Accès gratuit
Biologie Aujourd'hui
Volume 212, Numéro 1-2, 2018
Page(s) 35 - 43
Section La signalisation dans des compartiments intracellulaires : un nouveau paradigme
Publié en ligne 26 octobre 2018
  • Al-Shibli, S.M., Amjad, N.M., Al-Kubaisi, M.K., Mizan, S. (2017). Subcellular localization of leptin and leptin receptor in breast cancer detected in an electron microscopic study. Biochem Biophys Res Comm , 482, 1102-1106. [CrossRef] [Google Scholar]
  • Ando, S., Catalano, S. (2011). The multifactorial role of leptin in driving the breast cancer microenvironment. Nat Rev Endocrinol , 8, 263-275. [CrossRef] [PubMed] [Google Scholar]
  • Bailleul, B., Akerblom, I., Strosberg, A.D. (1997). The leptin receptor promoter controls expression of a second distinct protein. Nucleic Acids Res , 25, 2752-2758. [CrossRef] [PubMed] [Google Scholar]
  • Bartelt, A., Heeren, J. (2014). Adipose tissue browning and metabolic health. Nat Rev Endocrinol , 10, 24-36. [CrossRef] [PubMed] [Google Scholar]
  • Bates, S.H., Stearns, W.H., Dundon, T.A., Schubert, M., Tso, A.W., Wang, Y., Banks, A.S., Lavery, H.J., Haq, A.K., Maratos-Flier, E., Neel, B.G., Schwartz, M.W., Myers, M.G., Jr. (2003). STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature , 421, 856-859. [CrossRef] [PubMed] [Google Scholar]
  • Bates, S.H., Kulkarni, R.N., Seifert, M., Myers, M.G., Jr. (2005). Roles for leptin receptor/STAT3-dependent and -independent signals in the regulation of glucose homeostasis. Cell Metab , 1, 169-178. [CrossRef] [PubMed] [Google Scholar]
  • Belouzard, S., Rouille, Y. (2006). Ubiquitylation of leptin receptor OB-Ra regulates its clathrin-mediated endocytosis. EMBO J , 25, 932-942. [CrossRef] [PubMed] [Google Scholar]
  • Belouzard, S., Delcroix, D., Rouille, Y. (2004). Low levels of expression of leptin receptor at the cell surface result from constitutive endocytosis and intracellular retention in the biosynthetic pathway. J Biol Chem , 279, 28499-28508. [CrossRef] [PubMed] [Google Scholar]
  • Berbari, N.F., Pasek, R.C., Malarkey, E.B., Yazdi, S.M., McNair, A.D., Lewis, W.R., Nagy, T.R., Kesterson, R.A., Yoder, B.K. (2013). Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc Natl Acad Sci USA, 110, 7796-7801. [Google Scholar]
  • Biener, E., Charlier, M., Ramanujan, V.K., Daniel, N., Eisenberg, A., Bjørbaek C., Herman B., Gertler A., Djiane J. (2005). Quantitative FRET imaging of leptin receptor oligomerization kinetics in single cells. Biol Cell , 97, 905-919. [CrossRef] [PubMed] [Google Scholar]
  • Bijur, G.N., Jope, R.S. (2003). Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem , 87, 1427-1435. [CrossRef] [PubMed] [Google Scholar]
  • Buettner, C., Pocai, A., Muse, E.D., Etgen, A.M., Myers, MG., Jr., Rossetti, L. (2006). Critical role of STAT3 in leptin’s metabolic actions. Cell Metab , 4, 49-60. [CrossRef] [PubMed] [Google Scholar]
  • Cendrowski, J., Maminska, A., Miaczynska, M. (2016). Endocytic regulation of cytokine receptor signaling. Cytokine Growth Factor Rev , 32, 63-73. [CrossRef] [PubMed] [Google Scholar]
  • Che, T.F., Lin, C.W., Wu, Y.Y., Chen, Y.J., Han, C.L., Chang, Y.L., Wu, C.T., Hsiao, T.H., Hong, T.M., Yang, P.C. (2015). Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC. Oncotarget , 6, 37349-37366. [CrossRef] [PubMed] [Google Scholar]
