Accès gratuit
Numéro
Biologie Aujourd’hui
Volume 213, Numéro 3-4, 2019
Page(s) 121 - 129
DOI https://doi.org/10.1051/jbio/2019015
Publié en ligne 12 décembre 2019
  • Abad, S., Fole, A., Del Olmo, N., Pubill, D., Pallàs, M., Junyent, F., Camarasa, J., Camins, A., Escubedo, E. (2014). MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density. Psychopharmacology, 231, 863-874. [CrossRef] [PubMed] [Google Scholar]
  • Abad, S., Camarasa, J., Pubill, D., Camins, A., Escubedo, E. (2016). Adaptive plasticity in the hippocampus of young mice intermittently exposed to MDMA could be the origin of memory deficits. Mol Neurobiol, 53, 7271-7283. [CrossRef] [PubMed] [Google Scholar]
  • Adori, C., Andó, R.D., Ferrington, L., Szekeres, M., Vas, S., Kelly, P.A.T., Hunyady, L., Bagdy, G. (2010). Elevated BDNF protein level in cortex but not in hippocampus of MDMA-treated Dark Agouti rats: a potential link to the long-term recovery of serotonergic axons. Neurosci Lett, 478, 56-60. [CrossRef] [PubMed] [Google Scholar]
  • Angelucci, F., Ricci, V., Martinotti, G., Palladino, I., Spalletta, G., Caltagirone, C., Bria, P. (2010). Ecstasy (MDMA)-addicted subjects show increased serum levels of brain-derived neurotrophic factor, independently from a rise of drug-induced psychotic symptoms. Addict Biol, 15, 365-367. [CrossRef] [PubMed] [Google Scholar]
  • Autry, A.E., Adachi, M., Nosyreva, E., Na, E.S., Los, M.F., Cheng, P., Kavalali, E.T., Monteggia, L.M. (2011). NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature, 475, 91-95. [Google Scholar]
  • Baumeister, D., Barnes, G., Giaroli, G., Tracy, D. (2014). Classical hallucinogens as antidepressants? A review of pharmacodynamics and putative clinical roles. Ther Adv Psychopharmacol, 4, 156-169. [CrossRef] [PubMed] [Google Scholar]
  • Becker, A., Grecksch, G., Schwegler, H., Roskoden, T. (2008). Expression of mRNA of neurotrophic factors and their receptors are significantly altered after subchronic ketamine treatment. Med Chem Shariqah United Arab Emir, 4, 256-263. [Google Scholar]
  • Béïque, J.-C., Imad, M., Mladenovic, L., Gingrich, J.A., Andrade, R. (2007). Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci USA, 104, 9870-9875. [CrossRef] [Google Scholar]
  • Benwell, M.E., Holtom, P.E., Moran, R.J., Balfour, D.J. (1996). Neurochemical and behavioural interactions between ibogaine and nicotine in the rat. Br J Pharmacol, 117, 743-749. [CrossRef] [PubMed] [Google Scholar]
  • Berman, R.M., Cappiello, A., Anand, A., Oren, D.A., Heninger, G.R., Charney, D.S., Krystal, J.H. (2000). Antidepressant effects of ketamine in depressed patients. Biol Psychiatry, 47, 351-354. [CrossRef] [PubMed] [Google Scholar]
  • Björkholm, C., Monteggia, L.M. (2016). BDNF − a key transducer of antidepressant effects. Neuropharmacology, 102, 72-79. [CrossRef] [PubMed] [Google Scholar]
  • Bogenschutz, M.P., Forcehimes, A.A., Pommy, J.A., Wilcox, C.E., Barbosa, P.C.R., Strassman, R.J. (2015). Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. J Psychopharmacol, 29, 289-299. [CrossRef] [PubMed] [Google Scholar]
