Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 212, Numéro 3-4, 2018
Page(s) 119 - 136
DOI https://doi.org/10.1051/jbio/2019003
Publié en ligne 11 avril 2019
  • Ahantarig, A., Chantawat, N., Waterfield, N.R., ffrench-Constant, R., Kittayapong, P. (2009). PirAB toxin from Photorhabdus asymbiotica as a larvicide against dengue vectors. Appl Environ Microbiol, 75, 4627-4629. [CrossRef] [Google Scholar]
  • Akorli, J., Gendrin, M., Pels, N.A., Yeboah-Manu, D., Christophides, G.K., Wilson, M.D. (2016). Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana. PloS one, 11, e0157529. [CrossRef] [PubMed] [Google Scholar]
  • Andreadis, T.G. (2007). Microsporidian parasites of mosquitoes. J Am Mosq Control Assoc, 23, 3-29. [Google Scholar]
  • Ang’Ang’O, L.M. (2018). Molecular characterisation of microsporidia mb species and correlation with plasmodium presence in anopheles mosquitoes in Mwea and Mbita, Rapport de Master, University of Nairobi, Kenya, Available from http://erepository.uonbi.ac.ke/handle/11295/104416. [Google Scholar]
  • Anglero-Rodriguez, Y.I., Blumberg, B.J., Dong, Y., Sandiford, S.L., Pike, A., Clayton, A.M., Dimopoulos, G. (2016). A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection. Sci Rep, 6, 34084. [CrossRef] [PubMed] [Google Scholar]
  • Anglero-Rodriguez, Y.I., Talyuli, O.A., Blumberg, B.J., Kang, S., Demby, C., Shields, A., Carlson, J., Jupatanakul, N., Dimopoulos, G. (2017). An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity. Elife, 6, e28844. [CrossRef] [PubMed] [Google Scholar]
  • Astudillo-Garcia, C., Bell, J.J., Webster, N.S., Glasl, B., Jompa, J., Montoya, J.M., Taylor, M.W. (2017). Evaluating the core microbiota in complex communities: A systematic investigation. Environ Microbiol, 19, 1450-1462. [CrossRef] [PubMed] [Google Scholar]
  • Baldini, F., Segata, N., Pompon, J., Marcenac, P., Shaw, W.R., Dabire, R.K., Diabate, A., Levashina, E.A., Catteruccia, F. (2014). Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun, 5, 3985. [CrossRef] [PubMed] [Google Scholar]
  • Bando, H., Okado, K., Guelbeogo, W.M., Badolo, A., Aonuma, H., Nelson, B., Fukumoto, S., Xuan, X., Sagnon, N., Kanuka, H. (2013). Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Sci Rep, 3, 1641. [CrossRef] [PubMed] [Google Scholar]
  • Barnard, D.R., Xue, R.D., Rotstein, M.A., Becnel, J.J. (2007). Microsporidiosis (Microsporidia: Culicosporidae) alters blood-feeding responses and DEET repellency in Aedes aegypti (Diptera: Culicidae). J Med Entomol, 44, 1040-1046. [CrossRef] [PubMed] [Google Scholar]
  • Becker, N., Petric, D., Zgomba, M., Boase, C., Madon, M., Dahl, C., Kaiser, A., Mosquitoes and their control, 2nd Edition, Springer, 2010. [CrossRef] [Google Scholar]
  • Becnel, J.J., Johnson, M.A. (1999). Impact of Edhazardia aedi (Microsporidia: Culicosporidae) on a seminatural population of Aedes aegypti (Diptera: Culicidae). Biol Control, 18, 39-48. [CrossRef] [Google Scholar]
  • Beier, J.C., Harris, C. (1983). Ascogregarina barretti (Sporozoa: diplocystidae) infections in natural populations of Aedes triseriatus (Diptera: Culicidae). J Parasitol, 69, 430-431. [CrossRef] [PubMed] [Google Scholar]
  • Beier, J.C., Chadee, D.D., Charran, A., Comiskey, N.M., Wesson, D.M. (1995). Country-wide prevalence of Ascogregarina culicis (apicomplexa: lecudinidae), a protozoan parasite of Aedes aegypti in Trinidad, West Indies. J Am Mosq Control Assoc, 11, 419-423. [Google Scholar]
  • Belda, E., Coulibaly, B., Fofana, A., Beavogui, A.H., Traore, S.F., Gohl, D.M., Vernick, K.D., Riehle, M.M. (2017). Preferential suppression of Anopheles gambiae host sequences allows detection of the mosquito eukaryotic microbiome. Sci Rep, 7, 3241. [CrossRef] [PubMed] [Google Scholar]
  • Benoit, J.B., Lopez-Martinez, G., Patrick, K.R., Phillips, Z.P., Krause, T.B., Denlinger, D.L. (2011). Drinking a hot blood meal elicits a protective heat shock response in mosquitoes. Proc Natl Acad Sci USA, 108, 8026-8029. [CrossRef] [Google Scholar]
  • Berry, C. (2012). The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J Invertebr Pathol, 109, 1-10. [CrossRef] [PubMed] [Google Scholar]
  • Berticat, C., Rousset, F., Raymond, M., Berthomieu, A., Weill, M. (2002). High Wolbachia density in insecticide-resistant mosquitoes. Proc Biol Sci, 269, 1413-1416. [CrossRef] [PubMed] [Google Scholar]
  • Boissière, A., Tchioffo, M.T., Bachar, D., Abate, L., Marie, A., Nsango, S.E., Shahbazkia, H.R., Awono-Ambene, P.H., Levashina, E.A., Christen, R., Morlais, I. (2012). Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog, 8, e1002742. [CrossRef] [PubMed] [Google Scholar]
  • Bolling, B.G., Olea-Popelka, F.J., Eisen, L., Moore, C.G., Blair, C.D. (2012). Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus. Virology, 427, 90-97. [CrossRef] [PubMed] [Google Scholar]
  • Bolling, B.G., Weaver, S.C., Tesh, R.B., Vasilakis, N. (2015). Insect-specific virus discovery: Significance for the Arbovirus community. Viruses, 7, 4911-4928. [CrossRef] [PubMed] [Google Scholar]