  • Clague, M.J., Liu, H., Urbe, S. (2012). Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev Cell , 23, 457-467. [CrossRef] [PubMed] [Google Scholar]
  • Coppari, R., Ichinose, M., Lee, C.E., Pullen, A.E., Kenny, C.D., McGovern, R.A., Tang, V., Liu, S.M., Ludwig, T., Chua, S.C., Jr., Lowell, B.B., Elmquist, J.K. (2005). The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab , 1, 63-72. [CrossRef] [PubMed] [Google Scholar]
  • Couturier, C., Jockers, R. (2003). Activation of the leptin receptor by a ligand-induced conformational change of constitutive receptor dimers. J Biol Chem , 278, 26604-26611. [CrossRef] [PubMed] [Google Scholar]
  • Couturier, C., Sarkis, C., Seron, K., Belouzard, S., Chen, P., Lenain, A., Corset, L., Dam, J., Vauthier, V., Dubart, A., Mallet, J., Froguel, P., Rouille, Y., Jockers, R. (2007). Silencing of OB-RGRP in mouse hypothalamic arcuate nucleus increases leptin receptor signaling and prevents diet-induced obesity. Proc Natl Acad Sci USA , 104, 19476-19481. [CrossRef] [Google Scholar]
  • Curtis, B.M., Widmer, M.B., deRoos, P., Qwarnstrom, E.E. (1990). IL-1 and its receptor are translocated to the nucleus. J Immunol , 144, 1295-1303. [PubMed] [Google Scholar]
  • Dagda, R.K., Zhu, J., Kulich, S.M., Chu, C.T. (2008). Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy , 4, 770-782. [CrossRef] [PubMed] [Google Scholar]
  • De Ceuninck, L., Wauman, J., Masschaele, D., Peelman, F., Tavernier, J. (2013). Reciprocal cross-regulation between RNF41 and USP8 controls cytokine receptor sorting and processing. J Cell Sci , 126, 3770-3781. [Google Scholar]
  • Eum, H.A., Vallabhaneni, R., Wang, Y., Loughran, P.A., Stolz, D.B., Billiar, T.R. (2011). Characterization of DISC formation and TNFR1 translocation to mitochondria in TNF-alpha-treated hepatocytes. Am J Pathol , 179, 1221-1229. [CrossRef] [PubMed] [Google Scholar]
  • Farooqi, I.S., O’Rahilly, S. (2014). 20 years of leptin: human disorders of leptin action. J Endocrinol , 223, T63-70. [CrossRef] [PubMed] [Google Scholar]
  • Fei, H., Okano, H.J., Li, C., Lee, G.H., Zhao, C., Darnell, R., Friedman, J.M. (1997). Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci USA , 94, 7001-7005. [CrossRef] [Google Scholar]
  • Forsythe, E., Beales, P.L. (2013). Bardet-Biedl syndrome. Eur J Hum Genet , 21, 8-13. [Google Scholar]
  • Glinka, Y., Stoilova, S., Mohammed, N., Prud’homme, G.J. (2011). Neuropilin-1 exerts co-receptor function for TGF-beta-1 on the membrane of cancer cells and enhances responses to both latent and active TGF-beta. Carcinogenesis , 32, 613-621. [CrossRef] [PubMed] [Google Scholar]
  • Gray, M.J., Wey, J.S., Belcheva, A., McCarty, M.F., Trevino, J.G., Evans, D.B., Ellis, L.M., Gallick, G.E. (2005). Neuropilin-1 suppresses tumorigenic properties in a human pancreatic adenocarcinoma cell line lacking neuropilin-1 coreceptors. Cancer Res , 65, 3664-3670. [Google Scholar]
  • Guo, D.F., Rahmouni, K. (2011). Molecular basis of the obesity associated with Bardet-Biedl syndrome. Trends Endocrinol Metab , 22, 286-293. [PubMed] [Google Scholar]
