Accès gratuit
Numéro
Biologie Aujourd’hui
Volume 215, Numéro 3-4, 2021
Page(s) 85 - 94
DOI https://doi.org/10.1051/jbio/2021013
Publié en ligne 11 mars 2022
  • Christopher, J.A., Orgován, Z., Congreve, M., Doré, A.S., Errey, J.C., Marshall, F.H., Mason, J.S., Okrasa, K., Rucktooa, P., Serrano-Vega, M.J., Ferenczy, C.G., Keserù, G.M. (2019). Structure-based optimization strategies for G protein-coupled receptor (GPCR) allosteric modulators: A case study from analyses of new metabotropic glutamate receptor 5 (mGlu5) X-ray structures. J Med Chem, 62, 207-222. [CrossRef] [PubMed] [Google Scholar]
  • Doré, A.S., Okrasa, K., Patel, J.C., Serrano-Vega, M., Bennett, K., Cooke, R.M., Errey, J.C., Jazayeri, A., Khan, S., Tehan, B., Weir, M., Wiggin, G.R., Marshall, F.H. (2014). Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature, 511, 557-562. [CrossRef] [PubMed] [Google Scholar]
  • Doumazane, E., Scholler, P., Fabre, L., Zwier, J.M., Trinquet, E., Pin, J.-P., Rondard, P. (2013). Illuminating the activation mechanisms and allosteric properties of metabotropic glutamate receptors. Proc Natl Acad Sci USA, 110, E1416-E1425. [CrossRef] [PubMed] [Google Scholar]
  • Du, J., Wang, D., Fan, H., Xu, C., Tai, L., Lin, S., Han, S., Tan, Q., Wang, X., Xu, T., Zhang, H., Chu, X., Yi, C., Liu, P., Wang, X., Zhou, Y., Pin, J.P., Rondard, P., Liu, H., Liu, J., Sun, F., Wu, B., Zhao, Q. (2021). Structures of human mGlu2 and mGlu7 homo- and heterodimers. Nature, 594, 589-593. [CrossRef] [PubMed] [Google Scholar]
  • El Moustaine, D., Granier, S., Doumazane, E., Scholler, P., Rahmeh, R., Bron, P., Mouillac, B., Banères, J.-L., Rondard, P., Pin, J.-P. (2012). Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc Natl Acad Sci USA, 109, 16342-16347. [CrossRef] [PubMed] [Google Scholar]
  • Gao, Y., Robertson, M.J., Rahman, S.N., Seven, A.B., Zhang, C., Meyerowitz, J.G., Panova, O., Hannan, F.M., Thakker, R.V., Bräuner-Osborne, H., Mathiesen, J.M., Skiniotis, G. (2021). Asymmetric activation of the calcium-sensing receptor homodimer. Nature, 595, 455-459. [CrossRef] [PubMed] [Google Scholar]
  • García-Nafría, J., Tate, C.G. (2020). Cryo-electron microscopy: Moving beyond X-ray crystal structures for drug receptors and drug development. Annu Rev Pharmacol Toxicol, 60, 51-71. [CrossRef] [PubMed] [Google Scholar]
  • García-Nafría, J., Tate, C.G. (2021). Structure determination of GPCRs: Cryo-EM compared with X-ray crystallography. Biochem Soc Trans, 49, 2345-2355. [CrossRef] [PubMed] [Google Scholar]
  • Gregory, K.J., Goudet, C. (2021). International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, signaling, and physiology of metabotropic glutamate receptors. Pharmacol Rev, 73, 521-569. [CrossRef] [PubMed] [Google Scholar]
  • Hauser, A.S., Kooistra, A.J., Munk, C., Heydenreich, F.M., Veprintsev, D.B., Bouvier, M., Babu, M.M., Gloriam, D.E. (2021). GPCR activation mechanisms across classes and macro/microscales. Nat Struct Mol Biol, 28, 879-888. [CrossRef] [PubMed] [Google Scholar]