  • Borucki, M.K., Kempf, B.J., Blitvich, B.J., Blair, C.D., Beaty, B.J. (2002). La Crosse virus: Replication in vertebrate and invertebrate hosts. Microbes Infect, 4, 341-350. [CrossRef] [Google Scholar]
  • Bozic, J., Capone, A., Pediconi, D., Mensah, P., Cappelli, A., Valzano, M., Mancini, M.V., Scuppa, P., Martin, E., Epis, S., Rossi, P., Favia, G., Ricci, I. (2017). Mosquitoes can harbour yeasts of clinical significance and contribute to their environmental dissemination. Environ Microbiol Rep, 9, 642-648. [CrossRef] [PubMed] [Google Scholar]
  • Bravo, A., Gill, S.S., Soberon, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49, 423-435. [CrossRef] [PubMed] [Google Scholar]
  • Burki, T. (2018). Increase of West Nile virus cases in Europe for 2018. Lancet, 392(10152), 1000. [CrossRef] [PubMed] [Google Scholar]
  • Burt, F.J., Chen, W., Miner, J.J., Lenschow, D.J., Merits, A., Schnettler, E., Kohl, A., Rudd, P.A., Taylor, A., Herrero, L.J., Zaid, A., Ng, L.F.P., Mahalingam, S. (2017). Chikungunya virus: An update on the biology and pathogenesis of this emerging pathogen. Lancet Infect Dis, 17, e107-e117. [CrossRef] [PubMed] [Google Scholar]
  • Campbell, C.L., Mummey, D.L., Schmidtmann, E.T., Wilson, W.C. (2004). Culture-independent analysis of midgut microbiota in the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae). J Med Entomol, 41, 340-348. [CrossRef] [PubMed] [Google Scholar]
  • Caragata, E.P., Rances, E., Hedges, L.M., Gofton, A.W., Johnson, K.N., O’Neill, S.L., McGraw, E.A. (2013). Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog, 9, e1003459. [CrossRef] [PubMed] [Google Scholar]
  • Caragata, E.P., Rances, E., O’Neill, S.L., McGraw, E.A. (2014). Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microb Ecol, 67, 205-218. [CrossRef] [Google Scholar]
  • Chandler, J.A., Liu, R.M., Bennett, S.N. (2015). RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front Microbiol, 6, 185. [CrossRef] [PubMed] [Google Scholar]
  • Chao, J., Wistreich, G.A., Moore, J. (1963). Failure to isolate microorganisms from within mosquito eggs. Ann Entomol Soc Am, 56, 559-561. [CrossRef] [Google Scholar]
  • Chavshin, A.R., Oshaghi, M.A., Vatandoost, H., Yakhchali, B., Zarenejad, F., Terenius, O. (2015). Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi. Parasit Vectors, 8, 36. [CrossRef] [Google Scholar]
  • Chepkemoi, S.T., Mararo, E., Butungi, H., Paredes, J., Masiga, D., Sinkins, S.P., Herren, J.K. (2017). Identification of Spiroplasmainsolitum symbionts in Anopheles gambiae. Wellcome Open Res, 2, 90. [CrossRef] [PubMed] [Google Scholar]
  • Chouaia, B., Rossi, P., Epis, S., Mosca, M., Ricci, I., Damiani, C., Ulissi, U., Crotti, E., Daffonchio, D., Bandi, C., Favia, G. (2012). Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol, 12(Suppl 1), S2. [CrossRef] [PubMed] [Google Scholar]
  • Cirimotich, C.M., Dong, Y., Clayton, A.M., Sandiford, S.L., Souza-Neto, J.A., Mulenga, M., Dimopoulos, G. (2011). Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science, 332, 855-858. [CrossRef] [Google Scholar]
  • Clements, A.N., The biology of mosquitoes: Development, nutrition, and reproduction. Chapman & Hall, London, 1992. [Google Scholar]
  • Cleton, N., Koopmans, M., Reimerink, J., Godeke, G.J., Reusken, C. (2012). Come fly with me: Review of clinically important arboviruses for global travelers. J Clin Virol, 55, 191-203. [CrossRef] [PubMed] [Google Scholar]
  • Coon, K.L., Vogel, K.J., Brown, M.R., Strand, M.R. (2014). Mosquitoes rely on their gut microbiota for development. Mol Ecol, 23, 2727-2739. [CrossRef] [PubMed] [Google Scholar]
  • Coon, K.L., Brown, M.R., Strand, M.R. (2016a). Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasit Vectors, 9, 375. [CrossRef] [Google Scholar]
  • Coon, K.L., Brown, M.R., Strand, M.R. (2016b). Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol Ecol, 25, 5806-5826. [CrossRef] [PubMed] [Google Scholar]
  • Coon, K.L., Valzania, L., McKinney, D.A., Vogel, K.J., Brown, M.R., Strand, M.R. (2017). Bacteria-mediated hypoxia functions as a signal for mosquito development. Proc Natl Acad Sci USA, 114, E5362-E5369. [CrossRef] [Google Scholar]
  • Correa, M.A., Matusovsky, B., Brackney, D.E., Steven, B. (2018). Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development. Nat Commun, 9, 4464. [CrossRef] [PubMed] [Google Scholar]
  • Crotti, E., Rizzi, A., Chouaia, B., Ricci, I., Favia, G., Alma, A., Sacchi, L., Bourtzis, K., Mandrioli, M., Cherif, A., Bandi, C., Daffonchio, D. (2010). Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol, 76, 6963-6970. [CrossRef] [Google Scholar]
  • da Silva, O.S., Prado, G.R., da Silva, J.L., Silva, C.E., da Costa, M., Heermann, R. (2013). Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae). Parasitol Res, 112, 2891-2896. [CrossRef] [Google Scholar]
  • Darbro, J.M., Graham, R.I., Kay, B.H., Ryan, P.A., Thomas, M.B. (2011). Evaluation of entomopathogenic fungi as potentiel biological control agents of the dengue mosquito, Aedes aegypti (Diptera: Culicidae). Biocontrol Sci Technol, 21, 1027-1047. [CrossRef] [Google Scholar]
