Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 212, Numéro 3-4, 2018
Page(s) 107 - 117
DOI https://doi.org/10.1051/jbio/2019001
Publié en ligne 11 avril 2019
  • Alarcon-Chaidez, F.J., Sun, J., Wikel, S.K. (2007). Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae). Insect Biochem Mol Biol, 37, 48-71. [CrossRef] [PubMed] [Google Scholar]
  • Alarcon-Chaidez, F.J., Salivary glands, in: D. Sonenshine, R.M. Roe (Eds.), Biology of Ticks, Oxford University Press, 2014, pp. 163-205. [Google Scholar]
  • Anguita, J., Ramamoorthi, N., Hovius, J.W.R., Das, S., Thomas, V., Persinski, R., Conze, D., Askenase, P.W., Rincón, M., Kantor, F.S., Fikrig, E. (2002). Salp15, an Ixodes scapularis salivary protein, inhibits CD4 + T cell activation. Immunity, 16, 849-859. [CrossRef] [PubMed] [Google Scholar]
  • Antunes, S., Rosa, C., Couto, J., Ferrolho, J., Domingos, A. (2017). Deciphering babesia-vector interactions. Front Cell Infect Microbiol, 7, 429. [CrossRef] [PubMed] [Google Scholar]
  • Beaufays, J., Adam, B., Menten-Dedoyart, C., Fievez, L., Grosjean, A., Decrem, Y., Prévôt, P.-P., Santini, S., Brasseur, R., Brossard, M., Vanhaeverbeek, M., Bureau, F., Heinen, E., Lins, L., Vanhamme, L., Godfroid, E. (2008). Ir-LBP, an Ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function. PLoS One, 3, e3987. [CrossRef] [PubMed] [Google Scholar]
  • Bensaci, M., Bhattacharya, D., Clark, R., Hu, L.T. (2012). Oral vaccination with vaccinia virus expressing the tick antigen subolesin inhibits tick feeding and transmission of Borrelia burgdorferi. Vaccine, 30, 6040-6046. [CrossRef] [PubMed] [Google Scholar]
  • Bernard, Q., Wang, Z., Di Nardo, A., Boulanger, N. (2017). Interaction of primary mast cells with Borrelia burgdorferi (sensu stricto): Role in transmission and dissemination in C57BL/6 mice. Parasit Vectors, 10, 313. [CrossRef] [Google Scholar]
  • Bernard, Q., Helezen, E., Boulanger, N., Tick-borne bacteria and host skin interface, in: N. Boulanger (Ed.), Skin and arthropod vectors, Elsevier Academic Press, London, 2018, pp. 293-324. [CrossRef] [Google Scholar]
  • Bonnet, S., Brisseau, N., Hermouet, A., Jouglin, M., Chauvin, A. (2009). Experimental in vitro transmission of Babesia sp. (EU1) by Ixodes ricinus. Vet Res, 40, 21. [CrossRef] [PubMed] [Google Scholar]
  • Bonnet, S., Boulanger, N., Ixodes tick saliva: A potent controller at the skin interface of early Borrelia burgdorferi sensu lato transmission, in: S. Wikel, S. Aksoy, G. Dimopoulos (Eds.), Arthropod vector: Controller of disease transmission, Elsevier Academic Press, London, 2017, Vol 2, pp. 231-248. [CrossRef] [Google Scholar]
  • Bonnet,S., Kazimirova, M., Richardson, J., Simo, L., Tick saliva and its role in pathogen transmission, in: N. Boulanger (Ed.), Skin and arthropod vectors, Elsevier Academic Press, London, 2018, pp. 121-191. [CrossRef] [Google Scholar]
  • Boulanger, N., McCoy, K., Les tiques (Acari: Ixodida), in: G. Duvallet, D. Fontenille, V. Rober t (Eds.), Précis d’entomologie médicale et vétérinaire, IRD Edition, Marseille, France, 2017, pp. 553-596. [Google Scholar]
  • Brossard, M., Wikel, S.K. (2004). Tick immunobiology. Parasitol, 129, S161-S176. [CrossRef] [Google Scholar]
  • Burke, G., Wikel, S.K., Spielman, A., Telford, S.R., McKay, K., Krause, P.J., Tick-borne infection study group (2005). Hypersensitivity to ticks and Lyme disease risk. Emerg Infect Dis, 11, 36-41. [PubMed] [Google Scholar]