  • Koehl, A., Hu, H., Feng, D., Sun, B., Zhang, Y., Robertson, M.J., Chu, M., Kobilka, T.S., Laeremans, T., Steyaert, J., Tarrasch, J., Dutta, S., Fonseca, R., Weis, W.I., Mathiesen, J.M., Skiniotis, G., Kobilka, B.K. (2019). Structural insights into the activation of metabotropic glutamate receptors. Nature, 566, 79-84. [CrossRef] [PubMed] [Google Scholar]
  • Kooistra, A.J., Mordalski, S., Pándy-Szekeres, G., Esguerra, M., Mamyrbekov, A., Munk, C., Keserű, G.M., Gloriam, D.E. (2021). GPCRdb in 2021: Integrating GPCR sequence, structure and function. Nucleic Acids Res, 49, D335- D343. [CrossRef] [PubMed] [Google Scholar]
  • Kunishima, N., Shimada, Y., Tsuji, Y., Sato, T., Yamamoto, M., Kumasaka, T., Nakanishi, S., Jingami, H., Morikawa, K. (2000). Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature, 407, 971-977. [CrossRef] [PubMed] [Google Scholar]
  • Lebon, G., Bennett, K., Jazayeri, A., Tate, C.G. (2011). Thermostabilisation of an agonist-bound conformation of the human adenosine A(2A) receptor. J Mol Biol, 409, 298-310. [CrossRef] [PubMed] [Google Scholar]
  • Lin, S., Han, S., Cai, X., Tan, Q., Zhou, K., Wang, D., Wang, X., Du, J., Yi, C., Chu, X., Dai, A., Zhou, Y., Chen, Y., Zhou, Y., Liu, H., Liu, J., Yang, D., Wang, M.W., Zhao, Q., Wu, B. (2021). Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature, 594, 583-588. [CrossRef] [PubMed] [Google Scholar]
  • Magnani, F., Serrano-Vega, M.J., Shibata, Y., Abdul-Hussein, S., Lebon, G., Miller-Gallacher, J., Singhal, A., Strege, A., Thomas, J.A., Tate, C.G. (2016). A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. Nat Protoc, 11, 1554-1571. [CrossRef] [PubMed] [Google Scholar]
  • Mao, C., Shen, C., Li, C., Shen, D.-D., Xu, C., Zhang, S., Zhou, R., Shen, Q., Chen, L.-N., Jiang, Z., Liu, J., Zhang, Y. (2020). Cryo-EM structures of inactive and active GABAB receptor. Cell Res, 30, 564-573. [CrossRef] [PubMed] [Google Scholar]
  • Nasrallah, C., Rottier, K., Marcellin, R., Compan, V., Font, J., Llebaria, A., Pin, J.-P., Banères, J.-L., Lebon, G. (2018). Direct coupling of detergent purified human mGlu5 receptor to the heterotrimeric G proteins Gq and Gs. Sci Rep, 8, 4407. [CrossRef] [PubMed] [Google Scholar]
  • Nasrallah, C., Cannone, G., Briot, J., Rottier, K., Berizzi, A.E., Huang, C.-Y., Quast, R.B., Hoh, F., Banères, J.-L., Malhaire, F., Berto, L., Dumazer, A., Font-Ingles, J., Gómez-Santacana, X., Catena, J., Kniazeff, J., Goudet, C., Llebaria, A., Pin, J.P., Vinothkumar, K.R., Lebon, G. (2021). Agonists and allosteric modulators promote signaling from different metabotropic glutamate receptor 5 conformations. Cell Rep, 36, 109648. [CrossRef] [PubMed] [Google Scholar]
  • Papasergi-Scott, M.M., Robertson, M.J., Seven, A.B., Panova, O., Mathiesen, J.M., Skiniotis, G. (2020). Structures of metabotropic GABAB receptor. Nature, 584, 310-314. [CrossRef] [PubMed] [Google Scholar]
  • Park, J., Fu, Z., Frangaj, A., Liu, J., Mosyak, L., Shen, T., Slavkovich, V.N., Ray, K.M., Taura, J., Cao, B., Geng, Y., Zuo, H., Kou, Y., Grassucci, R., Chen, S., Liu, Z., Lin, X., Williams, J.P., Rice, W.J., Eng, E.T., Huang, R.K., Soni, R.K., Kloss, B., Yu, Z., Javitch, J.A., Hendrickson, W.A., Slesinger, P.A., Quick, M., Graziano, J., Yu, H., Fiehn, O., Clarke, O.B., Frank, J., Fan, Q.R. (2020). Structure of human GABAB receptor in an inactive state. Nature, 584, 304-309. [CrossRef] [PubMed] [Google Scholar]