  • David, M.R., Santos, L.M., Vicente, A.C., Maciel-de-Freitas, R. (2016). Effects of environment, dietary regime and ageing on the dengue vector microbiota: Evidence of a core microbiota throughout Aedes aegypti lifespan. Mem Inst Oswaldo Cruz, 111, 577-587. [CrossRef] [PubMed] [Google Scholar]
  • Diaz-Nieto, L.M., D’Alessio, C., Perotti, M.A., Beron, C.M. (2016). Culex pipiens development is greatly influenced by native bacteria and exogenous yeast. PloS One, 11, e0153133. [CrossRef] [PubMed] [Google Scholar]
  • Dickson, L.B., Jiolle, D., Minard, G., Moltini-Conclois, I., Volant, S., Ghozlane, A., Bouchier, C., Ayala, D., Paupy, C., Moro, C.V., Lambrechts, L. (2017). Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci Adv, 3, e1700585. [CrossRef] [PubMed] [Google Scholar]
  • Dobson, S.L., Bourtzis, K., Braig, H.R., Jones, B.F., Zhou, W., Rousset, F., O’Neill, S.L. (1999). Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol, 29, 153-160. [CrossRef] [PubMed] [Google Scholar]
  • Dong, Y., Manfredini, F., Dimopoulos, G. (2009). Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog, 5, e1000423. [CrossRef] [PubMed] [Google Scholar]
  • Douglas, A.E. (2009). The microbial dimension in insect nutritional ecology. Funct Ecol, 23, 38-47. [CrossRef] [Google Scholar]
  • Duguma, D., Hall, M.W., Rugman-Jones, P., Stouthamer, R., Terenius, O., Neufeld, J.D., Walton, W.E. (2015). Developmental succession of the microbiome of Culex mosquitoes. BMC Microbiol, 15, 140. [CrossRef] [PubMed] [Google Scholar]
  • Esteva, L., Rivas, G., Yang, H.M. (2006). Modelling parasitism and predation of mosquitoes by water mites. J Math Biol, 53, 540-555. [CrossRef] [PubMed] [Google Scholar]
  • Fang, W., Vega-Rodriguez, J., Ghosh, A.K., Jacobs-Lorena, M., Kang, A., St Leger, R.J. (2011). Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science, 331, 1074-1077. [CrossRef] [Google Scholar]
  • Farenhorst, M., Knols, B.G.J. (2007). Fungal entomopathogens for the control of adult mosquitoes: A look at the issues. Proc Neth Entomol Soc Meet, 18. [Google Scholar]
  • Favia, G., Ricci, I., Damiani, C., Raddadi, N., Crotti, E., Marzorati, M., Rizzi, A., Urso, R., Brusetti, L., Borin, S., Mora, D., Scuppa, P., Pasqualini, L., Clementi, E., Genchi, M., Corona, S., Negri, I., Grandi, G., Alma, A., Kramer, L., Esposito, F., Bandi, C., Sacchi, L., Daffonchio, D. (2007). Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA, 104, 9047-9051. [CrossRef] [Google Scholar]
  • Foster, W.A. (1995). Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol, 40, 443-474. [CrossRef] [PubMed] [Google Scholar]
  • Fouda, M.A., Hassan, M.I., Al-Daly, A.G., Hammad, K.M. (2001). Effect of midgut bacteria of Culex pipiens L. on digestion and reproduction. J Egypt Soc Parasitol, 31, 767-780. [PubMed] [Google Scholar]
  • Gaibani, P., Rossini, G. (2017). An overview of Usutu virus. Microbes Infect, 19, 382-387. [CrossRef] [PubMed] [Google Scholar]
  • Gaio Ade, O., Gusmao, D.S., Santos, A.V., Berbert-Molina, M.A., Pimenta, P.F., Lemos, F.J. (2011). Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (L.). Parasit Vectors, 4, 105. [CrossRef] [Google Scholar]
  • Garcia, J.J., Fukuda, T., Becnel, J.J. (1994). Seasonality, prevalence and pathogenicity of the gregarine Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) in mosquitoes from Florida. J Am Mosq Control Assoc, 10, 413-418. [Google Scholar]
  • Geetha, I., Manonmani, A.M., Paily, K.P. (2010). Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain. Appl Microbiol Biotechnol, 86, 1737-1744. [CrossRef] [PubMed] [Google Scholar]
  • Gendrin, M., Christophides, G.K. (2013). The Anopheles mosquito microbiota and their impact on pathogen transmission, In: Anopheles mosquitoes, New insights into malaria vectors, Intech Open, pp. 525-548, DOI:10.5772/55107. [Google Scholar]
  • Gendrin, M., Rodgers, F.H., Yerbanga, R.S., Ouedraogo, J.B., Basanez, M.G., Cohuet, A., Christophides, G.K. (2015). Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria. Nat Commun, 6, 5921. [CrossRef] [PubMed] [Google Scholar]
  • Gimonneau, G., Tchioffo, M.T., Abate, L., Boissière, A., Awono-Ambene, P.H., Nsango, S.E., Christen, R., Morlais, I. (2014). Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect Genet Evol, 28, 715-724. [CrossRef] [Google Scholar]
  • Glaser, R.L., Meola, M.A. (2010). The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PloS One, 5, e11977. [CrossRef] [PubMed] [Google Scholar]
  • Goenaga, S., Kenney, J.L., Duggal, N.K., Delorey, M., Ebel, G.D., Zhang, B., Levis, S.C., Enria, D.A., Brault, A.C. (2015). Potential for co-infection of a mosquito-specific Flavivirus, Nhumirim virus, to block West Nile virus transmission in mosquitoes. Viruses, 7, 5801-5812. [CrossRef] [PubMed] [Google Scholar]
  • Gomes, F.M., Hixson, B.L., Tyner, M.D.W., Ramirez, J.L., Canepa, G.E., Alves, E.S.T.L., Molina-Cruz, A., Keita, M., Kane, F., Traore, B., Sogoba, N., Barillas-Mury, C. (2017). Effect of naturally occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission. Proc Natl Acad Sci USA, 114, 12566-12571. [CrossRef] [Google Scholar]
