Accès gratuit
Numéro
Biologie Aujourd’hui
Volume 213, Numéro 3-4, 2019
Page(s) 109 - 120
DOI https://doi.org/10.1051/jbio/2019025
Publié en ligne 12 décembre 2019
  • Abbasi Gharibkandi, N., Hosseinimehr, S.J. (2019). Radiotracers for imaging of Parkinson’s disease. Eur J Med Chem, 166, 75-89. [PubMed] [Google Scholar]
  • Ametamey, S.M., Honer, M., Schubiger, P.A. (2008). Molecular imaging with PET. Chem Rev, 108, 1501-1516. [CrossRef] [PubMed] [Google Scholar]
  • Backes, H., Walberer, M., Ladwig, A., Rueger, M.A., Neumaier, B., Endepols, H., Hoehn, M., Fink, G.R., Schroeter, M., Graf, R. (2016). Glucose consumption of inflammatory cells masks metabolic deficits in the brain. Neuroimage, 128, 54-62. [CrossRef] [PubMed] [Google Scholar]
  • Bakota, L., Brandt, R. (2016). Tau biology and tau-directed therapies for Alzheimer’s disease. Drugs, 76, 301-313. [CrossRef] [PubMed] [Google Scholar]
  • Barron, H., Hafizi, S., Andreazza, A.C., Mizrahi, R. (2017). Neuroinflammation and oxidative stress in psychosis and psychosis risk. Int J Mol Sci, 18, 1-13. [Google Scholar]
  • Barros, L.F., Porras, O.H., Bittner, C.X. (2005). Why glucose transport in the brain matters for PET. Trends Neurosci, 28, 117-119. [CrossRef] [PubMed] [Google Scholar]
  • Baskin, A., Giannakopoulos, P., Ratib, O., Seimbille, Y., Assal, F., Perani, D., Garibotto, V. (2013). PET radiotracers for molecular imaging in dementia. Curr Radiopharm, 6, 215-230. [CrossRef] [PubMed] [Google Scholar]
  • Bernard-Gauthier, V., Collier, T.L., Liang, S.H., Vasdev, N. (2017). Discovery of PET radiopharmaceuticals at the academia-industry interface. Drug Discov Today Technol, 25, 19-26. [CrossRef] [PubMed] [Google Scholar]
  • Bernard-Gauthier, V., Lepage, M.L., Waengler, B., Bailey, J.J., Liang, S.H., Perrin, D.M., Vasdev, N., Schirrmacher, R. (2018). Recent advances in 18F Radiochemistry: A focus on B-18F, Si-18F, Al-18F, and C-18F radiofluorination via spirocyclic iodonium ylides. J Nucl Med, 59, 568-572. [CrossRef] [PubMed] [Google Scholar]
  • Billard, T., Liger, F., Verdurand, M., Serotonin receptor imaging by 18F-PET, in: G. Haufe, F. Leroux (Eds.), Fluorine in life sciences: Pharmaceuticals, medicinal diagnostics, and agrochemicals, Elsevier Sci., London, 2018, pp. 459-518. [Google Scholar]
  • Bloom, G.S. (2014). Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol, 71, 505-508. [Google Scholar]
  • Cai, L., Lu, S., Pike, V.W. (2008). Chemistry with [18F]fluoride ion. Eur J Org Chem, 17, 2853-2873. [CrossRef] [Google Scholar]
  • Casteels, C., Lauwers, E., Bormans, G., Baekelandt, V., Van Laere, K. (2008). Metabolic-dopaminergic mapping of the 6-hydroxydopamine rat model for Parkinson’s disease. Eur J Nucl Med Mol Imaging, 35, 124-134. [PubMed] [Google Scholar]
  • Chauveau, F., Boutin, H., Van Camp, N., Dollé, F., Tavitian, B. (2008). Nuclear imaging of neuroinflammation: A comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging, 35, 2304-2319. [PubMed] [Google Scholar]
  • Chételat, G. (2018). Multimodal neuroimaging in Alzheimer’s disease: Early diagnosis, physiopathological mechanisms, and impact of lifestyle. J Alzheimers Dis, 64, S199-S211. [CrossRef] [PubMed] [Google Scholar]