  • Caffino, L., Di Chio, M., Giannotti, G., Venniro, M., Mutti, A., Padovani, L., Cheung, D., Fumagalli, G.F., Yew, D.T., Fumagalli, F., Yew DT, Chiamulera C. (2016). The modulation of BDNF expression and signalling dissects the antidepressant from the reinforcing properties of ketamine: effects of single infusion vs. chronic self-administration in rats. Pharmacol Res, 104, 22-30. [CrossRef] [PubMed] [Google Scholar]
  • Carhart-Harris, R.L., Bolstridge, M., Day, C.M.J., Rucker, J., Watts, R., Erritzoe, D.E., Kaelen, M., Giribaldi, B., Bloomfield, M., Pilling, S., Rickard J.A., Forbes B., Feilding A., Taylor D., Curran H.V., Nutt D.J. (2018). Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacology, 235, 399-408. [CrossRef] [PubMed] [Google Scholar]
  • Castrén, E. (2014). Neurotrophins and psychiatric disorders. Handb Exp Pharmacol, 220, 461-479. [CrossRef] [PubMed] [Google Scholar]
  • Chaki, S. (2017). Beyond ketamine: new approaches to the development of safer antidepressants. Curr Neuropharmacol, 15, 963-976. [CrossRef] [PubMed] [Google Scholar]
  • Cui, W., Ning, Y., Hong, W., Wang, J., Liu, Z., Li, M.D. (2018). Crosstalk between inflammation and glutamate system in depression: signaling pathway and molecular biomarkers for ketamine’s antidepressant. Effect Mol Neurobiol, 56, 3484-3500. [CrossRef] [Google Scholar]
  • Dakwar, E., Levin, F., Foltin, R.W., Nunes, E.V., Hart, C.L. (2014). The effects of subanesthetic ketamine infusions on motivation to quit and cue-induced craving in cocaine-dependent research volunteers. Biol Psychiatry, 76, 40-46. [CrossRef] [PubMed] [Google Scholar]
  • Dakwar, E., Hart, C.L., Levin, F.R., Nunes, E.V., Foltin, R.W. (2017). Cocaine self-administration disrupted by the N-methyl-D-aspartate receptor antagonist ketamine: a randomized, crossover trial. Mol Psychiatry, 22, 76-81. [CrossRef] [PubMed] [Google Scholar]
  • Duman, R.S., Li, N. (2012). A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans R Soc Lond B Biol Sci, 367, 2475-2484. [CrossRef] [PubMed] [Google Scholar]
  • Duncan, W.C., Sarasso, S., Ferrarelli, F., Selter, J., Riedner, B.A., Hejazi, N.S., Yuan, P., Brutsche, N., Manji, H.K., Tononi, G., Zarate C.A. (2013). Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol, 16, 301-311. [CrossRef] [PubMed] [Google Scholar]
  • Dunlap, L.E., Andrews, A.M., Olson, D.E. (2018). Dark classics in chemical neuroscience: 3,4-methylenedioxymethamphetamine. ACS Chem Neurosci, 9, 2408-2427. [PubMed] [Google Scholar]
  • Edut, S., Rubovitch, V., Rehavi, M., Schreiber, S., Pick, C.G. (2014). A study on the mechanism by which MDMA protects against dopaminergic dysfunction after minimal traumatic brain injury (mTBI) in mice. J Mol Neurosci, 54, 684-697. [CrossRef] [PubMed] [Google Scholar]
  • Feder, A., Parides, M.K., Murrough, J.W., Perez, A.M., Morgan, J.E., Saxena, S., Kirkwood, K., Aan Het Rot, M., Lapidus, K.A.B., Wan, L.-B., Iosifescu, D.V., Charney, D.S. (2014). Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiatry, 71, 681-688. [CrossRef] [PubMed] [Google Scholar]
  • Garcia, L.S.B., Comim, C.M., Valvassori, S.S., Réus, G.Z., Barbosa, L.M., Andreazza, A.C., Stertz, L., Fries, G.R., Gavioli, E.C., Kapczinski, F., Quevedo J. (2008). Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry, 32, 140-144. [CrossRef] [PubMed] [Google Scholar]