  • Gonzalez, J.M., Jr., Brown, B.J., Carlton, B.C. (1982). Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci USA, 79, 6951-6955. [CrossRef] [Google Scholar]
  • Gusmao, D.S., Santos, A.V., Marini, D.C., Russo Ede, S., Peixoto, A.M., Bacci Junior, M., Berbert-Molina, M.A., Lemos, F.J. (2007). First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae): New perspectives for an insect-bacteria association. Mem Inst Oswaldo Cruz, 102, 919-924. [CrossRef] [PubMed] [Google Scholar]
  • Gusmao, D.S., Santos, A.V., Marini, D.C., Bacci, M., Jr., Berbert-Molina, M.A., Lemos, F.J. (2010). Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop, 115, 275-281. [CrossRef] [PubMed] [Google Scholar]
  • Guzman, M.G., Harris, E. (2015). Dengue. Lancet, 385, 453-465. [CrossRef] [PubMed] [Google Scholar]
  • Haddow, A.D., Guzman, H., Popov, V.L., Wood, T.G., Widen, S.G., Haddow, A.D., Tesh, R.B., Weaver, S.C. (2013). First isolation of Aedes flavivirus in the western hemisphere and evidence of vertical transmission in the mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae). Virology, 440, 134-139. [CrossRef] [PubMed] [Google Scholar]
  • Halbach, R., Junglen, S., van Rij, R.P. (2017). Mosquito-specific and mosquito-borne viruses: Evolution, infection, and host defense. Curr Opin Insect Sci, 22, 16-27. [CrossRef] [PubMed] [Google Scholar]
  • Haselkorn, T.S., Markow, T.A., Moran, N.A. (2009). Multiple introductions of the Spiroplasma bacterial endosymbiont into Drosophila. Mol Ecol, 18, 1294-1305. [CrossRef] [PubMed] [Google Scholar]
  • Hegde, S., Khanipov, K., Albayrak, L., Golovko, G., Pimenova, M., Saldana, M.A., Rojas, M.M., Hornett, E.A., Motl, G.C., Fredregill, C.L., Dennett, J.A., Debboun, M., Fofanov, Y., Hughes, G.L. (2018). Microbiome interaction networks and community structure from laboratory-reared and field-collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquito vectors. Front Microbiol, 9, 2160. [CrossRef] [PubMed] [Google Scholar]
  • Hermanns, K., Zirkel, F., Kopp, A., Marklewitz, M., Rwego, I.B., Estrada, A., Gillespie, T.R., Drosten, C., Junglen, S. (2017). Discovery of a novel alphavirus related to Eilat virus. J Gen Virol, 98, 43-49. [CrossRef] [PubMed] [Google Scholar]
  • Herren, J.K., Paredes, J.C., Schupfer, F., Lemaitre, B. (2013). Vertical transmission of a Drosophila endosymbiont via cooption of the yolk transport and internalization machinery. MBio, 4(2), e00532-12. [CrossRef] [PubMed] [Google Scholar]
  • Hughes, G.L., Dodson, B.L., Johnson, R.M., Murdock, C.C., Tsujimoto, H., Suzuki, Y., Patt, A.A., Cui, L., Nossa, C.W., Barry, R.M., Sakamoto, J.M., Hornett, E.A., Rasgon, J.L. (2014). Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci USA, 111, 12498-12503. [CrossRef] [Google Scholar]
  • Joyce, J.D., Nogueira, J.R., Bales, A.A., Pittman, K.E., Anderson, J.R. (2011). Interactions between La Crosse virus and bacteria isolated from the digestive tract of Aedes albopictus (Diptera: Culicidae). J Med Entomol, 48, 389-394. [CrossRef] [PubMed] [Google Scholar]
  • Jupatanakul, N., Sim, S., Dimopoulos, G. (2014). The insect microbiome modulates vector competence for arboviruses. Viruses, 6, 4294-4313. [CrossRef] [PubMed] [Google Scholar]
  • Kajimura, H., Hijii, N. (1992). Dynamics of the fungal symbionts in the gallery system and the mycangia of the ambrosia beetle, Xylosandrus mutilatus (Blandford) (Coleoptera, Scolytidae) in relation to its life-history. Ecol Res, 7, 107-117. [CrossRef] [Google Scholar]
  • Kaya, H.K., Gaugler, R. (1993). Entomopathogenic nematodes. Annu Rev Entomol, 38, 181-206. [CrossRef] [Google Scholar]
  • Kenney, J.L., Solberg, O.D., Langevin, S.A., Brault, A.C. (2014). Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol, 95, 2796-2808. [CrossRef] [PubMed] [Google Scholar]
  • Koella, J.C., Agnew, P. (1997). Blood-feeding success of the mosquito Aedes aegypti depends on the transmission route of its parasite Edhazardia aedis. Oikos, 78, 311-316. [CrossRef] [Google Scholar]
  • Kumar, S., Molina-Cruz, A., Gupta, L., Rodrigues, J., Barillas-Mury, C. (2010). A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science, 327, 1644-1648. [CrossRef] [Google Scholar]
  • Kuwata, R., Isawa, H., Hoshino, K., Sasaki, T., Kobayashi, M., Maeda, K., Sawabe, K. (2015). Analysis of mosquito-borne flavivirus superinfection in Culex tritaeniorhynchus (Diptera: Culicidae) cells persistently infected with Culex Flavivirus (Flaviviridae). J Med Entomol, 52, 222-229. [CrossRef] [PubMed] [Google Scholar]
  • Lantova, L., Volf, P. (2014). Mosquito and sand fly gregarines of the genus Ascogregarina and Psychodiella (Apicomplexa: Eugregarinorida, Aseptatorina)-overview of their taxonomy, life cycle, host specificity and pathogenicity. Infect Genet Evol, 28, 616-627. [CrossRef] [Google Scholar]
  • Lindh, J.M., Borg-Karlson, A.K., Faye, I. (2008). Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Trop, 107, 242-250. [CrossRef] [PubMed] [Google Scholar]
  • Liu, H., Li, M.H., Zhai, Y.G., Meng, W.S., Sun, X.H., Cao, Y.X., Fu, S.H., Wang, H.Y., Xu, L.H., Tang, Q., Liang, G.D. (2010). Banna virus, China, 1987-2007. Emerg Infect Dis, 16, 514-517. [CrossRef] [PubMed] [Google Scholar]