  • Guo, D.F., Cui, H., Zhang, Q., Morgan, D.A., Thedens, D.R., Nishimura, D., Grobe, J.L., Sheffield, V.C., Rahmouni, K. (2016). The BBSome controls energy homeostasis by mediating the transport of the leptin receptor to the plasma membrane. PLoS Genet , 12, e 1005890. [Google Scholar]
  • Han, Y.M., Kang, G.M., Byun, K., Ko, H.W., Kim, J., Shin, M.S., Kim, H.K., Gil, S.Y., Yu, J.H., Lee, B., Kim, M.S. (2014). Leptin-promoted cilia assembly is critical for normal energy balance. J Clin Invest , 124, 2193-2197. [CrossRef] [PubMed] [Google Scholar]
  • He, Z., Tessier-Lavigne, M. (1997). Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell , 90, 739-751. [CrossRef] [PubMed] [Google Scholar]
  • Hileman, S.M., Tornoe, J., Flier, J.S., Bjorbaek, C. (2000). Transcellular transport of leptin by the short leptin receptor isoform ObRa in Madin-Darby Canine Kidney cells. Endocrinology , 141, 1955-1961. [CrossRef] [PubMed] [Google Scholar]
  • Huang, H., Wang, W., Tao, Y.X. (2017). Pharmacological chaperones for the misfolded melanocortin-4 receptor associated with human obesity. Biochim Biophys Acta , 1863, 2496-2507. [CrossRef] [PubMed] [Google Scholar]
  • Johnson, H.M., Subramaniam, P.S., Olsnes, S., Jans, D.A. (2004). Trafficking and signaling pathways of nuclear localizing protein ligands and their receptors. BioEssays , 26, 993-1004. [CrossRef] [PubMed] [Google Scholar]
  • Kang, G.M., Han, Y.M., Ko, H.W., Kim, J., Oh, B.C., Kwon, I., Kim, M.S. (2015). Leptin elongates hypothalamic neuronal cilia via transcriptional regulation and actin destabilization. J Biol Chem , 290, 18146-18155. [CrossRef] [PubMed] [Google Scholar]
  • Kermorgant, S., Parker, P.J. (2008). Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. J Cell Biol , 182, 855-863. [CrossRef] [PubMed] [Google Scholar]
  • Kim, S., Dynlacht, B.D. (2013). Assembling a primary cilium. Curr Opin Cell Biol , 25, 506-511. [CrossRef] [PubMed] [Google Scholar]
  • Kim, T.H., Choi, D.H., Vauthier, V., Dam, J., Li, X., Nam, Y.J., Ko, Y., Kwon, H.J., Shin, S.H., Cechetto, J., Soloveva, V., Jockers, R. (2014). Anti-obesity phenotypic screening looking to increase OBR cell surface expression. J Biomol Screening , 19, 88-99 [CrossRef] [Google Scholar]
  • Klink, B.U., Zent, E., Juneja, P., Kuhlee, A., Raunser, S., Wittinghofer, A. (2017). A recombinant BBSome core complex and how it interacts with ciliary cargo. eLife, 6, e27434. [CrossRef] [PubMed] [Google Scholar]
  • Li, Z., Ceccarini, G., Eisenstein, M., Tan, K., Friedman, J.M. (2013). Phenotypic effects of an induced mutation of the ObRa isoform of the leptin receptor. Mol Metab , 2, 364-375. [CrossRef] [PubMed] [Google Scholar]
  • Lin, S.Y., Makino, K., Xia, W., Matin, A., Wen, Y., Kwong, K.Y., Bourguignon, L., Hung, M.C. (2001). Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol , 3, 802-808. [CrossRef] [PubMed] [Google Scholar]
  • Lin, D.C., Quevedo, C., Brewer, N.E., Bell, A., Testa, J.R., Grimes, M.L., Miller, F.D., Kaplan, D.R. (2006). APPL1 associates with TrkA and GIPC1 and is required for nerve growth factor-mediated signal transduction. Mol Cell Biol , 26, 8928-8941. [CrossRef] [PubMed] [Google Scholar]