  • Chopra, A., Shan, L., Eckelman, W.C., Leung, K., Latterner, M., Bryant, S.H., Menkens, A. (2012). Molecular Imaging and Contrast Agent Database (MICAD): Evolution and progress. Mol Imaging Biol, 14, 4-13. [Google Scholar]
  • Colom, M., Costes, N., Redouté, J., Dailler, F., Gobert, F., Le Bars, D., Billard, T., Newman-Tancredi, A., Zimmer, L. (2019). 18F-F13640 PET imaging of functional receptors in humans. Eur J Nucl Med Mol Imaging, 2019. DOI: 10.1007/s00259-019-04473-7. [Google Scholar]
  • Cross, S., Cruciani, G. (2010). Molecular fields in drug discovery: Getting old or reaching maturity? Drug Discov Today, 15, 23-32. [CrossRef] [PubMed] [Google Scholar]
  • Cumming, P., Wong, D.F., Dannals, R.F., Gillings, N., Hilton, J., Scheffel, U., Gjedde, A. (2002). The competition between endogenous dopamine and radioligands for specific binding to dopamine receptors. Ann N Y Acad Sci, 965, 440-450. [CrossRef] [PubMed] [Google Scholar]
  • Eckelman, W.C., Jones, A.G., Duatti, A., Reba, R.C. (2013). Progress using Tc-99m radiopharmaceuticals for measuring high capacity sites and low density sites. Drug Discov Today, 18, 984-991. [CrossRef] [PubMed] [Google Scholar]
  • Egerton, A., Shotbolt, J.P., Stokes, P.R., Hirani, E., Ahmad, R., Lappin, J.M., Reeves, S.J., Mehta, M.A., Howes, O.D., Grasby, P.M. (2010). Acute effect of the anti-addiction drug bupropion on extracellular dopamine concentrations in the human striatum: An [11C]raclopride PET study. Neuroimage, 50, 260-266. [CrossRef] [PubMed] [Google Scholar]
  • Elsinga, P.H., Hatano, K., Ishiwata, K. (2006). PET tracers for imaging of the dopaminergic system. Curr Med Chem, 13, 2139-2153. [CrossRef] [PubMed] [Google Scholar]
  • Emerit, M.B., El Mestikawy, S., Gozlan, H., Rouot, B., Hamon, M. (1990). Physical evidence of the coupling of solubilized 5-HT1A binding sites with G regulatory proteins. Biochem Pharmacol, 39, 7-18. [CrossRef] [PubMed] [Google Scholar]
  • Engler, H., Damian, A., Bentancourt, C. (2015). PET and the multitracer concept in the study of neurodegenerative diseases. Dement Neuropsychol, 9, 343-349. [Google Scholar]
  • Farde, L., Plavén-Sigray, P., Borg, J., Cervenka, S. (2018). Brain neuroreceptor density and personality traits: Towards dimensional biomarkers for psychiatric disorders. Phil Trans R Soc B, 373, 1744. [CrossRef] [Google Scholar]
  • Ferris, S.H., de Leon, M.J., Wolf, A.P., Farkas, T., Christman, D.R., Reisberg, B., Fowler, J.S., Macgregor, R., Goldman, A., George, A.E., Rampal, S. (1980). Positron emission tomography in the study of aging and senile dementia. Neurobiol Aging, 1, 127-131. [Google Scholar]
  • Finnema, S.J., Scheinin, M., Shahid, M., Lehto, J., Borroni, E., Bang-Andersen, B., Sallinen, J., Wong, E., Farde, L., Halldin, C., Grimwood, S. (2015). Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology (Berl), 232, 4129-4157. [CrossRef] [PubMed] [Google Scholar]
  • Fodero-Tavoletti, M.T., Okamura, N., Furumoto, S., Mulligan, R.S., Connor, A.R., McLean, C.A., Cao, D., Rigopoulos, A., Cartwright, G.A., O’Keefe, G., Gong, S., Adlard, P.A., Barnham, K.J., Rowe, C.C., Masters, C.L., Kudo, Y., Cappai, R., Yanai, K., Villemagne, V.L. (2011). 18F-THK523: A novel in vivo tau imaging ligand for Alzheimer’s disease. Brain, 134, 1089-1100. [CrossRef] [PubMed] [Google Scholar]
