Accès gratuit
Biologie Aujourd'hui
Volume 211, Numéro 4, 2017
Page(s) 247 - 254
Section CRISPR : d’un système immunitaire procaryote à une révolution technologique (Journée Claude Bernard)
Publié en ligne 29 juin 2018
  • Abby, S.S., Neron, B., Menager, H., Touchon, M., Rocha, E.P. (2014). MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PloS One, 9, e110726. [CrossRef] [PubMed] [Google Scholar]
  • Abedon, S.T. (2011). Facilitation of CRISPR adaptation. Bacteriophage, 1, 179-181. [CrossRef] [PubMed] [Google Scholar]
  • Alkhnbashi, O.S., Shah, S.A., Garrett, R.A., Saunders, S.J., Costa, F., Backofen, R. (2016). Characterizing leader sequences of CRISPR loci. Bioinformatics, 32, i576i-585. [CrossRef] [Google Scholar]
  • Andersson, A.F., Banfield, J.F. (2008). Virus population dynamics and acquired virus resistance in natural microbial communities. Science, 320, 1047-1050. [CrossRef] [PubMed] [Google Scholar]
  • Barrangou, R., Doudna, J.A. (2016). Applications of CRISPR technologies in research and beyond. Nat Biotechnol, 34, 933-941. [CrossRef] [PubMed] [Google Scholar]
  • Barrangou, R., Frémaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709-1712. [CrossRef] [Google Scholar]
  • Ben-Bassat, I., Chor, B. (2016) CRISPR detection from short reads using partial overlap graphs. J Comput Biol, 23, 461-471. [CrossRef] [PubMed] [Google Scholar]
  • Biswas, A., Staals, R.H., Morales, S.E., Fineran, P.C. Brown, C.M. (2016). CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC genomics, 17, 356. [CrossRef] [PubMed] [Google Scholar]
  • Bland, C., Ramsey, T.L., Sabree, F., Lowe, M., Brown, K., Kyrpides, N.C., Hugenholtz, P. (2007). CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics, 8, 209. [CrossRef] [PubMed] [Google Scholar]
  • Bolotin, A., Quinquis, B., Sorokin, A. Ehrlich, S.D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151, 2551-2561. [CrossRef] [PubMed] [Google Scholar]
  • Bondy-Denomy, J., Pawluk, A., Maxwell, K.L., Davidson, A.R. (2013). Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature, 493, 429-432. [CrossRef] [PubMed] [Google Scholar]
  • Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., Dickman, M.J., Makarova, K.S., Koonin, E.V. van der Oost, J. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321, 960-964. [CrossRef] [Google Scholar]
  • Burstein, D., Harrington, L.B., Strutt, S.C., Probst, A.J., Anantharaman, K., Thomas, B.C., Doudna, J.A. Banfield, J.F. (2017) New CRISPR-Cas systems from uncultivated microbes. Nature, 542, 237-241. [CrossRef] [PubMed] [Google Scholar]
  • Cady, K.C., Bondy-Denomy, J., Heussler, G.E., Davidson, A.R., O’Toole, G.A. (2012). The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J Bacteriol, 194, 5728-5738. [CrossRef] [PubMed] [Google Scholar]
  • Chai, G., Yu, M., Jiang, L., Duan, Y. Huang, J. (2017). HMMCAS: a web tool for the identification and domain annotations of Cas proteins. IEEE/ACM Trans Comput Biol Bioinform, DOI: 10.1109/TCBB.2017.2665542. [Google Scholar]
  • Cui, Y., Li, Y., Gorge, O., Platonov, M.E., Yan, Y., Guo, Z., Pourcel, C., Dentovskaya, S.V., Balakhonov, S.V., Wang, X., Song, Y., Anisimov, A.P., Vergnaud, G. Yang, R. (2008). Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS One, 3, e2652. [CrossRef] [PubMed] [Google Scholar]
  • Deltcheva, E., Chylinski, K., Sharma, C.M., Gonzales, K., Chao, Y., Pirzada, Z.A., Eckert, M.R., Vogel, J., Charpentier, E. (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471, 602-607. [CrossRef] [PubMed] [Google Scholar]
  • Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Frémaux, C., Boyaval, P., Romero, D.A., Horvath, P. Moineau, S. (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol, 190, 1390-1400. [CrossRef] [PubMed] [Google Scholar]
  • Edgar, R.C. (2007). PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics, 8, 18. [CrossRef] [PubMed] [Google Scholar]
  • Emerson, J.B., Andrade, K., Thomas, B.C., Norman, A., Allen, E.E., Heidelberg, K.B. Banfield, J.F. (2013). Virus-host and CRISPR dynamics in Archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia. Archaea, 2013, 370871. [CrossRef] [Google Scholar]
  • Erdmann, S. Garrett, R.A. (2012). Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms. Mol Microbiol, 85, 1044-1056. [CrossRef] [Google Scholar]
  • Filliol, I., Driscoll, J.R., van Soolingen, D., Kreiswirth, B.N., Kremer, K., Valetudie, G., Dang, D.A., Barlow, R., Banerjee, D., Bifani, P.J., Brudey, K., Cataldi, A., Cooksey, R.C., Cousins, D.V., Dale, J.W., Dellagostin, O.A., Drobniewski, F., Engelmann, G., Ferdinand, S., Gascoyne-Binzi, D., Gordon, M., Gutierrez, M.C., Haas, W.H., Heersma, H., Kassa-Kelembho, E., Ho, M.L., Makristathis, A., Mammina, C., Martin, G., Mostrom, P., Mokrousov, I., Narbonne, V., Narvskaya, O., Nastasi, A., Niobe-Eyangoh, S.N., Pape, J.W., Rasolofo-Razanamparany, V., Ridell, M., Rossetti, M.L., Stauffer, F., Suffys, P.N., Takiff, H., Texier-Maugein, J., Vincent, V., de Waard, J.H., Sola, C. Rastogi, N. (2003). Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol, 41, 1963-1970. [CrossRef] [PubMed] [Google Scholar]
  • Garneau, J.E., Dupuis, M.E., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Frémaux, C., Horvath, P., Magadan, A.H. Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67-71. [CrossRef] [PubMed] [Google Scholar]
  • Godde, J.S. Bickerton, A. (2006). The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol, 62, 718-729. [CrossRef] [PubMed] [Google Scholar]
  • Grissa, I., Vergnaud, G., Pourcel, C. (2007a). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 8, 172. [CrossRef] [PubMed] [Google Scholar]
  • Grissa, I., Vergnaud, G. Pourcel, C. (2007b). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res, 35, W52-57. [CrossRef] [PubMed] [Google Scholar]
  • Groenen, P.M., Bunschoten, A.E., van Soolingen, D. van Embden, J.D. (1993). Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol, 10, 1057-1065. [CrossRef] [PubMed] [Google Scholar]
  • Gunderson, F.F. Cianciotto, N.P. (2013). The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. mBio, 4, e00074-00013. [CrossRef] [PubMed] [Google Scholar]
  • Haft, D.H., Selengut, J., Mongodin, E.F. Nelson, K.E. (2005). A guild of 45CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol, 1, e60. [CrossRef] [Google Scholar]
  • Hargreaves, K.R., Flores, C.O., Lawley, T.D. Clokie, M.R. (2014). Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen. mBio, 5, e01045-01013. [CrossRef] [PubMed] [Google Scholar]
  • Hermans, P.W., van Soolingen, D., Bik, E.M., de Haas, P.E., Dale, J.W. van Embden, J.D. (1991). Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun, 59, 2695-2705. [PubMed] [Google Scholar]
  • Horvath, P., Romero, D.A., Coute-Monvoisin, A.C., Richards, M., Deveau, H., Moineau, S., Boyaval, P., Frémaux, C., Barrangou, R. (2008). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol, 190, 1401-1412. [CrossRef] [PubMed] [Google Scholar]
  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 169, 5429-5433. [CrossRef] [PubMed] [Google Scholar]