  • Garcia-Romeu, A., Griffiths, R.R., Johnson, M.W. (2014). Psilocybin-occasioned mystical experiences in the treatment of tobacco addiction. Curr Drug Abuse Rev, 7, 157-164. [CrossRef] [PubMed] [Google Scholar]
  • Gewirtz, J.C., Chen, A.C., Terwilliger, R., Duman, R.C., Marek, G.J. (2002). Modulation of DOI-induced increases in cortical BDNF expression by group II mGlu receptors. Pharmacol Biochem Behav, 73, 317-326. [CrossRef] [PubMed] [Google Scholar]
  • Gibon, J., Barker, P.A. (2017). Neurotrophins and proneurotrophins: focus on synaptic activity and plasticity in the brain. Neuroscientist, 23, 587-604. [CrossRef] [PubMed] [Google Scholar]
  • Glick, S.D., Maisonneuve, I.M., Pearl, S.M. (1997). Evidence for roles of kappa-opioid and NMDA receptors in the mechanism of action of ibogaine. Brain Res, 749, 340-343. [CrossRef] [PubMed] [Google Scholar]
  • Grob, C.S., Danforth, A.L., Chopra, G.S., Hagerty, M., McKay, C.R., Halberstadt, A.L., Greer, G.R. (2011). Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch Gen Psychiatry, 68, 71-78. [CrossRef] [PubMed] [Google Scholar]
  • Haile, C.N., Murrough, J.W., Iosifescu, D.V., Chang, L.C., Al Jurdi, R.K., Foulkes, A., Iqbal, S., Mahoney, J.J., De La Garza, R., Charney, D.S., Newton T.F., Mathew S.J. (2014). Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int J Neuropsychopharmacol, 17, 331-336. [CrossRef] [PubMed] [Google Scholar]
  • Hao, R., Qi, Y., Hou, D.-N., Ji, Y.-Y., Zheng, C.-Y., Li, C.-Y., Yung, W.-H., Lu, B., Huang, Y. (2017). BDNF val66met polymorphism impairs hippocampal long-term depression by down-regulation of 5-HT3 receptors. Front Cell Neurosci, 11, 306-327. [Google Scholar]
  • Hatami, H., Hossainpour-Faizi, M.A., Azarfarin, M., Azarfam, P. (2010). Chronic ecstasy use increases neurotrophin-4 gene expression and protein levels in the rat brain. Pharmacol Rep PR, 62, 998-1004. [CrossRef] [Google Scholar]
  • He, D.-Y., Ron, D. (2006). Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB J, 20, 2420-2422. [CrossRef] [PubMed] [Google Scholar]
  • He, D.-Y., McGough, N.N.H., Ravindranathan, A., Jeanblanc, J., Logrip, M.L., Phamluong, K., Janak, P.H., Ron, D. (2005). Glial cell line-derived neurotrophic factor mediates the desirable actions of the anti-addiction drug ibogaine against alcohol consumption. J Neurosci, 25, 619-628. [CrossRef] [PubMed] [Google Scholar]
  • Hemmerle, A.M., Dickerson, J.W., Herring, N.R., Schaefer, T.L., Vorhees, C.V., Williams, M.T., Seroogy, K.B. (2012). (±)3,4-methylenedioxymethamphetamine (“ecstasy”) treatment modulates expression of neurotrophins and their receptors in multiple regions of adult rat brain. J Comp Neurol, 520, 2459-2474. [PubMed] [Google Scholar]
  • Jadhav, K.S., Boutrel, B. (2018). Prefrontal cortex development and emergence of self-regulatory competence: the two cardinal features of adolescence disrupted in context of alcohol abuse. Eur J Neurosci, doi: 10.1111/ejn.14316. [Epub ahead of print]. [Google Scholar]
  • Jha, S., Rajendran, R., Fernandes, K.A., Vaidya, V.A. (2008). 5-HT2A/2C receptor blockade regulates progenitor cell proliferation in the adult rat hippocampus. Neurosci Lett, 441, 210-214. [CrossRef] [PubMed] [Google Scholar]
