., Barrangou, R., Banfield, F. (2015). CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. mBio, 6(2), 1-9. [CrossRef] [PubMed] [Google Scholar]
- Patterson, A.G., Yevstigneyeva, M.S., Peter, C. (2017). Regulation of CRISPR-Cas adaptive immune Systems. Curr Opin Microbiol, 37, 1-7. [CrossRef] [PubMed] [Google Scholar]
- Pawluk, A., Bondy-Denomy, J., Cheung, Cheung, V.H.W, Maxwell, K.L., Davidson, A.R. (2014). A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. mBio 5(2): 1-7. [CrossRef] [PubMed] [Google Scholar]
- Pawluk, A., Amrani, N., Zhang, Y., Garcia, B., Hidalgo-Reyes, Y., Lee, J., Edraki, A., Shah, M., Sontheimer, E.J., Maxwell, K.L., Davidson, A.R. (2016). Naturally occurring off-switches for CRISPR-Cas9. Cell, 167, 1829-1838. [CrossRef] [PubMed] [Google Scholar]
- Peters, J.E., Makarova, K.S., Shmakov, S., Koonin, E.V. (2017). Recruitment of CRISPR-Cas systems 73by Tn7-like transposons. Proc Natl Acad Sci USA, 114, E7358-E7366. [CrossRef] [Google Scholar]
- Pourcel, C., Salvignol, G., Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151, 653-663. [CrossRef] [PubMed] [Google Scholar]
- Rauch, B.J., Silvis, M.R., Hultquist, J.F., Waters, C., McGregor, M.J., Krogan, N.J., Bondy-Denomy, J. (2016). Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell, 168, 150-158. [Google Scholar]
- Rho, M., Wu, Y.W., Tang, H., Doak, T.G., Ye, Y. (2012). Diverse CRISPRs evolving in human microbiomes. PLoS Genet, 8, e1002441. [CrossRef] [PubMed] [Google Scholar]
- Scholz, I., Lange, S.J., Hein, S., Hess, W.R., Backofen, R. (2013). CRISPR-Cas systems in the Cyanobacterium synechocystis Sp. PCC6803 exhibit distinct processing pathways involving at least two Cas6 and a Cmr2 protein. PLoS One 8, e56470. [CrossRef] [PubMed] [Google Scholar]
- Seed, K.D., Lazinski, D.W., Calderwood, S.B., Camilli, A. (2013). A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature, 494, 489-491. [CrossRef] [PubMed] [Google Scholar]
- Selle, K., Klaenhammer, T.R., Barrangou, R. (2015). CRISPR-based screening of genomic island excision events in Bacteria. Proc Natl Acad Sci USA, 112, 8076-8081. [CrossRef] [Google Scholar]
- Shin, J., Jiang, F., Liu, J.J., Bray, N.L., Rauch, B.J., Baik, S.H., Nogales, E., Bondy-Denomy, J., Corn, J.E., Doudna, J.A. (2017). Disabling Cas9 by an anti-CRISPR DNA mimic. Sci Adv, 3, e1701620. [CrossRef] [PubMed] [Google Scholar]
- Shmakov, S., Smargon, A., Scott, D., Cox D., Pyzocha, N., Yan, W., Abudayyeh, O.O., Gootenberg, J.S., Makarova, K.S., Wolf, Y.I., Severinov, K., Zhang, F., Koonin, E.V. (2017). Diversity and evolution of class 2 CRISPR Cas systems. Nat Rev Microbiol. doi: 10.1038/nrmicro.2016.184. [Google Scholar]
- Sontheimer, E.J., Davidson A.R. (2017). Inhibition of CRISPR-Cas systems by mobile genetic elements. Curr Opin Microbiol, 37, 120-127. [CrossRef] [PubMed] [Google Scholar]
- Soutourina, O.A., Monot, M., Boudry, P., Saujet, L., Pichon, C., Sismeiro, O. Semenova, E., Severinov, K., Le Bouguenec, C., Coppée, J.Y., Dupuy, B., Martin-Verstraete, I. (2013). Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet, 9(5), e1003493. [CrossRef] [PubMed] [Google Scholar]