  • Chauvin, A., Moreau, E., Bonnet, S., Plantard, O., Malandrin, L. (2009). Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res, 40, 37. [CrossRef] [PubMed] [Google Scholar]
  • Chevillon, C., de Garine-Wichatitsky, M., Barré, N., Ducornez, S., de Meeûs, T. (2013). Understanding the genetic, demographical and/or ecological processes at play in (Acari: invasions: lessons from the southern cattle tick Rhipicephalus microplus Ixodidae). Exp Appl Acarol, 59, 203-218. [CrossRef] [PubMed] [Google Scholar]
  • Chmelar, J., Anderson, J., Mu, J., Jochim, R., Valenzuela, J., Kopecky, J. (2008). Insight into the sialome of the castor bean tick, Ixodes ricinus. BMC Genomics, 9, 233. [CrossRef] [PubMed] [Google Scholar]
  • Commins, S.P., Platts-Mills, T.A. (2013). Tick bites and red meat allergy. Curr Opin Allergy Clin Immunol, 13, 354-359. [CrossRef] [PubMed] [Google Scholar]
  • Couvreur, B., Beaufays, J., Charon, C., Lahaye, K., Gensale, F., Denis, V., Charloteaux, B., Decrem, Y., Prévôt, P.P., Brossard, M., Vanhamme, L., Godfroid, E. (2008). Variability and action mechanism of a family of anticomplement proteins in Ixodes ricinus. PLoS One, 3, e1400. [CrossRef] [PubMed] [Google Scholar]
  • Dai, J., Wang, P., Adusumilli, S., Booth, C.J., Narasimhan, S., Anguita, J., Fikrig, E. (2009). Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe, 6, 482-492. [CrossRef] [PubMed] [Google Scholar]
  • Daix, V., Schroeder, H., Praet, N., Georgin, J.-P., Chiappino, I., Gillet, L., De Fays, K., Decrem, Y., Leboulle, G., Godfroid, E., Bollen, A., Pastoret, P.P., Gern, L., Sharp, P.M., Vanderplasschen, A. (2007). Ixodes ticks belonging to the Ixodes ricinus complex encode a family of anticomplement proteins. Insect Mol Biol, 16, 155-166. [CrossRef] [PubMed] [Google Scholar]
  • Dantas-Torres, F., Chomel, B.B., Otranto, D. (2012). Ticks and tick-borne diseases: A one health perspective. Trends Parasitol, 28, 437-446. [Google Scholar]
  • de la Fuente, J., Almazán, C., Blouin, E.F., Naranjo, V., Kocan, K.M. 2006. Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitol Res, 100, 85-91. [CrossRef] [Google Scholar]
  • de la Fuente, J., Estrada-Peña, A., Venzal, J., Kocan, M., Sonenshine, D.E. (2008). Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci, 13, 6938-6946. [Google Scholar]
  • de la Fuente, J., Merino, O. (2013). Vaccinomics, the new road to tick vaccines. Vaccine, 31, 5923-5929. [CrossRef] [PubMed] [Google Scholar]
  • de la Fuente, J., Moreno-Cid, J.A., Galindo, R.C., Almazan, C., Kocan, K.M., Merino, O., Perez de la Lastra, J.M., Estrada-Pena, A., Blouin, E.F. (2013). Subolesin/Akirin vaccines for the control of arthropod vectors and vectorborne pathogens. Transbound Emerg Dis, 60, suppl 2, 172-178. [CrossRef] [PubMed] [Google Scholar]
  • de la Fuente, J., Kocan, K., Development of vaccines for control of tick infestations and interruption of pathogen transmission, in: D. Sonenshine, R.M. Roe (Eds.), Biology of Ticks, Oxford University Press, 2014, pp. 333-352. [Google Scholar]
  • de la Fuente, J., Contreras, M., Estrada-Peña, A., Cabezas-Cruz, A. (2017). Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. Vaccine, 35, 5089-5094. [CrossRef] [PubMed] [Google Scholar]