  • Macias, E., Rao, D., Carbajal, S., Kiguchi, K., DiGiovanni, J. (2014). Stat3 binds to mtDNA and regulates mitochondrial gene expression in keratinocytes. J Invest Dermat , 134, 1971-1980. [CrossRef] [Google Scholar]
  • Mancour, L.V., Daghestani, H.N., Dutta, S., Westfield, G.H., Schilling, J., Oleskie, A.N., Herbstman, J.F., Chou, S.Z., Skiniotis, G. (2012). Ligand-induced architecture of the leptin receptor signaling complex. Mol Cell , 48, 655-661. [CrossRef] [PubMed] [Google Scholar]
  • Martinez-Abundis, E., Rajapurohitam, V., Gertler, A., Karmazyn, M. (2015). Identification of functional leptin receptors expressed in ventricular mitochondria. Mol Cellular Biochem , 408, 155-162. [CrossRef] [Google Scholar]
  • McGaffin, K.R., Moravec, C.S., McTiernan, C.F. (2009). Leptin signaling in the failing and mechanically unloaded human heart. Circul Heart Fail , 2, 676-683. [CrossRef] [Google Scholar]
  • Moharana, K., Zabeau, L., Peelman, F., Ringler, P., Stahlberg, H., Tavernier, J, Savvides, S.N. (2014). Structural and mechanistic paradigm of leptin receptor activation revealed by complexes with wild-type and antagonist leptins. Structure , 22, 866-877. [CrossRef] [PubMed] [Google Scholar]
  • Montague, C.T., Farooqi, I.S., Whitehead, J.P., Soos, M.A., Rau, H., Wareham, N.J., Sewter, C.P., Digby, J.E., Mohammed, S.N., Hurst, J.A., Cheetham, C.H., Earley, A.R., Barnett, A.H., Prins, J.B., O’Rahilly, S. (1997). Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature , 387, 903-908. [CrossRef] [PubMed] [Google Scholar]
  • Morton, G.J., Gelling, R.W., Niswender, K.D., Morrison, C.D., Rhodes, C.J., Schwartz, M.W. (2005). Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metab , 2, 411-420. [CrossRef] [PubMed] [Google Scholar]
  • Piper, M.L., Unger, E.K., Myers, M.G., Jr., Xu, A.W. (2008). Specific physiological roles for signal transducer and activator of transcription 3 in leptin receptor-expressing neurons. Mol Endocrinol , 22, 751-759. [CrossRef] [PubMed] [Google Scholar]
  • Purdham, D.M., Zou, M.X., Rajapurohitam, V., Karmazyn, M. (2004). Rat heart is a site of leptin production and action. Am J Physiol , 287, H2877-2884. [Google Scholar]
  • Rahmouni, K., Sigmund, C.D., Haynes, W.G., Mark, A.L. (2009). Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes , 58, 536-542. [CrossRef] [PubMed] [Google Scholar]
  • Rajapurohitam, V., Javadov, S., Purdham, D.M., Kirshenbaum, L.A., Karmazyn, M. (2006). An autocrine role for leptin in mediating the cardiomyocyte hypertrophic effects of angiotensin II and endothelin-1. J Mol Cell Cardiol , 41, 265-274. [CrossRef] [PubMed] [Google Scholar]
  • Roujeau, C., Jockers, R., Dam, J. (2014). New pharmacological perspectives for the leptin receptor in the treatment of obesity. Front Endocrinol , 5, 167. [CrossRef] [Google Scholar]
  • Rycyzyn, M.A., Clevenger, C.V. (2002). The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer. Proc Natl Acad Sci USA , 99, 6790-6795. [CrossRef] [Google Scholar]
  • Schmieg, N., Menendez, G., Schiavo, G., Terenzio, M. (2014). Signalling endosomes in axonal transport: travel updates on the molecular highway. Sem Cell Dev Biol , 27, 32-43. [CrossRef] [Google Scholar]
  • Schwartz, M.W., Seeley, R.J., Campfield, L.A., Burn, P., Baskin, D.G. (1996). Identification of targets of leptin action in rat hypothalamus. J Clin Invest , 98, 1101-1106. [CrossRef] [PubMed] [Google Scholar]