  • Johnson, M.W., Garcia-Romeu, A., Cosimano, M.P., Griffiths, R.R. (2014). Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction. J Psychopharmacol, 28, 983-992. [CrossRef] [PubMed] [Google Scholar]
  • Kashyap, M.P., Roberts, C., Waseem, M., Tyagi, P. (2018). Drug targets in neurotrophin signaling in the central and peripheral nervous system. Mol Neurobiol, 55, 6939-6955. [CrossRef] [PubMed] [Google Scholar]
  • Ke, X., Ding, Y., Xu, K., He, H., Zhang, M., Wang, D., Deng, X., Zhang, X., Zhou, C., Liu, Y., Ning Y., Fan N. (2014). Serum brain-derived neurotrophic factor and nerve growth factor decreased in chronic ketamine abusers. Drug Alcohol Depend, 142, 290-294. [CrossRef] [PubMed] [Google Scholar]
  • Klein, A.B., Santini, M.A., Aznar, S., Knudsen, G.M., Rios, M. (2010). Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice. Neuroscience, 169, 1007-1016. [PubMed] [Google Scholar]
  • Krupitsky, E., Burakov, A., Romanova, T., Dunaevsky, I., Strassman, R., Grinenko, A. (2002). Ketamine psychotherapy for heroin addiction: immediate effects and two-year follow-up. J Subst Abuse Treat, 23, 273-283. [CrossRef] [PubMed] [Google Scholar]
  • Krupitsky, E.M., Burakov, A.M., Dunaevsky, I.V., Romanova, T.N., Slavina, T.Y., Grinenko, A.Y. (2007). Single versus repeated sessions of ketamine-assisted psychotherapy for people with heroin dependence. J Psychoactive Drugs, 39, 13-19. [CrossRef] [PubMed] [Google Scholar]
  • Krystal, J.H., Sanacora, G., Duman, R.S. (2013). Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry, 73, 1133-1141. [CrossRef] [PubMed] [Google Scholar]
  • Laje, G., Lally, N., Mathews, D., Brutsche, N., Chemerinski, A., Akula, N., Kelmendi, B., Simen, A., McMahon, F.J., Sanacora, G., Zarate C. Jr. (2012). Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biol Psychiatry, 72, e27-e28. [CrossRef] [PubMed] [Google Scholar]
  • Lepack, A.E., Fuchikami, M., Dwyer, J.M., Banasr, M., Duman, R.S. (2014). BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol, 18(1), doi: 10.1093/ijnp/pyu033. [Google Scholar]
  • Li, N., Lee, B., Liu, R.-J., Banasr, M., Dwyer, J.M., Iwata, M., Li, X.-Y., Aghajanian, G., Duman, R.S. (2010). mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science, 329, 959-964. [Google Scholar]
  • Lin, L.F., Doherty, D.H., Lile, J.D., Bektesh, S., Collins, F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 260, 1130-1132. [Google Scholar]
  • Liu, R.-J., Lee, F.S., Li, X.-Y., Bambico, F., Duman, R.S., Aghajanian, G.K. (2012). Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry, 71, 996-1005. [CrossRef] [PubMed] [Google Scholar]
  • Ly, C., Greb, A.C., Cameron, L.P., Wong, J.M., Barragan, E.V., Wilson, P.C., Burbach, K.F., Soltanzadeh Zarandi, S., Sood, A., Paddy, M.R., Duim W.C., Dennis M.Y., McAllister A.K., Ori-McKenney K.M, Gray J.A, Olson D.E. (2018). Psychedelics promote structural and functional neural plasticity. Cell Rep, 23, 3170-3182. [CrossRef] [PubMed] [Google Scholar]
  • Machado-Vieira, R., Yuan, P., Brutsche, N., DiazGranados, N., Luckenbaugh, D., Manji, H.K., Zarate, C.A. (2009). Brain-derived neurotrophic factor and initial antidepressant response to an N-methyl-D-aspartate antagonist. J Clin Psychiatry, 70, 1662-1666. [CrossRef] [PubMed] [Google Scholar]