  • Fowler, J.S., Wolf, A.P. (1997). Working against time: Rapid radiotracer synthesis and imaging the human brain. Accounts Chem Res, 30, 181-188. [CrossRef] [Google Scholar]
  • Fromm, M.F. (2004). Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci, 25, 423-429. [Google Scholar]
  • Gao, Y., Tan, L., Yu, J.T., Tan, L. (2018). Tau in Alzheimer’s disease: Mechanisms and therapeutic strategies. Curr Alzheimer Res, 15, 283-300. [CrossRef] [PubMed] [Google Scholar]
  • Ginovart, N. (2005). Imaging the dopamine system with in vivo [11C]raclopride displacement studies: Understanding the true mechanism. Mol Imaging Biol, 7, 45-52. [Google Scholar]
  • Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C., Gage, F.H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140, 918-934. [CrossRef] [PubMed] [Google Scholar]
  • Gunn, R.N., Rabiner, E.A. (2017). Imaging in central nervous system drug discovery. Semin Nucl Med, 47, 89-98. [CrossRef] [PubMed] [Google Scholar]
  • Halldin, C., Gulyás, B., Langer, O., Farde L. (2001). Brain radioligands – state of the art and new trends. Q J Nucl Med, 45, 139-152. [PubMed] [Google Scholar]
  • Heiss, W.D., Herholz, K. (2006). Brain receptor imaging. J Nucl Med, 47, 302-312. [PubMed] [Google Scholar]
  • Herholz, K. (2010). Cerebral glucose metabolism in preclinical and prodromal Alzheimer’s disease. Expert Rev Neurother, 10, 1667-1673. [CrossRef] [PubMed] [Google Scholar]
  • Herholz, K., Ebmeier, K. (2011). Clinical amyloid imaging in Alzheimer’s disease. Lancet Neurol, 10, 667-670. [CrossRef] [PubMed] [Google Scholar]
  • Iaccarino, L., Moresco, R.M., Presotto, L., Bugiani, O., Iannaccone, S., Giaccone, G., Tagliavini, F., Perani, D. (2018). An in vivo 11C-(R)-PK11195 PET and in vitro pathology study of microglia activation in Creutzfeldt-Jakob disease. Mol Neurobiol, 55, 2856-2868. [CrossRef] [PubMed] [Google Scholar]
  • Ikoma, Y., Takano, A., Ito, H., Kusuhara, H., Sugiyama, Y., Arakawa, R., Fukumura, T., Nakao, R., Suzuki, K., Suhara, T. (2006). Quantitative analysis of 11C-verapamil transfer at the human blood-brain barrier for evaluation of P-glycoprotein function. J Nucl Med, 47, 1531-1537. [PubMed] [Google Scholar]
  • Jaffer, F.A., Weissleder, R. (2005). Molecular imaging in the clinical arena. JAMA, 293, 855-862. [CrossRef] [PubMed] [Google Scholar]
  • Jovalekic, A., Bullich, S., Catafau, A., de Santi, S. (2016). Advances in Aβ plaque detection and the value of knowing: Overcoming challenges to improving patient outcomes in Alzheimer’s disease. Neurodegener Dis Manag, 6, 491-497. [CrossRef] [PubMed] [Google Scholar]
  • Kadir, A., Nordberg, A. (2010). Target-specific PET probes for neurodegenerative disorders related to dementia. J Nucl Med, 51, 1418-1430. [CrossRef] [PubMed] [Google Scholar]
  • Kannan, P., John, C., Zoghbi, S.S., Halldin, C., Gottesman, M.M., Innis, R.B., Hall, M.D. (2009). Imaging the function of P-glycoprotein with radiotracers: Pharmacokinetics and in vivo applications. Clin Pharmacol Ther, 86, 368-377. [CrossRef] [PubMed] [Google Scholar]
  • Kapur, S., Phillips, A.G., Insel, T.R. (2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry, 17, 1174-1179. [CrossRef] [PubMed] [Google Scholar]