  • Lorenz, L.M., Koella, J.C. (2011). The microsporidian parasite Vavraia culicis as a potential late life-acting control agent of malaria. Evol Appl, 4, 783-790. [CrossRef] [PubMed] [Google Scholar]
  • Majambere, S., Lindsay, S.W., Green, C., Kandeh, B., Fillinger, U. (2007). Microbial larvicides for malaria control in the Gambia. Malar J, 6, 76. [CrossRef] [PubMed] [Google Scholar]
  • Mancini, M.V., Damiani, C., Accoti, A., Tallarita, M., Nunzi, E., Cappelli, A., Bozic, J., Catanzani, R., Rossi, P., Valzano, M., Serrao, A., Ricci, I., Spaccapelo, R., Favia, G. (2018). Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing. BMC Microbiol, 18, 126. [CrossRef] [PubMed] [Google Scholar]
  • Manguin, S., Bangs, M.J., Pothikasikorn, J., Chareonviriyaphap, T. (2010). Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes. Infect Genet Evol, 10, 159-177. [CrossRef] [Google Scholar]
  • Marklewitz, M., Junglen, S. (2018). Evolutionary and ecological insights into the emergence of arthropod-borne viruses. Acta Trop, 190, 52-58. [CrossRef] [PubMed] [Google Scholar]
  • McCray, E.M., Jr., Fay, R.W., Schoof, H.F. (1970). The bionomics of Lankesteria culicis and Aedes aegypti. J Invertebr Pathol, 16, 42-53. [CrossRef] [PubMed] [Google Scholar]
  • McMillen, C.M., Hartman, A.L. (2018). Rift Valley fever in animals and humans: Current perspectives. Antiviral Res, 156, 29-37. [CrossRef] [PubMed] [Google Scholar]
  • Meister, S., Agianian, B., Turlure, F., Relogio, A., Morlais, I., Kafatos, F.C., Christophides, G.K. (2009). Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathog, 5, e1000542. [CrossRef] [PubMed] [Google Scholar]
  • Minard, G., Tran, F.H., Raharimalala, F.N., Hellard, E., Ravelonandro, P., Mavingui, P., Valiente Moro, C. (2013). Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar. FEMS Microbiol Ecol, 83, 63-73. [CrossRef] [PubMed] [Google Scholar]
  • Moll, R.M., Romoser, W.S., Modrzakowski, M.C., Moncayo, A.C., Lerdthusnee, K. (2001). Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol, 38, 29-32. [CrossRef] [PubMed] [Google Scholar]
  • Monath, T.P., Vasconcelos, P.F. (2015). Yellow fever. J Clin Virol, 64, 160-173. [CrossRef] [PubMed] [Google Scholar]
  • Moran, N.A., Jarvik, T. (2010). Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science, 328, 624-627. [CrossRef] [Google Scholar]
  • Mourya, D.T., Singh, D.K., Yadav, P., Gokhale, M.D., Barde, P.V., Narayan, N.B., Thakare, J.P., Mishra, A.C., Shouche, Y.S. (2003). Role of gregarine parasite Ascogregarina culicis (Apicomplexa: Lecudinidae) in the maintenance of Chikungunya virus in vector mosquito. J Eukaryot Microbiol, 50, 379-382. [CrossRef] [PubMed] [Google Scholar]
  • Mousson, L., Zouache, K., Arias-Goeta, C., Raquin, V., Mavingui, P., Failloux, A.B. (2012). The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis, 6, e1989. [CrossRef] [PubMed] [Google Scholar]
  • Munstermann, L.E., Wesson, D.M. (1990). First record of Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) in North American Aedes albopictus. J Am Mosqu Control Assoc, 6, 235-243. [Google Scholar]
  • Musso, D., Gubler, D.J. (2016). Zika Virus. Clin Microbiol Rev, 29, 487-524. [CrossRef] [PubMed] [Google Scholar]
  • Muturi, E.J., Bara, J.J., Rooney, A.P., Hansen, A.K. (2016). Midgut fungal and bacterial microbiota of Aedes triseriatus and Aedes japonicus shift in response to La Crosse virus infection. Mol Ecol, 25, 4075-4090. [CrossRef] [PubMed] [Google Scholar]
  • Nartey, R., Owusu-Dabo, E., Kruppa, T., Baffour-Awuah, S., Annan, A., Oppong, S., Becker, N., Obiri-Danso, K. (2013). Use of Bacillus thuringiensis var israelensis as a viable option in an Integrated Malaria Vector Control Programme in the Kumasi Metropolis, Ghana, Parasit Vectors, 6. [Google Scholar]
  • Nasar, F., Palacios, G., Gorchakov, R.V., Guzman, H., Da Rosa, A.P., Savji, N., Popov, V.L., Sherman, M.B., Lipkin, W.I., Tesh, R.B., Weaver, S.C. (2012). Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication. Proc Natl Acad Sci USA, 109, 14622-14627. [CrossRef] [Google Scholar]
  • Nation, J.L., Insect physiology and biochemistry, 3rd Edition, CRC Press, Boca Raton, 2016. [Google Scholar]
  • Oliveira, J.H., Goncalves, R.L., Lara, F.A., Dias, F.A., Gandara, A.C., Menna-Barreto, R.F., Edwards, M.C., Laurindo, F.R., Silva-Neto, M.A., Sorgine, M.H., Oliveira, P.L. (2011). Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog, 7, e1001320. [CrossRef] [PubMed] [Google Scholar]
  • Osei-Poku, J., Mbogo, C.M., Palmer, W.J., Jiggins, F.M. (2012). Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol, 21, 5138-5150. [CrossRef] [PubMed] [Google Scholar]
  • Pan, X., Zhou, G., Wu, J., Bian, G., Lu, P., Raikhel, A.S., Xi, Z. (2012). Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA, 109, E23-31. [CrossRef] [Google Scholar]
  • Park, Y., Kim, Y. (2000). Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J Insect Physiol, 46, 1469-1476. [CrossRef] [PubMed] [Google Scholar]
  • Patil, C.D., Patil, S.V., Salunke, B.K., Salunkhe, R.B. (2011). Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol Res, 109, 1179-1187. [CrossRef] [Google Scholar]