  • Jansen, R., van Embden, J.D., Gaastra, W., Schouls, L.M. (2002a). Identification of a novel family of sequence repeats among prokaryotes. Omics, 6, 23-33. [CrossRef] [Google Scholar]
  • Jansen, R., van Embden, J.D., Gaastra, W., Schouls, L.M. (2002b). Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 43, 1565-1575. [CrossRef] [PubMed] [Google Scholar]
  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-821. [CrossRef] [PubMed] [Google Scholar]
  • Koonin, E.V., Makarova, K.S. Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol, 37, 67-78. [CrossRef] [PubMed] [Google Scholar]
  • Koskela, K.A., Mattinen, L., Kalin-Mänttäri, L., Vergnaud G., Gorgé, O., Nikkari, S., Skurnik, M. (2015). Generation of a CRISPR database for Yersinia pseudotuberculosis complex and role of CRISPR-based immunity in conjugation. Environ Microbiol, 17, 4306-4432. [CrossRef] [PubMed] [Google Scholar]
  • Krupovic, M., Makarova, K.S., Forterre, P., Prangishvili, D., Koonin, E.V. (2014). Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol, 12, 36. [CrossRef] [PubMed] [Google Scholar]
  • Krupovic, M., Beguin, P., Koonin, E.V. (2017). Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Curr Opin Microbiol, 38, 36-43. [CrossRef] [PubMed] [Google Scholar]
  • Lander, E.S. (2016). The Heroes of CRISPR. Cell, 164, 18-28. [CrossRef] [PubMed] [Google Scholar]
  • Lillestol, R.K., Redder, P., Garrett, R.A., Brugger, K. (2006). A putative viral defence mechanism in archaeal cells. Archaea, 2, 59-72. [CrossRef] [PubMed] [Google Scholar]
  • Louwen, R., Horst-Kreft, D., de Boer, A.G., van der Graaf, L., de Knegt, G., Hamersma, M., Heikema, A.P., Timms, A.R., Jacobs, B.C., Wagenaar, J.A., Endtz, H.P., van der Oost, J., Wells, J.M., Nieuwenhuis, E.E., van Vliet, A.H., Willemsen, P.T., van Baarlen, P., van Belkum, A. (2013). A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre syndrome. Eur J Clin Microbiol Infect Dis, 32, 207-226. [CrossRef] [PubMed] [Google Scholar]
  • Mak, J. (2005). RNA interference: more than a research tool in the vertebrates’ adaptive immunity. Retrovirology, 2, 35. [CrossRef] [PubMed] [Google Scholar]
  • Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I., Koonin, E.V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct, 1, 7. [CrossRef] [PubMed] [Google Scholar]
  • Marraffini, L.A., Sontheimer, E.J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 322, 1843-1845. [CrossRef] [Google Scholar]
  • Mojica, F.J., Ferrer, C., Juez, G. Rodriguez-Valera, F. (1995). Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol, 17, 85-93. [CrossRef] [PubMed] [Google Scholar]
  • Mojica, F.J., Diez-Villasenor, C., Soria, E. Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol, 36, 244-246. [CrossRef] [PubMed] [Google Scholar]
  • Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J., Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 60, 174-182. [CrossRef] [PubMed] [Google Scholar]
  • Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J., Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155, 733-740. [CrossRef] [PubMed] [Google Scholar]
  • Morange, M. (2015). What history tells us XXXVII. CRISPR-Cas: The discovery of an immune system in prokaryotes. J Biosci, 40, 221-223. [CrossRef] [PubMed] [Google Scholar]
  • Nakata, A., Amemura, M. Makino, K. (1989). Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J Bacteriol, 171, 3553-3556. [CrossRef] [PubMed] [Google Scholar]