  • Decrem, Y., Beaufays, J., Blasioli, V., Lahaye, K., Brossard, M., Vanhamme, L., Godfroid, E. (2008). A family of putative metalloproteases in the salivary glands of the tick Ixodes ricinus. FEBS J, 275, 1485-1499. [Google Scholar]
  • Dumler, J.S. (2012). The biological basis of severe outcomes in Anaplasma phagocytophilum infection. Fems Immunol Med Microbiol, 64, 13-20. [CrossRef] [Google Scholar]
  • Francischetti, I.M.B., My Pham, V., Mans, B.J., Andersen, J.F., Mather, T.N., Lane, R.S., Ribeiro, J.M.C. (2005). The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae). Insect Biochem Mol Biol, 35, 1142-1161. [CrossRef] [PubMed] [Google Scholar]
  • Francischetti, I., Sa-Nunes, A., Mans, B., Santos, I., Ribeiro, J. (2010). The role of saliva in tick feeding. Front Biosci, 14, 2051-2088. [Google Scholar]
  • Garg, R., Juncadella, I.J., Ramamoorthi, N., Ashish, Ananthanarayanan, S.K., Thomas, V., Rincón, M., Krueger, J.K., Fikrig, E., Yengo, C.M., Anguita, J. (2006). Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, Salp15. J Immunol, 177, 6579-6583. [CrossRef] [PubMed] [Google Scholar]
  • Grice, E.A, Segre, J.A. (2011). The skin microbiome. Nat Rev Microbiol, 9, 244-253. [CrossRef] [PubMed] [Google Scholar]
  • Guglielmone, A., Richad, R., Apanaskevich, D., Petney, T., Estrada-Pena, A., Horak, I.G., Shao, R., Barker, S. (2010). The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: A list of valid species names. Zootaxa, 2528, 1-28. [CrossRef] [Google Scholar]
  • Hamsten, C., Starkhammar, M., Tran, T.A., Johansson, M., Bengtsson, U., Ahlén, G., Sällberg, M., Grönlund, H., van Hage, M. (2013). Identification of galactose-α-1, 3-galactose in the gastrointestinal tract of the tick Ixodes ricinus; possible relationship with red meat allergy. Allergy, 68, 549-552. [CrossRef] [PubMed] [Google Scholar]
  • Hannier, S., Liversidge, J., Sternberg, J.M., Bowman, A.S. (2004). Characterization of the B-cell inhibitory protein factor in Ixodes ricinus tick saliva: A potential role in enhanced Borrelia burgdoferi transmission. Immunology, 113, 401-408. [CrossRef] [PubMed] [Google Scholar]
  • Hermance, M., Thangamani, S. (2015). Tick saliva enhances Powassan virus transmission to the host, influencing its dissemination and the course of disease. J Virol, 89, 7852-7860. [CrossRef] [PubMed] [Google Scholar]
  • Jalovecka, M., Hajdusek, O., Sojka, D., Kopacek, P., Malandrin, L. (2018). The complexity of Piroplasms life cycles. Front Cell Infect Microbiol, 8, 248. [CrossRef] [PubMed] [Google Scholar]
  • Jongejan, F., Uilenberg, G. (2004). The global importance of ticks. Parasitology, 129, 14. [Google Scholar]
  • Kazimírová, M., Stibrániová, I. (2013). Tick salivary compounds: Their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol, 3, 1-17. [PubMed] [Google Scholar]
  • Kazimirova, M., Bartikova, P., Stibraniova, I., Tick-borne viruses and host skin interface, in: N. Boulanger (Ed.), Skin and arthropod vectors, Elsevier Academic Press, London, 2018, pp. 325-383. [CrossRef] [Google Scholar]
  • Kern, A., Collin, E., Barthel, C., Michel, C., Jaulhac, B., Boulanger, N. (2011). Tick saliva represses innate immunity and cutaneous inflammation in a murine model of Lyme disease. Vector Borne Zoonotic Dis, 11, 1343-1350. [CrossRef] [PubMed] [Google Scholar]