  • Marinova, Z., Walitza, S., Grünblatt, E. (2017). The hallucinogen 2,5-dimethoxy-4-iodoamphetamine hydrochloride activates neurotrophin receptors in a neuronal cell line and promotes neurites extension. J Neural Transm, 124, 749-759. [CrossRef] [PubMed] [Google Scholar]
  • Martínez-Turrillas, R., Moyano, S., Del Río, J., Frechilla, D. (2006). Differential effects of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) on BDNF mRNA expression in rat frontal cortex and hippocampus. Neurosci Lett, 402, 126-130. [CrossRef] [PubMed] [Google Scholar]
  • Marton, S., González, B., Rodríguez-Bottero, S., Miquel, E., Martínez-Palma, L., Pazos, M., Prieto, J.P., Rodríguez, P., Sames, D., Seoane, G., Scorza C, Cassina P., Carrera I. (2019). Ibogaine administration modifies GDNF and BDNF expression in brain regions involved in mesocorticolimbic and nigral dopaminergic circuits. Front Pharmacol, 10, 193. doi: 10.3389. [CrossRef] [PubMed] [Google Scholar]
  • Mithoefer, M.C., Wagner, M.T., Mithoefer, A.T., Jerome, L., Doblin, R. (2011). The safety and efficacy of {+/−}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol, 25, 439-452. [CrossRef] [PubMed] [Google Scholar]
  • Mithoefer, M.C., Wagner, M.T., Mithoefer, A.T., Jerome, L., Martin, S.F., Yazar-Klosinski, B., Michel, Y., Brewerton, T.D., Doblin, R. (2013). Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study. J Psychopharmacol, 27, 28-39. [CrossRef] [PubMed] [Google Scholar]
  • Mouri, A., Noda, Y., Niwa, M., Matsumoto, Y., Mamiya, T., Nitta, A., Yamada, K., Furukawa, S., Iwamura, T., Nabeshima, T. (2017). The involvement of brain-derived neurotrophic factor in 3,4-methylenedioxymethamphetamine-induced place preference and behavioral sensitization. Behav Brain Res, 329, 157-165. [CrossRef] [PubMed] [Google Scholar]
  • Murrough, J.W., Perez, A.M., Pillemer, S., Stern, J., Parides, M.K., aan het Rot, M., Collins, K.A., Mathew, S.J., Charney, D.S., Iosifescu, D.V. (2013). Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry, 74, 250-256. [CrossRef] [PubMed] [Google Scholar]
  • Nau, F., Miller, J., Saravia, J., Ahlert, T., Yu, B., Happel, K.I., Cormier, S.A., Nichols, C.D. (2015). Serotonin 5-HT2 receptor activation prevents allergic asthma in a mouse model. Am J Physiol Lung Cell Mol Physiol, 308, L191-L198. [CrossRef] [PubMed] [Google Scholar]
  • Nichols, D.E. (2016). Psychedelics. Pharmacol Rev, 68, 264-355. [CrossRef] [PubMed] [Google Scholar]
  • Park, H., Poo, M. (2013). Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci, 14, 7-23. [CrossRef] [PubMed] [Google Scholar]
  • Rantamäki, T. (2019). TrkB neurotrophin receptor at the core of antidepressant effects, but how? Cell Tissue Res, doi: 10.1007/s00441-018-02985-6. [Epub ahead of print]. [Google Scholar]
  • Rasmussen, K.G., Lineberry, T.W., Galardy, C.W., Kung, S., Lapid, M.I., Palmer, B.A., Ritter, M.J., Schak, K.M., Sola, C.L., Hanson, A.J., Frye M.A. (2013). Serial infusions of low-dose ketamine for major depression. J Psychopharmacol, 27, 444-450. [CrossRef] [PubMed] [Google Scholar]
  • Ricci, V., Martinotti, G., Gelfo, F., Tonioni, F., Caltagirone, C., Bria, P., Angelucci, F. (2011). Chronic ketamine use increases serum levels of brain-derived neurotrophic factor. Psychopharmacology (Berl.), 215, 143-148. [Google Scholar]