  • Kennedy, R.T. (2013). Emerging trends in in vivo neurochemical monitoring by microdialysis. Curr Opin Chem Biol, 1, 860-867. [Google Scholar]
  • Klunk, W.E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D.P., Bergström, M., Savitcheva, I., Huang, G.F., Estrada, S., Ausén, B., Debnath, M.L., Barletta, J., Price, J.C., Sandell, J., Lopresti, B.J., Wall, A., Koivisto, P., Antoni, G., Mathis, C.A., Långström, B. (2004). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol, 55, 306-319. [CrossRef] [PubMed] [Google Scholar]
  • Kobilka, B. (1992). Adrenergic receptors as models for G protein-coupled receptors. Annu Rev Neurosci, 15, 87-114. [CrossRef] [PubMed] [Google Scholar]
  • Lacasse, J.R., Leo J. (2005). Serotonin and depression: A disconnect between the advertisements and the scientific literature. PLoS Med, 2, e392. [CrossRef] [PubMed] [Google Scholar]
  • Lancelot, S., Zimmer, L. (2010). Small-animal positron emission tomography as a tool for neuropharmacology. Trends Pharmacol Sci, 31, 411-417. [Google Scholar]
  • Lane, C.A., Hardy, J., Schott, J.M. (2018). Alzheimer’s disease. Eur J Neurol, 25, 59-70. [CrossRef] [PubMed] [Google Scholar]
  • Laruelle, M. (2000). Imaging synaptic neurotransmission with in vivo binding competition techniques: A critical review. J Cereb Blood Flow Metab, 20, 423-451. [CrossRef] [PubMed] [Google Scholar]
  • Lee, G., Bendayan, R. (2004). Functional expression and localization of P-glycoprotein in the central nervous system: Relevance to the pathogenesis and treatment of neurological disorders. Pharm Res, 21, 1313-1330. [CrossRef] [PubMed] [Google Scholar]
  • Ma, Y., Tang, C., Chaly, T., Greene, P., Breeze, R., Fahn, S., Freed, C., Dhawan, V., Eidelberg, D. (2010). Dopamine cell implantation in Parkinson’s disease: Long-term clinical and (18)F-FDOPA PET outcomes. J Nucl Med, 51, 7-15. [CrossRef] [PubMed] [Google Scholar]
  • Magistretti, P.J., Pellerin, L. (1996). The contribution of astrocytes to the 18F-2-deoxyglucose signal in PET activation studies. Mol Psychiatry, 1, 445-452. [PubMed] [Google Scholar]
  • Man, S., Ubogu, E.E., Ransohoff, R.M. (2007). Inflammatory cell migration into the central nervous system: A few new twists on an old tale. Brain Pathol, 17, 243-250. [CrossRef] [PubMed] [Google Scholar]
  • Miller, P.W., Long, N.J., Vilar, R., Gee, A.D. (2008). Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem Int Ed, 47, 8998-9033. [CrossRef] [Google Scholar]
  • Mongeau, R., Welner, S.A., Quirion, R., Suranyi-Cadotte, B.E. (1992). Further evidence for differential affinity states of the serotonin 1A receptor in rat hippocampus. Brain Res, 590, 229-238. [CrossRef] [PubMed] [Google Scholar]
  • Narendran, R., Martinez, D. (2008). Cocaine abuse and sensitization of striatal dopamine transmission: A critical review of the preclinical and clinical imaging literature. Synapse, 62, 851-869. [CrossRef] [PubMed] [Google Scholar]
  • Nénonéné, E.K., Radja, F., Carli, M., Grondin, L., Reader, T.A. (1994). Heterogeneity of cortical and hippocampal 5-HT1A receptors: A reappraisal of homogenate binding with 8-[3H]hydroxydipropylaminotetralin. J Neurochem, 62, 1822-1834. [PubMed] [Google Scholar]