  • Kern, A., Schnell,G., Bernard, Q., Boeuf, A., Jaulhac, B., Collin, E., Barthel, C., Ehret-Sabatier, L., Boulanger, N. (2015). Heterogeneity of Borrelia burgdorferi sensu stricto population and its involvement in Borrelia pathogenicity: Study on murine model with specific emphasis on the skin interface. PLoS One, 10, e0133195. [CrossRef] [PubMed] [Google Scholar]
  • Kilpatrick, A., Randolph, S. (2012). Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380, 1946-1955. [CrossRef] [PubMed] [Google Scholar]
  • Kolb, P., Wallich, R., Nassal, M. (2015). Whole-chain tick saliva proteins presented on hepatitis B virus capsid-like particles induce high-titered antibodies with neutralizing potential. PLoS One, 10, e0136180. [CrossRef] [PubMed] [Google Scholar]
  • Kopecky, J., Kuthejlova, M. (1998). Suppressive effect of Ixodes ricinus salivary gland extract on mechanisms of natural immunity in vitro. Parasite Immunol, 20, 169-174. [PubMed] [Google Scholar]
  • Kotal, J., Langhansova, H., Lieskovska, J., Andersen, J.F., Francischetti, I.M., Chavakis, T., Kopecky, J., Pedra, J.H., Kotsyfakis, M., Chmelar, J. (2015). Modulation of host immunity by tick saliva. J Proteomics, 128, 58-68. [CrossRef] [PubMed] [Google Scholar]
  • Labuda, M., Trimnell, A.R., Licková, M., Kazimírová, M., Davies, G.M., Lissina, O., Hails, R.S., Nuttall, P.A. (2006). An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathog, 2, e27. [CrossRef] [PubMed] [Google Scholar]
  • Leboulle, G., Crippa, M., Decrem, Y., Mejri, N., Brossard, M., Bollen, A., Godfroid, E. (2002). Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. J Biol Chem, 277, 10083-10089. [CrossRef] [PubMed] [Google Scholar]
  • Lecointre, G., Le Guyader, H. (2001). La classification phylogénétique du vivant. Belin Editeur. [Google Scholar]
  • Lindgren, E., Andersson, Y., Suk, J.E., Sudre, B., Semenza, J.C. (2012). Public health. Monitoring EU emerging infectious disease risk due to climate change. Science, 336, 418-419. [CrossRef] [PubMed] [Google Scholar]
  • Liu, X., Bonnet, S. (2014). Hard tick factors implicated in pathogen transmission. PLoS Negl Trop Dis, 8, e2566. [CrossRef] [PubMed] [Google Scholar]
  • Liu, X.Y., de la Fuente, J., Cote, M., Galindo, R.C., Moutailler, S., Vayssier-Taussat, M., Bonnet, S.I. (2014). IrSPI, a tick serine protease inhibitor involved in tick feeding and Bartonella henselae infection. PLoS Negl Trop Dis, 8, e2993. [CrossRef] [PubMed] [Google Scholar]
  • Madden, R.D., Sauer, J.R., Dillwith, J.W. (2004). A proteomics approach to characterizing tick salivary secretions. Exp Appl Acarol, 32, 77-87. [CrossRef] [PubMed] [Google Scholar]
  • Mans, B.J., Andersen, J.F., Francischetti, I.M.B., Valenzuela, J.G., Schwan, T.G., Pham, V.M., Garfield, M.K., Hammer, C.H., Ribeiro, J.M.C. (2008). Comparative sialomics between hard and soft ticks: Implications for the evolution of blood-feeding behavior. Insect Biochem Mol Biol, 38, 42-58. [CrossRef] [PubMed] [Google Scholar]
  • Mansfield, K.L., Johnson, N., Phipps, L.P., Stephenson, J.R., Fooks, A.R., Solomon, T. (2009). Tick-borne encephalitis virus – a review of an emerging zoonosis. J Gen Virol, 90, 1781-1794. [CrossRef] [PubMed] [Google Scholar]