  • Robertson, O.D., Coronado, N.G., Sethi, R., Berk, M., Dodd, S. (2019). Putative neuroprotective pharmacotherapies to target the staged progression of mental illness. Early Interv Psychiatry, doi: 10.1111/eip.12775. [Epub ahead of print]. [Google Scholar]
  • Rybakowski, J.K., Permoda-Osip, A., Skibinska, M., Adamski, R., Bartkowska-Sniatkowska, A. (2013). Single ketamine infusion in bipolar depression resistant to antidepressants: are neurotrophins involved? Hum Psychopharmacol, 28, 87-90. [CrossRef] [PubMed] [Google Scholar]
  • Sanacora, G., Frye, M.A., McDonald, W., Mathew, S.J., Turner, M.S., Schatzberg, A.F., Summergrad, P., Nemeroff, C.B., American Psychiatric Association (APA) Council of Research Task Force on Novel Biomarkers and Treatments. (2017). A consensus statement on the use of ketamine in the treatment of mood disorders. JAMA Psychiatry, 74, 399-405. [CrossRef] [PubMed] [Google Scholar]
  • Singh, J.B., Fedgchin, M., Daly, E.J., De Boer, P., Cooper, K., Lim, P., Pinter, C., Murrough, J.W., Sanacora, G., Shelton, R.C., Kurian B., Winokur A., Fava M., Manji H., Drevets WC., Van Nueten L. (2016). A double-blind, randomized, placebo-controlled, dose-frequency study of intravenous ketamine in patients with treatment-resistant depression. Am J Psychiatry, 173, 816-826. [CrossRef] [PubMed] [Google Scholar]
  • Skaper, S.D. (2018). Neurotrophic factors: an overview. Methods Mol Biol, 1727, 1-17. [CrossRef] [PubMed] [Google Scholar]
  • Soleimani Asl, S., Hesam Shariati, M.B., Medizadeh, M., Ahmadpanah, M., Sohrabi, M. (2017). The effect of 3,4-methylenedioxymethamphetamine on expression of neurotrophic factors in hippocampus of male rats. Med J Islam Repub Iran, 31, 60-71. [Google Scholar]
  • Strasburger, S.E., Bhimani, P.M., Kaabe, J.H., Krysiak, J.T., Nanchanatt, D.L., Nguyen, T.N., Pough, K.A., Prince, T.A., Ramsey, N.S., Savsani, K.H., Scandlen L., Cavaretta M.J., Raffa R.B. (2017). What is the mechanism of ketamine’s rapid-onset antidepressant effect? A concise overview of the surprisingly large number of possibilities. J Clin Pharm Ther, 42, 147-154. [CrossRef] [PubMed] [Google Scholar]
  • Vaidya, V.A., Marek, G.J., Aghajanian, G.K., Duman, R.S. (1997). 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci, 17, 2785-2795. [CrossRef] [PubMed] [Google Scholar]
  • Vargas-Perez, H., Grieder, T.E., Ting-A-Kee, R., Maal-Bared, G., Chwalek, M., van der Kooy, D. (2017). A single administration of the hallucinogen, 4-acetoxy-dimethyltryptamine, prevents the shift to a drug-dependent state and the expression of withdrawal aversions in rodents. Eur J Neurosci, 45, 1410-1417. [CrossRef] [PubMed] [Google Scholar]
  • Wilkinson, S.T., Ballard, E.D., Bloch, M.H., Mathew, S.J., Murrough, J.W., Feder, A., Sos, P., Wang, G., Zarate, C.A., Sanacora, G. (2018). The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am J Psychiatry, 175, 150-158. [CrossRef] [PubMed] [Google Scholar]
  • Young, M.B., Norrholm, S.D., Khoury, L.M., Jovanovic, T., Rauch, S.A.M., Reiff, C.M., Dunlop, B.W., Rothbaum, B.O., Howell, L.L. (2017). Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxymethamphetamine (MDMA). Psychopharmacology (Berl.), 234, 2883-2895. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.