  • Patterson, J., Sammon, M., Garg, M. (2016). Dengue, Zika and Chikungunya: Emerging arboviruses in the new world. West J Emerg Med, 17, 671-679. [CrossRef] [PubMed] [Google Scholar]
  • Platzer, E.G. (2007). Mermithid nematodes. J Am Mosq Control Assoc, 23, 58-64. [CrossRef] [Google Scholar]
  • Ponnusamy, L., Boroczky, K., Wesson, D.M., Schal, C., Apperson, C.S. (2011). Bacteria stimulate hatching of yellow fever mosquito eggs. PloS one, 6, e24409. [CrossRef] [PubMed] [Google Scholar]
  • Popko, D.A., Henke, J.A., Mullens, B.A., Walton, W.E. (2018). Evaluation of two entomopathogenic fungi for control of Culex quinquefasciatus (Diptera: Culicidae) in underground storm drains in the Coachella Valley, California, United States, J Med Entomol, 55, 654-665. [CrossRef] [PubMed] [Google Scholar]
  • Pumpuni, C.B., Beier, M.S., Nataro, J.P., Guers, L.D., Davis, J.R. (1993). Plasmodium falciparum: Inhibition of sporogonic development in Anopheles stephensi by Gram-negative bacteria. Exp Parasitol, 77, 195-199. [CrossRef] [PubMed] [Google Scholar]
  • Ramirez, J.L., Souza-Neto, J., Torres Cosme, R., Rovira, J., Ortiz, A., Pascale, J.M., Dimopoulos, G. (2012). Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis, 6, e1561. [CrossRef] [PubMed] [Google Scholar]
  • Ramirez, J.L., Short, S.M., Bahia, A.C., Saraiva, R.G., Dong, Y., Kang, S., Tripathi, A., Mlambo, G., Dimopoulos, G. (2014). Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog, 10, e1004398. [CrossRef] [PubMed] [Google Scholar]
  • Ramirez, J.L., Barletta, A.B.F., Barillas-Mury, C.V., Molecular mechanisms mediating immune priming in Anopheles gambiae mosquitoes, In: Arthropod vector: Controller of disease transmission, Volume 1, Academic Press, 2017, pp. 91-100. [CrossRef] [Google Scholar]
  • Ranger, C.M., Biedermann, P.H.W., Phuntumart, V., Beligala, G.U., Ghosh, S., Palmquist, D.E., Mueller, R., Barnett, J., Schultz, P.B., Reding, M.E., Benz, J.P. (2018). Symbiont selection via alcohol benefits fungus farming by ambrosia beetles. Proc Natl Acad Sci USA, 115, 4447-4452. [CrossRef] [Google Scholar]
  • Rani, A., Sharma, A., Rajagopal, R., Adak, T., Bhatnagar, R.K. (2009). Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi – an Asian malarial vector. BMC Microbiol, 9, 96. [CrossRef] [PubMed] [Google Scholar]
  • Reeves, W.K. (2004). Oviposition by Aedes aegypti (Diptera: Culicidae) in relation to conspecific larvae infected with internal symbiotes. J Vector Ecol, 29, 159-163. [PubMed] [Google Scholar]
  • Reyes-Villanueva, F., Becnel, J.J., Butler, J.F. (2003). Susceptibility of Aedes aegypti and Aedes albopictus larvae to Ascogregarina culicis and Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) from Florida. J Invertebr Pathol, 84, 47-53. [CrossRef] [PubMed] [Google Scholar]
  • Rezza, G., Chen, R., Weaver, S.C. (2017). O’nyong-nyong fever: A neglected mosquito-borne viral disease. Pathog Glob Health, 111, 271-275. [CrossRef] [PubMed] [Google Scholar]
  • Rodgers, F.H., Gendrin, M., Wyer, C.A.S., Christophides, G.K. (2017). Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog, 13, e1006391. [CrossRef] [PubMed] [Google Scholar]
  • Romo, H., Kenney, J.L., Blitvich, B.J., Brault, A.C. (2018). Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus. Emerg Microbes Infect, 7, 181. [CrossRef] [PubMed] [Google Scholar]
  • Romoli, O., Gendrin, M. (2018). The tripartite interactions between the mosquito, its microbiota and Plasmodium. Parasit Vectors, 11, 200. [CrossRef] [Google Scholar]
  • Roossinck, M.J., Martin, D.P., Roumagnac, P. (2015). Plant virus metagenomics: Advances in virus discovery. Phytopathology, 105, 716-727. [CrossRef] [PubMed] [Google Scholar]
  • Rossi, P., Ricci, I., Cappelli, A., Damiani, C., Ulissi, U., Mancini, M.V., Valzano, M., Capone, A., Epis, S., Crotti, E., Chouaia, B., Scuppa, P., Joshi, D., Xi, Z., Mandrioli, M., Sacchi, L., O’Neill, S.L., Favia, G. (2015). Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors. Parasit Vectors, 8, 278. [CrossRef] [Google Scholar]
  • Roundy, C.M., Azar, S.R., Rossi, S.L., Weaver, S.C., Vasilakis, N. (2017). Insect-specific viruses: A historical overview and recent developments. Adv Virus Res, 98, 119-146. [CrossRef] [Google Scholar]
  • Rozemoon, L.E. (1935). The relation of bacteria and bacterial filtrates to the development of mosquito larvae. Am J Hyg, 21, 167-179. [Google Scholar]
  • Ruang-Areerate, T., Kittayapong, P. (2006). Wolbachia transinfection in Aedes aegypti: A potential gene driver of dengue vectors. Proc Natl Acad Sci USA, 103, 12534-12539. [CrossRef] [Google Scholar]
  • Saiyasombat, R., Bolling, B.G., Brault, A.C., Bartholomay, L.C., Blitvich, B.J. (2011). Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae). J Med Entomol, 48, 1031-1038. [CrossRef] [PubMed] [Google Scholar]
  • Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R., Dean, D.H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev, 62, 775-806. [PubMed] [Google Scholar]