- Stern, A., Keren, L., Wurtzel, O., Amitai, G., Sorek, R. (2010). Self-targeting by CRISPR: Gene regulation or autoimmunity? Trends Genet, 26, 335-340. [CrossRef] [PubMed] [Google Scholar]
- Stern, A., Mick, E., Tirosh, I., Sagy, O., Sorek, R. (2012). CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res, 22, 1985-1994. [CrossRef] [PubMed] [Google Scholar]
- Sun, C.L., Barrangou, R., Thomas, B.C., Horvath, P., Frémaux, C., Banfield, J.F. (2013). Phage mutations in response to CRISPR diversification in a bacterial population. Environ Microbiol, 15, 463-470. [CrossRef] [PubMed] [Google Scholar]
- Takeuchi, N., Wolf Y.I., Makarova, K.S., Koonin, E.V. (2012). Nature and intensity of selection pressure on CRISPR-associated genes. J Bacteriol, 194, 1216-1225. [CrossRef] [PubMed] [Google Scholar]
- Vale, P.F., Lafforgue, G., Gatchitch, F., Gardan, R., Moineau, S., Gandon, S. (2015). Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc Biol Sci, 282, 1812. [Google Scholar]
- Vercoe, R.B., Chang, J.T., Dy, R.L., Taylor, C., Gristwood, T., Clulow, J.S., Richter, C., Przybilski, R., Pitman, A.R., Fineran, P.C. (2013). Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet, 9(4): e1003454. [CrossRef] [PubMed] [Google Scholar]
- Wang, J., Ma, J, Zhi, C., Xu, M., Lilan, Y., Min, W., Xinzheng, Z., Yanli, W. (2016). A CRISPR evolutionary arms race: structural insights into viral Anti-CRISPR/Cas responses. Cell Res, 26, 1165-1168. [CrossRef] [PubMed] [Google Scholar]
- Wang, X., Yao D., Xu, J.G., Li, A.R., Xu, J., Fu, P., Zhou, Y., Zhu, Y. (2016). Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Nat Struct Mol Biol, 23, 868-871. [CrossRef] [PubMed] [Google Scholar]
- Warren, R.A.J. (1980). Modified bases in bacteriophage DNAs. Ann Rev Microbiol, 34, 137-158. [CrossRef] [Google Scholar]
- Weinberger, A.D., Wolf, Y.I., Lobkovsky, A.E., Gilmore, M.S., Koonin E.V. (2012). Viral diversity threshold for adaptive immunity in Prokaryotes. mBio 3(6): 1-10. [CrossRef] [Google Scholar]
- Westra, E.R., Pul, U., Heidrich, N., Jore, M.M., Lundgren, M., Stratmann, T., Wurm, R., Raine, A., Mescher, M., Van Heereveld, L., Mastop, M., Wagner, E.G., Schnetz, K., van Der Oost, J., Wagner, R., Brouns, S.J. (2010). H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol, 77, 1380-1393. [CrossRef] [PubMed] [Google Scholar]
- Westra, E.R., van Houte, S., Oyesiku-Blakemore, S., Makin, B., Broniewski, J.M., Best, A., Bondy-Denomy, J., Davidson, A., Boots, M., Buckling, A. (2015). Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr Biol, 25, 1043-1049. [CrossRef] [PubMed] [Google Scholar]
- Westra, E.R, Dowling, A.J., Broniewski, J.M., van Houte, S. (2016). Evolution and ecology of CRISPR. Ann Rev Ecol Evol Syst, 47, 307-331. [CrossRef] [Google Scholar]
- Yang, H., Patel, D.J. (2017). Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol Cell, 67, 117-127. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.