  • Seo, S., Guo, DF., Bugge, K., Morgan, D.A., Rahmouni, K., Sheffield V.C. (2009). Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet , 18, 1323-1331. [CrossRef] [PubMed] [Google Scholar]
  • Seron, K., Couturier, C., Belouzard, S., Bacart, J., Monte, D., Corset, L., Bocquet, O., Dam, J., Vauthier, V., Lecoeur, C., Bailleul, B., Hoflack, B., Froguel, P., Jockers, R., Rouille, Y. (2011). Endospanins regulate a postinternalization step of the leptin receptor endocytic pathway. J Biol Chem , 286, 17968-17981. [CrossRef] [PubMed] [Google Scholar]
  • Soker, S., Fidder, H., Neufeld, G., Klagsbrun, M. (1996). Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J Biol Chem , 271, 5761-5767. [CrossRef] [PubMed] [Google Scholar]
  • Stratigopoulos, G., LeDuc, C.A., Cremona, M.L., Chung, W.K., Leibel R.L. (2011). Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa GTPase regulator-interacting protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. J Biol Chem , 286, 2155-2170. [CrossRef] [PubMed] [Google Scholar]
  • Stratigopoulos, G., Martin Carli, J.F., O’Day, D.R., Wang, L., Leduc, C.A., Lanzano, P., Chung, W.K., Rosenbaum, M., Egli, D., Doherty, D.A., Leibel, R.L. (2014). Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab , 19, 767-779. [CrossRef] [PubMed] [Google Scholar]
  • Stratigopoulos, G., Burnett, L.C., Rausch, R., Gill, R., Penn, D.B., Skowronski, A.A., LeDuc, C.A., Lanzano, A.J., Zhang, P., Storm, D.R., Egli, D., Leibel, R.L. (2016). Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J Clin Invest , 126, 1897-1910. [CrossRef] [PubMed] [Google Scholar]
  • Subramaniam, P.S., Green, M.M., Larkin, J. 3rd, Torres, B.A., Johnson, H.M. (2001). Nuclear translocation of IFN-gamma is an intrinsic requirement for its biologic activity and can be driven by a heterologous nuclear localization sequence. J Interf Cytok Res , 21, 951-959. [CrossRef] [Google Scholar]
  • Taelman, V.F., Dobrowolski, R., Plouhinec, J.L., Fuentealba, L.C., Vorwald, P.P., Gumper, I., Sabatini, D.D., De Robertis, E.M. (2010). Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell , 143, 1136-1148. [CrossRef] [PubMed] [Google Scholar]
  • Tartaglia, L.A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., Richards, G.J., Campfield, L.A., Clark, F.T., Deeds, J., Muir, C., Sanker, S., Moriarty, A., Moore, K.J., Smutko, J.S., Mays, G.G., Wool, E.A., Monroe, C.A., Tepper, R.I. (1995). Identification and expression cloning of a leptin receptor, OB-R. Cell , 83, 1263-1271. [CrossRef] [PubMed] [Google Scholar]
  • Uotani, S., Bjorbaek, C., Tornoe, J., Flier, J.S. (1999). Functional properties of leptin receptor isoforms: internalization and degradation of leptin and ligand-induced receptor downregulation. Diabetes , 48, 279-286. [CrossRef] [PubMed] [Google Scholar]
  • Vauthier, V., Jaillard, S., Journel, H., Dubourg, C., Jockers, R., Dam, J. (2012). Homozygous deletion of an 80 kb region comprising part of DNAJC6 and LEPR genes on chromosome 1P31.3 is associated with early onset obesity, mental retardation and epilepsy. Mol Genet Metab , 106, 345-350. [Google Scholar]