  • Marchal, C.M.P., Luft, B.J., Yang, X., Sibilia, J., Jaulhac, B., Boulanger, N.M. (2009). Defensin is suppressed by tick salivary gland extract during the in vitro interaction of resident skin cells with Borrelia burgdorferi. J Invest Dermatol, 129, 2515-2517. [CrossRef] [PubMed] [Google Scholar]
  • Marchal, C., Schramm, F., Kern, A., Luft, B.J., Yang, X., Schuijt, T., Hovius, J., Jaulhac, B., Boulanger, N. (2011). Antialarmin effect of tick saliva during the transmission of Lyme disease. Infect Immun, 79, 774-785. [CrossRef] [PubMed] [Google Scholar]
  • Maritz-Olivier, C., Stutzer, C., Jongejan, F., Neitz, A.W., Gaspar, A.R. (2007). Tick anti-hemostatics: Targets for future vaccines and therapeutics. Trends Parasitol, 23, 397-407. [CrossRef] [PubMed] [Google Scholar]
  • Mason, L.M.K., Veerman, C.C., Geijtenbeek, T.B.H., Hovius, J.W.R. (2014). Ménage à trois : Borrelia, dendritic cells, and tick saliva interactions. Trends Parasitol, 30, 95-103. [CrossRef] [PubMed] [Google Scholar]
  • McCoy, K.D., Boulanger, N. Tiques et maladies à tiques : Biologie, écologie évolutive et épidémiologie. IRD Editions, 2016. [Google Scholar]
  • McNally, K., Mitzel, D., Anderson, J., Ribeiro, J., Valenzuela, J., Myers, T., Godinez, A, Wolfinbarger, J., Best, S., Bloom, M. (2012). Differential salivary gland transcript expression profile in Ixodes scapularis nymphs upon feeding or flavivirus infection. Ticks Tick Borne Dis, 3, 18-26. [CrossRef] [PubMed] [Google Scholar]
  • Medzhitov, R., Janeway, C.J. (1997). Innate immunity: Impact on the adaptive immune response. Curr Opin Immunol, 9, 4-9. [CrossRef] [PubMed] [Google Scholar]
  • Mehlhorn, H. (2001). Encyclopedic reference of parasitology. Encycl Ref Parasitol, 1, 678 p. [Google Scholar]
  • Merino, O., Alberdi, P., Perez de la Lastra, J.M., de la Fuente, J. (2013). Tick vaccines and the control of tick-borne pathogens. Front Cell Infect Microbiol, 3, 30. [CrossRef] [PubMed] [Google Scholar]
  • Moutailler, S., George, J., Hansmann, Y., Degeilh, B., Joncour, G., Jourdain, E., Malandrin, L., Umhang, G., Vayssier-Taussat, M., Vial, L., Bonnet, S., Boulanger, N, Principales maladies transmises par les tiques : Epidémiologie, clinique et diagnostic, in : K. McCoy, N. Boulanger (Eds.), Tiques et maladies à tiques : Biologie, écologie évolutive et épidémiologie, IRD Editions, Marseille, 2016. [Google Scholar]
  • Narasimhan, S., Fikrig, E. (2015). Tick microbiome: The force within. Trends Parasitol, 31, 315-323. [CrossRef] [PubMed] [Google Scholar]
  • Nene, V., Lee, D., Kang’a, S., Skilton, R., Shah, T., de Villiers, E., Mwaura, S., Taylor, D., Quackenbush, J., Bishop, R. (2004). Genes transcribed in the salivary glands of female Rhipicephalus appendiculatus ticks infected with Theileria parva. Insect Biochem Mol Biol, 34, 1117-11128. [CrossRef] [PubMed] [Google Scholar]
  • Nuttall, P., Labuda, M. (2004). Tick-host interactions: Saliva-activated transmission. Parasitology, 129, Suppl, S177-S189. [CrossRef] [PubMed] [Google Scholar]
  • Nuttall, P. (2018). Wonders of tick saliva. Ticks Tick Borne Dis, pii: S1877-959X(18)30255-3. doi: 10.1016/j.ttbdis.2018.11.005. [Google Scholar]
  • Ohnishi, J., Piesman, J., de Silva, A. (2001). Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. PNAS, 98, 670-675. [CrossRef] [Google Scholar]