  • Pin, J.-P., Bettler, B. (2016). Organization and functions of mGlu and GABAB receptor complexes. Nature, 540, 60-68. [CrossRef] [PubMed] [Google Scholar]
  • Rook, J.M., Noetzel, M.J., Pouliot, W.A., Bridges, T.M., Vinson, P.N., Cho, H.P., Zhou, Y., Gogliotti, R.D., Manka, J.T., Gregory, K.J., Stauffer, S.R., Dudek, F.E., Xiang, Z., Niswender, C.M., Daniels, J.S., Jones, C.K., Lindsley, C.W., Conn, P.J. (2013). Unique signaling profiles of positive allosteric modulators of metabotropic glutamate receptor subtype 5 determine differences in in vivo activity. Biol Psychiatry, 73, 501-509. [CrossRef] [PubMed] [Google Scholar]
  • Rosenbaum, D.M., Cherezov, V., Hanson, M.A., Rasmussen, S.G.F., Thian, F.S., Kobilka, T.S., Choi, H.-J., Yao, X.-J., Weis, W.I., Stevens, R.C., Kobilka, B.K. (2007). GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science, 318, 1266-1273. [CrossRef] [PubMed] [Google Scholar]
  • Seven, A.B., Barros-Álvarez, X., de Lapeyrière, M., Papasergi-Scott, M.M., Robertson, M.J., Zhang, C., Nwokonko, R.M., Gao, Y., Meyerowitz, J.G., Rocher, J.-P., Schelshorn, D., Kobilka, B.K., Mathiesen, J.M., Skiniotis, G. (2021). G-protein activation by a metabotropic glutamate receptor. Nature, 595, 450-454. [CrossRef] [PubMed] [Google Scholar]
  • Shaye, H., Ishchenko, A., Lam, J.H., Han, G.W., Xue, L., Rondard, P., Pin, J.-P., Katritch, V., Gati, C., Cherezov, V. (2020). Structural basis of the activation of a metabotropic GABA receptor. Nature, 584, 298-303. [CrossRef] [PubMed] [Google Scholar]
  • Shen, C., Mao, C., Xu, C., Jin, N., Zhang, H., Shen, D.-D., Shen, Q., Wang, X., Hou, T., Chen, Z., Rondard, P., Pin, J.P., Zhang, Y., Liu, J. (2021). Structural basis of GABAB receptor-Gi protein coupling. Nature, 594, 594-598. [CrossRef] [PubMed] [Google Scholar]
  • Tate, C.G., Schertler, G.F.X. (2009). Engineering G protein-coupled receptors to facilitate their structure determination. Curr Opin Struct Biol, 19, 386-395. [CrossRef] [PubMed] [Google Scholar]
  • Venkatakrishnan, A.J., Deupi, X., Lebon, G., Tate, C.G., Schertler, G.F., Babu, M.M. (2013). Molecular signatures of G-protein-coupled receptors. Nature, 494, 185-194. [CrossRef] [PubMed] [Google Scholar]
  • Venkatakrishnan, A.J., Deupi, X., Lebon, G., Heydenreich, F.M., Flock, T., Miljus, T., Balaji, S., Bouvier, M., Veprintsev, D.B., Tate, C.G., Schertler, G.F., Babu, M.M. (2016). Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature, 536, 484-487. [CrossRef] [PubMed] [Google Scholar]
  • Wen, T., Wang, Z., Chen, X., Ren, Y., Lu, X., Xing, Y., Lu, J., Chang, S., Zhang, X., Shen, Y., Yang, X. (2021). Structural basis for activation and allosteric modulation of full-length calcium-sensing receptor. Sci Adv, 7, eabg1483. [Google Scholar]
  • Xue, L., Rovira, X., Scholler, P., Zhao, H., Liu, J., Pin, J.-P., Rondard, P. (2015). Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Nat Chem Biol, 11, 134-140. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.