  • Nelson, K.E., Clayton, R.A., Gill, S.R., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, E.K., Peterson, J.D., Nelson, W.C., Ketchum, K.A., McDonald, L., Utterback, T.R., Malek, J.A., Linher, K.D., Garrett, M.M., Stewart, A.M., Cotton, M.D., Pratt, M.S., Phillips, C.A., Richardson, D., Heidelberg, J., Sutton, G.G., Fleischmann, R.D., Eisen, J.A., White, O., Salzberg, S.L., Smith, H.O., Venter, J.C., Fraser, C.M. (1999). Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature, 399, 323-329. [CrossRef] [PubMed] [Google Scholar]
  • Paez-Espino, D., Sharon, I., Morovic, W., Stahl, B., Thomas, B.C., Barrangou, R. Banfield, J.F. (2015). CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. MBio, 6, e00262-15. [Google Scholar]
  • Pawluk, A., Bondy-Denomy, J., Cheung, V.H., Maxwell, K.L., Davidson, A.R. (2014). A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. MBio, 5, e00896. [Google Scholar]
  • Pawluk, A., Amrani, N., Zhang, Y., Garcia, B., Hidalgo-Reyes, Y., Lee, J., Edraki, A., Shah, M., Sontheimer, E.J., Maxwell, K.L., Davidson, A.R. (2016). Naturally occurring off-switches for CRISPR-Cas9. Cell, 167, 1829-1838, e1829. [CrossRef] [PubMed] [Google Scholar]
  • Pourcel, C., Salvignol, G., Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151, 653-663. [CrossRef] [PubMed] [Google Scholar]
  • Rho, M., Wu, Y.W., Tang, H., Doak, T.G., Ye, Y. (2012). Diverse CRISPRs evolving in human microbiomes. PLoS genetics, 8, e1002441. [Google Scholar]
  • Riehm, J.M., Vergnaud, G., Kiefer, D., Damdindorj, T., Dashdavaa, O., Khurelsukh, T., Zöller, L., Wölfel, R., Le Flèche, P., Scholz, H.C. (2012). Yersinia pestis lineages in Mongolia. PLoS One, 7, e30624. [CrossRef] [PubMed] [Google Scholar]
  • Sampson, T.R., Saroj, S.D., Llewellyn, A.C., Tzeng, Y.L., Weiss, D.S. (2013). A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 497, 254-257. [CrossRef] [PubMed] [Google Scholar]
  • Seed, K.D., Lazinski, D.W., Calderwood, S.B., Camilli, A. (2013). A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature, 494, 489-491. [CrossRef] [PubMed] [Google Scholar]
  • Skennerton, C.T., Imelfort, M., Tyson, G.W. (2013). Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res, 41, e105. [CrossRef] [PubMed] [Google Scholar]
  • Stern, A., Keren, L., Wurtzel, O., Amitai, G., Sorek, R. (2010). Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet, 26, 335-340. [CrossRef] [PubMed] [Google Scholar]
  • Swarts, D.C., Mosterd, C., van Passel, M.W., Brouns, S.J. (2012). CRISPR interference directs strand specific spacer acquisition. PLoS One, 7, e35888. [CrossRef] [PubMed] [Google Scholar]
  • Tang, T.H., Bachellerie, J.P., Rozhdestvensky, T., Bortolin, M.L., Huber, H., Drungowski, M., Elge, T., Brosius, J., Huttenhofer, A. (2002). Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci USA, 99, 7536-7541. [CrossRef] [Google Scholar]
  • Tyson, G.W., Banfield, J.F. (2008). Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol, 10, 200-207. [PubMed] [Google Scholar]
  • Vale, P.F., Lafforgue, G., Gatchitch, F., Gardan, R., Moineau, S. Gandon, S. (2015). Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc Biol Sci, 282, 20151270. [CrossRef] [PubMed] [Google Scholar]
  • Zegans, M.E., Wagner, J.C., Cady, K.C., Murphy, D.M., Hammond, J.H., O’Toole, G.A. (2009). Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol, 191, 210-219. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, Y., Heidrich, N., Ampattu, B.J., Gunderson, C.W., Seifert, H.S., Schoen, C., Vogel, J., Sontheimer, E.J. (2013). Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell, 50, 488-503. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.