  • Oliveira, C., Carvalho, W., Garcia, G., Gutierrez, F., de Miranda Santos, I., Silva, J., Ferreira, B. (2010). Tick saliva induces regulatory dendritic cells: MAP-kinases and Toll-like receptor-2 expression as potential targets. Vet Parasitol, 167, 288-297. [CrossRef] [PubMed] [Google Scholar]
  • Pechová, J., Stepanova, G., Kovar, L., Kopecky, J., (2002). Tick salivary gland extract-activated transmission of Borrelia afzelii spirochaetes. Folia Parasitol, 49, 153-159. [CrossRef] [Google Scholar]
  • Radolf, J.D., Caimano, M.J., Stevenson, B., Hu, L.T. (2012). Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol, 10, 87-99. [CrossRef] [PubMed] [Google Scholar]
  • Ramamoorthi, N., Narasimhan, S., Pal, U., Bao, F., Yang, X., Fish, D., Anguita, J., Norgard, M.V., Kantor, F.S., Anderson, J.F., Koski, R.A., Fikrig, E. (2005). The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature, 436, 573-577. [CrossRef] [PubMed] [Google Scholar]
  • Ribeiro, J.M., Makoul, G., Levine, J., Robinson, D., Spielman, A. (1985). Antihemostatic, antiinflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J Exp Med, 161, 332-344. [CrossRef] [PubMed] [Google Scholar]
  • Ribeiro, J.M., Francischetti, I.M. (2003). Role of arthropod saliva in blood feeding: Sialome and post-sialome perspectives. Annu Rev Entomol, 48, 73-88. [CrossRef] [PubMed] [Google Scholar]
  • Ribeiro, J., Alarcon-Chaidez, F., Francischetti, I.M.B., Mans, B.J., Mather, T.N., Valenzuela, J.G., Wikel, S.K. (2006). An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol, 36, 111-129. [CrossRef] [PubMed] [Google Scholar]
  • Rizzoli, A., Silaghi, C., Obiegala, A., Rudolf, I., Hubálek, Z., Földvári, G., Plantard, O., Vayssier-Taussat, M., Bonnet, S., Spitalská, E., Kazimírová, M. (2014). Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: New hazards and relevance for public health. Front Public Heal, 2, 251. [Google Scholar]
  • Sa-Nunes, A., Bafica, A., Antonelli, L.R., Choi, E.Y., Francischetti, I.M., Andersen, J.F., Shi, G.P., Chavakis, T., Ribeiro, J.M., Kotsyfakis, M. (2009). The immunomodulatory action of sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J Immunol, 182, 7422-7429. [CrossRef] [PubMed] [Google Scholar]
  • Schramm, F., Kern, A., Barthel, C., Nadaud, S., Meyer, N., Jaulhac, B., Boulanger, N. (2012). Microarray analyses of inflammation response of human dermal fibroblasts to different strains of Borrelia burgdorferi sensu stricto. PLoS One, 7, e40046. [CrossRef] [PubMed] [Google Scholar]
  • Schuijt, T.J., Coumou, J., Narasimhan, S., Dai, J., Deponte, K., Wouters, D., Brouwer, M., Oei, A., Roelofs, J.J., van Dam, A.P., van der Poll, T., Van’t Veer, C., Hovius, J.W., Fikrig, E. (2011a). A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell Host Microbe, 10, 136-146. [CrossRef] [PubMed] [Google Scholar]
  • Schuijt, T.J., Hovius, J.W., van der Poll, T., van Dam, A.P., Fikrig, E. (2011b). Lyme borreliosis vaccination: The facts, the challenge, the future. Trends Parasitol, 27, 40-47. [CrossRef] [PubMed] [Google Scholar]
  • Schwarz, A., Valdes, J.J., Kotsyfakis, M. (2012). The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis, 3, 117-127. [CrossRef] [PubMed] [Google Scholar]
  • Schwarz, A., von Reumont, B., Erhart, J., Chagas, A., Ribeiro, J., Kotsyfakis, M. (2013). De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J, 27, 4745-4756. [CrossRef] [PubMed] [Google Scholar]