  • Okamura, N., Harada, R., Ishiki, A., Kikuchi, A., Nakamura, T., Kudo, Y. (2018). The development and validation of tau PET tracers: Current status and future directions. Clin Transl Imaging, 6, 305-316. [CrossRef] [PubMed] [Google Scholar]
  • Pagano, G., Niccolini, F., Politis, M. (2016). Imaging in Parkinson’s disease. Clin Med (Lond), 16, 371-375. [CrossRef] [PubMed] [Google Scholar]
  • Paterson, L.M., Tyacke, R.J., Nutt, D.J., Knudsen, G.M. (2010). Measuring endogenous 5-HT release by emission tomography: Promises and pitfalls. J Cereb Blood Flow Metab, 30, 1682-1706. [CrossRef] [PubMed] [Google Scholar]
  • Pellerin, L., Bouzier-Sore, A.K., Aubert, A., Serres, S., Merle, M., Costalat, R., Magistretti, P.J. (2007). Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia, 55, 1251-1262. [CrossRef] [PubMed] [Google Scholar]
  • Phelps, M.E. (2000). Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A, 97, 9226-9233. [CrossRef] [PubMed] [Google Scholar]
  • Phelps, M.E., Mazziotta, J.C. (1995). Positron emission tomography: Human brain function and biochemistry. Science, 228, 799-809. [Google Scholar]
  • Pichler, V., Berroterán-Infante, N., Philippe, C., Vraka, C., Klebermass, E.M., Balber, T., Pfaff, S., Nics, L., Mitterhauser, M., Wadsak, W. (2018). An overview of PET radiochemistry, part 1: The covalent labels 18F, 11C, and 13N. J Nucl Med, 59, 1350-1354. [CrossRef] [PubMed] [Google Scholar]
  • Pien, H.H., Fischman, A.J., Thrall, J.H., Sorensen, A.G. (2005). Using imaging biomarkers to accelerate drug development and clinical trials. Drug Discov Today, 10, 259-266. [CrossRef] [PubMed] [Google Scholar]
  • Pike, V.W. (2009). PET radiotracers: Crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci, 30, 431-440. [Google Scholar]
  • Recasens, A., Ulusoy, A., Kahle, P.J., Di Monte, D.A., Dehay, B. (2018). In vivo models of alpha-synuclein transmission and propagation. Cell Tissue Res, 373, 183-193. [Google Scholar]
  • Rees, G., Howseman, A., Josephs, O., Frith, C.D., Friston, K.J., Frackowiak, R.S.J., Turner, R. (1997). Characterizing the relationship between BOLD contrast and regional cerebral blood flow measurements by varying the stimulus presentation rate. NeuroImage, 6, 270-278. [CrossRef] [PubMed] [Google Scholar]
  • Reynolds, F., Kelly, K.A. (2011). Techniques for molecular imaging probe design. Mol Imaging, 10, 407-419. [CrossRef] [PubMed] [Google Scholar]
  • Rice, L., Bisdas, S. (2017). The diagnostic value of FDG and amyloid PET in Alzheimer’s disease – A systematic review. Eur J Radiol, 94, 16-24. [CrossRef] [PubMed] [Google Scholar]
  • Sawamoto, N., Piccini, P., Hotton, G., Pavese, N., Thielemans, K., Brooks, D.J. (2008). Cognitive deficits and striato-frontal dopamine release in Parkinson’s disease. Brain, 131, 1294-1302. [CrossRef] [PubMed] [Google Scholar]
  • Scarf, A.M, Kassiou, M. (2011). The translocator protein. J Nucl Med, 52, 677-680. [CrossRef] [PubMed] [Google Scholar]
  • Schain, M., Kreisl, W.C. (2017). Neuroinflammation in neurodegenerative disorders – A Review. Curr Neurol Neurosci Rep, 17, 25. [CrossRef] [PubMed] [Google Scholar]
  • Schirrmacher, R., Wängler, B., Bailey, J., Bernard-Gauthier, V., Schirrmacher, E., Wängler, C. (2017). Small prosthetic groups in 18F-radiochemistry: Useful auxiliaries for the design of 18F-PET tracers. Semin Nucl Med, 47, 474-492. [CrossRef] [PubMed] [Google Scholar]