  • Vauthier, V., Swartz, T.D., Chen, P., Roujeau, C., Pagnon, M., Mallet, J., Sarkis, C., Jockers, R., Dam, J. (2014). Endospanin 1 silencing in the hypothalamic arcuate nucleus contributes to sustained weight loss of high fat diet obese mice. Gene Ther , 21, 638-644. [CrossRef] [PubMed] [Google Scholar]
  • Vauthier, V., Roujeau, C., Chen, P., Sarkis, C., Migrenne, S., Hosoi, T., Ozawa, K., Rouille, Y., Foretz, M., Mallet, J., Launay, J.M., Magnan, C., Jockers, R., Dam, J. (2017). Endospanin1 affects oppositely body weight regulation and glucose homeostasis by differentially regulating central leptin signaling. Mol Metab , 6, 159-172. [Google Scholar]
  • Velickovic, K., Lugo Leija, H.A., Bloor, I., Law, J., Sacks, H., Symonds, M., Sottile, V. (2018). Low temperature exposure induces browning of bone marrow stem cell derived adipocytes in vitro. Sci Rep , 8, 4974. [CrossRef] [PubMed] [Google Scholar]
  • Wainwright, C.E., Elborn, J.S., Ramsey, B.W., Marigowda, G., Huang, X., Cipolli, M., Colombo, C., Davies J.C, De Boeck, K., Flume, P.A., Konstan, M.W., McColley, S.A., McCoy, K., McKone, E.F., Munck, A., Ratjen, F., Rowe, S.M., Waltz, D., Boyle, M.P., TRAFFIC Study Group, TRANSPORT Study Group. (2015). Lumacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. New Engl J Med, 373, 220-231. [Google Scholar]
  • Wang, T., Fahrmann, J.F., Lee, H., Li, Y.J., Tripathi, S.C., Yue, C., Zhang, C., Lifshitz, V., Song, J., Yuan, Y., Somlo, G., Jandial, R., Ann, D., Hanash, S., Jove, R., Yu, H. (2018). JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab , 27, 136-150 e135. [CrossRef] [PubMed] [Google Scholar]
  • Wauman, J., De Ceuninck, L., Vanderroost, N., Lievens, S., Tavernier, J. (2011). RNF41 (Nrdp1) controls type 1 cytokine receptor degradation and ectodomain shedding. J Cell Sci , 124, 921-932. [Google Scholar]
  • Wauman, J., Zabeau, L., Tavernier, J. (2017). The leptin receptor complex: Heavier than expected? Front Endocrinol , 8, 30. [CrossRef] [Google Scholar]
  • Wijesuriya, T.M., De Ceuninck, L., Masschaele, D., Sanderson, M.R., Carias, K.V., Tavernier, J, Wevrick, R. (2017). The Prader-Willi syndrome proteins MAGEL2 and necdin regulate leptin receptor cell surface abundance through ubiquitination pathways. Hum Mol Genet , 26, 4215-4230. [CrossRef] [PubMed] [Google Scholar]
  • Xu, Y.S., Liang, J.J., Wang, Y., Zhao, X.J., Xu, L., Xu, Y.Y., Zou, Q.C., Zhang, J.M., Tu, C.E., Cui, Y.G., Sun, W.H., Huang, C., Yang, J.H., Chin, Y.E. (2016). STAT3 undergoes acetylation-dependent mitochondrial translocation to regulate pyruvate metabolism. Sci Rep , 6, 39517. [CrossRef] [PubMed] [Google Scholar]
  • Zabeau, L., Defeau, D., Van der Heyden, J., Iserentant, H., Vandekerckhove, J., Tavernier, J. (2004). Functional analysis of leptin receptor activation using a Janus kinase/signal transducer and activator of transcription complementation assay. Molecular Endocrinol , 18, 150-161. [CrossRef] [Google Scholar]
  • Zaghloul, N.A., Katsanis, N. (2009). Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest , 119, 428-437. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., Friedman, J.M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature , 372, 425-432. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.