  • Stachurski, F. (2000). Invasion of west African cattle by the tick Amblyomma variegatum. Med Vet Entomol, 14, 391-399. [Google Scholar]
  • Stanek, G., Wormser, G., Gray, J., Strle, F. (2012). Lyme borreliosis. Lancet, 379, 461-473. [Google Scholar]
  • Sukumaran, B., Narasimhan, S., Anderson, J., DePonte, K., Marcantonio, N., Krishnan, M., Fish, D., Telford, S., Kantor, F., Fikrig, E. (2006). An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. J Exp Med, 203, 1507-1517. [CrossRef] [PubMed] [Google Scholar]
  • Suppan, J., Engel, B., Marchetti-Deschmann, M., Nürnberger, S. (2018). Tick attachment cement – reviewing the mysteries of a biological skin plug system. Biol Rev Philos Soc, 93, 1056-1076. [CrossRef] [Google Scholar]
  • Talagrand-Reboul, E., Boyer, P.H., Bergström, S., Vial, L., Boulanger, N. (2018). Relapsing fevers: Neglected tick-borne diseases. Front Cell Infect Microbiol, 8, 98. [CrossRef] [PubMed] [Google Scholar]
  • Valenzuela, J.G., Charlab, R., Mather, T.N., Ribeiro, J.M. 2000. Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J Biol Chem, 275, 18717-18723. [PubMed] [Google Scholar]
  • Valenzuela, J.G., Francischetti,I.M.B., Pham, V.M., Garfield, M.K., Mather, T.N., Ribeiro, J.M.C. (2002). Exploring the sialome of the tick Ixodes scapularis. J Exp Biol, 205, 2843-2864. [PubMed] [Google Scholar]
  • Vannier, E., Krause, P. (2012). Human babesiosis. N Engl J Med, 366, 2397-2407. [CrossRef] [Google Scholar]
  • Vennestrøm, J., Jensen, P.M. (2007). Ixodes ricinus: the potential of two-dimensional gel electrophoresis as a tool for studying host-vector-pathogen interactions. Exp Parasitol, 115, 53-58. [CrossRef] [PubMed] [Google Scholar]
  • Villar, M., Torina, A., Nuñez, Y., Zivkovic, Z., Marina, A., Alongi, A., Scimeca, S., La Barbera, G, Caracappa, S., Vázquez, J., de la Fuente, J. (2010). Application of highly sensitive saturation labeling to the analysis of differential protein expression in infected ticks from limited samples. Proteome Sci, 8, 43. [CrossRef] [PubMed] [Google Scholar]
  • Weckesser, S., Hilger, C., Lentz, D., Jakob, T. (2010). Anaphylactic reactions to bites of the pigeon tick Argas reflexus. Eur J Dermatol, 20, 244-245. [PubMed] [Google Scholar]
  • Wikel, S. (1982). Histamine content of tick attachment sites and the effects of H1 and H2 histamine antagonists on the expression of resistance. Ann Trop Med Parasitol, 76, 179-185. [CrossRef] [PubMed] [Google Scholar]
  • Wikel, S. (1999). Tick modulation of host immunity: An important factor in pathogen transmission. Int J Parasitol, 29, 851-859. [Google Scholar]
  • Wikel, S. (2018). Ticks and tick-borne infections: Complex ecology, agents, and host interactions. Vet Sci, 5, E60. [CrossRef] [PubMed] [Google Scholar]
  • Wikel, S., Graham, J., Allen, J. (1978). Acquired resistance to ticks. IV. Skin reactivity and in vitro lymphocyte responsiveness to salivary gland antigen. Immunology, 34, 257-263. [PubMed] [Google Scholar]
  • Zeidner, N., Mbow, M.L., Dolan, M., Massung, R., Baca, E., (1997). Effects of Ixodes scapularis and Borrelia burgdorferi on modulation of the host immune response: Induction of a TH2 cytokine response in Lyme disease-susceptible (C3H/HeJ) mice but not in disease-resistant (BALB/c) mice. Infect Immun, 65, 3100-3106. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.