  • Schreiber, G., Avissar, S. (2007). Regulators of G-protein-coupled receptor-G-protein coupling: Antidepressants mechanism of action. Expert Rev Neurother, 7, 75-84. [CrossRef] [PubMed] [Google Scholar]
  • Schweitzer, P.J., Fallon, B.A., Mann, J.J., Kumar, J.S. (2010). PET tracers for the peripheral benzodiazepine receptor and uses thereof. Drug Discov Today, 21-22, 933-942. [Google Scholar]
  • Schwochau, K. (1994). Technetium radiopharmaceuticals – Fundamentals, synthesis, structure, and development. Angew Chem Int Ed, 33, 2258-2267. [CrossRef] [Google Scholar]
  • Seeman, P., Guan, H.C., Niznik, H.B. (1989). Endogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: Implications for positron emission tomography of the human brain. Synapse, 3, 96-97. [CrossRef] [PubMed] [Google Scholar]
  • Shabab, T., Khanabdali, R., Moghadamtousi, S.Z., Kadir, H.A., Mohan, G. (2017). Neuroinflammation pathways: A general review. Int J Neurosci, 127, 624-633. [Google Scholar]
  • Shih, Y.Y., Wey, H.Y., De La Garza, B.H., Duong, T.Q. (2011). Striatal and cortical BOLD, blood flow, blood volume, oxygen consumption, and glucose consumption changes in noxious forepaw electrical stimulation. J Cereb Blood Flow Metab, 31, 832-841. [CrossRef] [PubMed] [Google Scholar]
  • Soares, J.C., Innis, R.B. (1999). Neurochemical brain imaging investigations of schizophrenia. Biol Psychiatry, 46, 600-615. [CrossRef] [PubMed] [Google Scholar]
  • Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., Shinohara, M. (1977). The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem, 28, 897-916. [CrossRef] [PubMed] [Google Scholar]
  • Taddei, C., Gee, A.D. (2018). Recent progress in [11C]carbon dioxide ([11C]CO2) and [11C]carbon monoxide ([11C]CO) chemistry. J Labelled Comp Radiopharm, 61, 237-251. [Google Scholar]
  • Thathiah, A., De Strooper, B. (2011). The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat Rev Neurosci, 12, 73-87. [CrossRef] [PubMed] [Google Scholar]
  • Tournier, N., Bauer, M., Pichler, V., Nics, L., Klebermass, E.M., Bamminger, K., Matzneller, P., Weber, M., Karch, R., Caillé, F., Auvity, S., Marie, S., Jäger, W., Wadsak, W., Hacker, M., Zeitlinger, M., Langer O. (2019). Impact of P-glycoprotein function on the brain kinetics of the weak substrate 11C-metoclopramide assessed with PET imaging in humans. J Nucl Med, 60, 985-991. [CrossRef] [PubMed] [Google Scholar]
  • Tse, K.H., Herrup, K. (2017). Re-imagining Alzheimer’s disease – The diminishing importance of amyloid and a glimpse of what lies ahead. J Neurochem, 143, 432-444. [CrossRef] [PubMed] [Google Scholar]
  • Tyacke, R.J., Nutt, D.J. (2015). Optimising PET approaches to measuring 5-HT release in human brain. Synapse, 69, 505-511. [CrossRef] [PubMed] [Google Scholar]
  • van Gool, A.J., Henry, B., Sprengers, E.D. (2010). From biomarker strategies to biomarker activities and back. Drug Discov Today, 15, 121-126. [CrossRef] [PubMed] [Google Scholar]
  • Venneti, S., Lopresti, B.J., Wiley, C.A. (2006). The peripheral benzodiazepine receptor (translocator protein 18kDa) in microglia: From pathology to imaging. Prog Neurobiol, 80, 308-322. [CrossRef] [PubMed] [Google Scholar]