  • Scholte, E.J., Njiru, B.N., Smallegange, R.C., Takken, W., Knols, B.G. (2003). Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae mopathogenic fungi for mosquito control: A review. J Insect Sci, 4, 19. [Google Scholar]
  • Scholte, E.J., Knols, B.G., Samson, R.A., Tzakken, W. (2004). Entomologic fungi for mosquito control. A review. J Insect Sci, 4, 19. [CrossRef] [Google Scholar]
  • Scholte, E.J., Takken, W., Knols, B.G. (2007). Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop, 102, 151-158. [CrossRef] [PubMed] [Google Scholar]
  • Segata, N., Baldini, F., Pompon, J., Garrett, W.S., Truong, D.T., Dabire, R.K., Diabate, A., Levashina, E.A., Catteruccia, F. (2016). The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender- and swarm-enriched microbial biomarkers. Sci Rep, 6, 24207. [CrossRef] [PubMed] [Google Scholar]
  • Shane, J.L., Grogan, C.L., Cwalina, C., Lampe, D.J. (2018). Blood meal-induced inhibition of vector-borne disease by transgenic microbiota. Nat Commun, 9, 4127. [CrossRef] [PubMed] [Google Scholar]
  • Shapiro, L.L.M., Whitehead, S.A., Thomas, M.B. (2017). Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol, 15, e2003489. [CrossRef] [PubMed] [Google Scholar]
  • Sharma, P., Sharma, S., Maurya, R.K., Das De, T., Thomas, T., Lata, S., Singh, N., Pandey, K.C., Valecha, N., Dixit, R. (2014). Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies. Parasit Vectors, 7, 235. [CrossRef] [Google Scholar]
  • Shaw, W.R., Marcenac, P., Childs, L.M., Buckee, C.O., Baldini, F., Sawadogo, S.P., Dabire, R.K., Diabate, A., Catteruccia, F. (2016). Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun, 7, 11772. [CrossRef] [PubMed] [Google Scholar]
  • Short, S.M., Mongodin, E.F., MacLeod, H.J., Talyuli, O.A.C., Dimopoulos, G. (2017). Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability. PLoS Negl Trop Dis, 11, e0005677. [CrossRef] [PubMed] [Google Scholar]
  • Siegel, J.P., Novak, R.J., Maddox, J.V. (1992). Effects of Ascogregarina barretti (Eugregarinida: Lecudinidae) infection on Aedes triseriatus (Diptera: Culicidae) in Illinois. J Med Entomol, 29, 968-973. [CrossRef] [PubMed] [Google Scholar]
  • Simmons, T.W., Hutchinson, M.L. (2016). A critical review of all known published records for water mite (Acari: Hydrachnidiae) and mosquito (Diptera: Culicidae) parasitic associations from 1975 to present. J Med Entomol, 53, 737-752. [CrossRef] [PubMed] [Google Scholar]
  • Smith, B.P., McIver, S.B. (1984). The impact of Arrenurus danbyensis Mullen (Acari: Prostigmata; Arrenuridae) on a population of Coquillettidia perturbans (Walker) (Diptera: Culicidae). Can J Zool, 62, 1121-1134 [CrossRef] [Google Scholar]
  • Soltani, A., Vatandoost, H., Oshaghi, M.A., Enayati, A.A., Chavshin, A.R. (2017). The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides. Pathog Glob Health, 111, 289-296. [CrossRef] [PubMed] [Google Scholar]
  • Stecher, B., Hardt, W.D. (2011). Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol, 14, 82-91. [CrossRef] [PubMed] [Google Scholar]
  • Steyn, A., Roets, F., Botha, A. (2016). Yeasts associated with Culex pipiens and Culex theileri mosquito larvae and the effect of selected yeast strains on the ontogeny of Culex pipiens. Microb Ecol, 71, 747-760. [CrossRef] [PubMed] [Google Scholar]
  • Stollar, V., Thomas, V.L. (1975). An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology, 64, 367-377. [CrossRef] [PubMed] [Google Scholar]
  • Strand, M.R. (2018). Composition and functional roles of the gut microbiota in mosquitoes. Curr Opin Insect Sci, 28, 59-65. [CrossRef] [PubMed] [Google Scholar]
  • Sulaiman, I. (1992). Infectivity and pathogenicity of Ascogregarina culicis (Eugregarinida: Lecudinidae) to Aedes aegypti (Diptera: Culicidae). J Med Entomol, 29, 1-4. [CrossRef] [PubMed] [Google Scholar]
  • Suryawanshi, R.K., Patil, C.D., Borase, H.P., Narkhede, C.P., Salunke, B.K., Patil, S.V., (2015). Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. Pestic Biochem Physiol, 123, 49-55. [CrossRef] [PubMed] [Google Scholar]
  • Tchioffo, M.T., Boissière, A., Abate, L., Nsango, S.E., Bayibeki, A.N., Awono-Ambene, P.H., Christen, R., Gimonneau, G., Morlais, I. (2015). Dynamics of bacterial community composition in the malaria mosquito’s epithelia. Front Microbiol, 6, 1500. [PubMed] [Google Scholar]
  • Tchioffo, M.T., Abate, L., Boissière, A., Nsango, S.E., Gimonneau, G., Berry, A., Oswald, E., Dubois, D., Morlais, I. (2016). An epidemiologically successful Escherichia coli sequence type modulates Plasmodium falciparum infection in the mosquito midgut. Infect Genet Evol, 43, 22-30. [CrossRef] [Google Scholar]
  • Terenius, O., Lindh, J.M., Eriksson-Gonzales, K., Bussiere, L., Laugen, A.T., Bergquist, H., Titanji, K., Faye, I. (2012). Midgut bacterial dynamics in Aedes aegypti. FEMS Microbiol Ecol, 80, 556-565. [CrossRef] [PubMed] [Google Scholar]
  • Thongsripong, P., Chandler, J.A., Green, A.B., Kittayapong, P., Wilcox, B.A., Kapan, D.D., Bennett, S.N. (2018). Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases. Ecol Evol, 8, 1352-1368. [CrossRef] [PubMed] [Google Scholar]
  • Tseng, M. (2007). Ascogregarine parasites as possibe biocontrol agents of mosquitoes. J Am Mosq Control Assoc, 23, 30-34. [CrossRef] [Google Scholar]
  • Valero-Jimenez, C.A., Debets, A.J., van Kan, J.A., Schoustra, S.E., Takken, W., Zwaan, B.J., Koenraadt, C.J. (2014). Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes. Malar J, 13, 479. [CrossRef] [PubMed] [Google Scholar]
  • Valzania, L., Coon, K.L., Vogel, K.J., Brown, M.R., Strand, M.R. (2018). Hypoxia-induced transcription factor signaling is essential for larval growth of the mosquito Aedes aegypti. Proc Natl Acad Sci USA, 115, 457-465. [CrossRef] [Google Scholar]
  • Valzano, M., Cecarini, V., Cappelli, A., Capone, A., Bozic, J., Cuccioloni, M., Epis, S., Petrelli, D., Angeletti, M., Eleuteri, A.M., Favia, G., Ricci, I. (2016). A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites. Malar J, 15, 21. [CrossRef] [PubMed] [Google Scholar]
  • van den Berg, H., Kelly-Hope, L.A., Lindsay, S.W. (2013). Malaria and lymphatic filariasis: The case for integrated vector management. Lancet Infect Dis, 13, 89-94. [CrossRef] [PubMed] [Google Scholar]
  • Vasilakis, N., Tesh, R.B. (2015). Insect-specific viruses and their potential impact on arbovirus transmission. Curr Opin Virol, 15, 69-74. [CrossRef] [PubMed] [Google Scholar]
  • Vega, F.E., Meyling, N.V., Luangsa-ard, J.J., Blackwell, M. (2012). Fungal entomopathogens, In: Insect Pathology, 2nd Edition, Academic Press, San Diego, pp. 171-220. [CrossRef] [Google Scholar]
  • Verhulst, N.O., Andriessen, R., Groenhagen, U., Bukovinszkine Kiss, G., Schulz, S., Takken, W., van Loon, J.J., Schraa, G., Smallegange, R.C. (2010). Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PloS One, 5, e15829. [CrossRef] [PubMed] [Google Scholar]
  • Villegas, L.E.M., Campolina, T.B., Barnabe, N.R., Orfano, A.S., Chaves, B.A., Norris, D.E., Pimenta, P.F.P., Secundino, N.F.C. (2018). Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis. PloS One, 13, e0190352. [CrossRef] [PubMed] [Google Scholar]
  • Vogel, K.J., Valzania, L., Coon, K.L., Brown, M.R., Strand, M.R. (2017). Transcriptome sequencing reveals large-scale changes in axenic Aedes aegypti larvae. PLoS Negl Trop Dis, 11, e0005273. [CrossRef] [PubMed] [Google Scholar]
  • Walker, E.D., Poirier, S.J., Veldman, W.T. (1987). Effects of Ascogregarina barretti (Eugregarinida: Lecudinidae) infection on emergence success, development time, and size of Aedes triseriatus (Diptera: Culicidae) in microcosms and tires. J Med Entomol, 24, 303-309. [CrossRef] [PubMed] [Google Scholar]
  • Wang, Y., Gilbreath, T.M., 3rd, Kukutla, P., Yan, G., Xu, J. (2011). Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PloS One, 6, e24767. [CrossRef] [PubMed] [Google Scholar]
  • Wang, S., Ghosh, A.K., Bongio, N., Stebbings, K.A., Lampe, D.J., Jacobs-Lorena, M. (2012). Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci USA, 109, 12734-12739. [CrossRef] [Google Scholar]
  • Wang, Y., Wang, Y., Zhang, J., Xu, W., Zhang, J., Huang, F.S. (2013). Ability of TEP1 in intestinal flora to modulate natural resistance of Anopheles dirus. Exp Parasitol, 134, 460-465. [CrossRef] [PubMed] [Google Scholar]
  • Wang, S., Dos-Santos, A.L.A., Huang, W., Liu, K.C., Oshaghi, M.A., Wei, G., Agre, P., Jacobs-Lorena, M. (2017). Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science, 357, 1399-1402. [CrossRef] [Google Scholar]
  • Wei, G., Lai, Y., Wang, G., Chen, H., Li, F., Wang, S. (2017). Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci USA, 114, 5994-5999. [Google Scholar]
  • Werren, J.H., Baldo, L., Clark, M.E. (2008). Wolbachia: Master manipulators of invertebrate biology. Nat Rev Microbiol, 6, 741-751. [CrossRef] [PubMed] [Google Scholar]
  • Whitfield, A.E., Falk, B.W., Rotenberg, D. (2015). Insect vector-mediated transmission of plant viruses. Virology, 479-480, 278-289. [CrossRef] [PubMed] [Google Scholar]
  • Wotton, R.S., Chaloner, D.T., Yardley, C.A., Merritt, R.W. (1997). Growth of Anopheles mosquito larvae on dietary microbiota in aquatic surface microlayers. Med Vet Entomol, 11, 65-70. [CrossRef] [Google Scholar]
  • Yiallouros, M., Storch, V., Thiery, I., Becker, N. (1994). Efficacy of Clostridium bifermentans serovar Malaysia on target and nontarget organisms. J Am Mosq Control Assoc, 10, 51-55. [Google Scholar]
  • Yun, S.I., Lee, Y.M. (2014). Japanese encephalitis: The virus and vaccines. Hum Vaccin Immunother, 10, 263-279. [CrossRef] [PubMed] [Google Scholar]
  • Zouache, K., Voronin, D., Tran-Van, V., Mousson, L., Failloux, A.B., Mavingui, P. (2009). Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus. PloS One, 4, e6388. [CrossRef] [PubMed] [Google Scholar]
  • Zouache, K., Raharimalala, F.N., Raquin, V., Tran-Van, V., Raveloson, L.H., Ravelonandro, P., Mavingui, P. (2011). Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol, 75, 377-389. [CrossRef] [PubMed] [Google Scholar]
  • Zouache, K., Michelland, R.J., Failloux, A.B., Grundmann, G.L., Mavingui, P. (2012). Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector. Mol Ecol, 21, 2297-2309. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.