  • Verbruggen, A., Coenen, H.H., Deverre, R., Guilloteau, D., Langstrom, B., Salvadori, P.A., Halldin, C. (2008). Guideline to regulations for radiopharmaceuticals in early phase clinical trials in the EU. Eur J Nucl Med Mol Imaging, 35, 2144-2151. [Google Scholar]
  • Verdurand, M., Levigoureux, E., Zeinyeh, W., Berthier, L., Mendjel-Herda, M., Cadarossanesaib, F., Bouillot, C., Iecker, T., Terreux, R., Lancelot, S., Chauveau, F., Billard, T., Zimmer, L. (2018). In silico, in vitro, and in vivo evaluation of new candidates for α-synuclein PET imaging. Mol Pharm, 15, 3153-3166. [CrossRef] [PubMed] [Google Scholar]
  • Vernon, A.C., Ballard, C., Modo, M. (2010). Neuroimaging for Lewy body disease: Is the in vivo molecular imaging of α-synuclein neuropathology required and feasible? Brain Res Rev, 65, 28-55. [CrossRef] [PubMed] [Google Scholar]
  • Vidal, B., Sebti, J., Verdurand, M., Fieux, S., Billard, T., Streichenberger, N., Troakes, C., Newman-Tancredi, A., Zimmer, L. (2016). Agonist and antagonist bind differently to 5-HT1A receptors during Alzheimer’s disease: A post-mortem study with PET radiopharmaceuticals. Neuropharmacology, 109, 88-95. [CrossRef] [PubMed] [Google Scholar]
  • Vidal, B., Fieux, S., Colom, M., Billard, T., Bouillot, C., Barret, O., Constantinescu, C., Tamagnan, G., Newman-Tancredi, A., Zimmer, L. (2018). 18F-F13640 preclinical evaluation in rodent, cat and primate as a 5-HT1A receptor agonist for PET neuroimaging. Brain Struct Funct, 223, 2973-2988. [Google Scholar]
  • Villar-Piqué, A., Lopes da Fonseca, T., Outeiro, T.F. (2016). Structure, function and toxicity of alpha-synuclein: The Bermuda triangle in synucleinopathies. J Neurochem, 139, 240-255. [CrossRef] [PubMed] [Google Scholar]
  • Volkow, N.D., Wiers, C.E., Shokri-Kojori, E., Tomasi, D., Wang, G.J., Baler, R. (2017). Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: Studies with positron emission tomography. Neuropharmacology, 122, 175-188. [CrossRef] [PubMed] [Google Scholar]
  • Wager, T.T., Galatsis, P., Chandrasekaran, R.Y., Butler, T.W., Li, J., Zhang, L., Mente, S., Subramanyam, C., Liu, S., Doran, A.C., Chang, C., Fisher, K., Grimwood, S., Hedde, J.R., Marconi, M., Schildknegt, K. (2017). Identification and profiling of a selective and brain penetrant radioligand for in vivo target occupancy measurement of casein kinase 1 (CK1) inhibitors. ACS Chem Neurosci, 8, 1995-2004. [Google Scholar]
  • Wagner, C.C., Langer, O. (2011). Approaches using molecular imaging technology – use of PET in clinical microdose studies. Adv Drug Deliv Rev, 63, 539-546. [CrossRef] [PubMed] [Google Scholar]
  • Wagner, H.N. Jr, Burns, H.D., Dannals, R.F., Wong, D.F., Langstrom, B., Duelfer, T., Frost, J.J., Ravert, H.T., Links, J.M., Rosenbloom, S.B., Lukas, S.E., Kramer, A.V., Kuhar, M.J. (1983). Imaging dopamine receptors in the human brain by positron tomography. Science, 221, 1264-1266. [Google Scholar]
  • Wimo, A., Winblad, B., Aguero-Torres, H., von Strauss, E. (2003). The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Disord, 17, 63-67. [Google Scholar]
  • Zimmer, L. (2016). Pharmacological agonists for more-targeted CNS radiopharmaceuticals. Oncotarget, 7, 80111-80112. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.