Accès gratuit
Numéro |
Biologie Aujourd’hui
Volume 215, Numéro 3-4, 2021
|
|
---|---|---|
Page(s) | 95 - 106 | |
DOI | https://doi.org/10.1051/jbio/2021011 | |
Publié en ligne | 11 mars 2022 |
- Abboud, D., Daly, A.F., Dupuis, N., Bahri, M.A., Inoue, A., Chevigné, A., Ectors, F., Plenevaux, A., Pirotte, B., Beckers, A. Hanson, J. (2020). GPR101 drives growth hormone hypersecretion and gigantism in mice via constitutive activation of Gs and Gq/11. Nat Commun, 11, 4752. [CrossRef] [PubMed] [Google Scholar]
- Alexander, S.P., Christopoulos, A., Davenport, A.P., Kelly, E., Mathie, A., Peters, J.A., Veale, E.L., Armstrong, J.F., Faccenda, E., Harding, S.D., Pawson, A.J., Southan, C., Davies, J.A., Abbracchio, M.P., Alexander, W., Al-Hosaini, K., Bäck, M., Barnes, N.M., Bathgate, R., Beaulieu, J.-M., Bernstein, K.E., Bettler, B., Birdsall, N.J.M., Blaho, V., Boulay, F., Bousquet, C., Bräuner-Osborne, H., Burnstock, G., Calé, G., Castaño, J.P., Catt, K.J., Ceruti, S., Chazot, P., Chiang, N., Chini, B., Chun, J., Cianciulli, A., Civelli, O., Clapp, L.H., Couture, R., Csaba, Z., Dahlgren, C., Dent, G., Singh, K.D., Douglas, S.D., Dournaud, P., Eguchi, S., Escher, E., Filardo, E.J., Fong, T., Fumagalli, M., Gainetdinov, R.R., Gasparo, M. de, Gerard, C., Gershengorn, M., Gobeil, F., Goodfriend, T.L., Goudet, C., Gregory, K.J., Gundlach, A.L., Hamann, J., Hanson, J., Hauger, R.L., Hay, D.L., Heinemann, A., Hollenberg, M.D., Holliday, N.D., Horiuchi, M., Hoyer, D., Hunyady, L., Husain, A., Ijzerman, A.P., Inagami, T., Jacobson, K.A., Jensen, R.T., Jockers, R., Jonnalagadda, D., Karnik, S., Kaupmann, K., Kemp, J., Kennedy, C., Kihara, Y., Kitazawa, T., Kozielewicz, P., Kreienkamp, H.-J., Kukkonen, J.P., Langenhan, T., Leach, K., Lecca, D., Lee, J.D., Leeman, S.E., Leprince, J., Li, X.X., Williams, T.L., Lolait, S.J., Lupp, A., Macrae, R., Maguire, J., Mazella, J., McArdle, C.A., Melmed, S., Michel, M.C., Miller, L.J., Mitolo, V., Mouillac, B., Müller, C.E., Murphy, P., Nahon, J.-L., Ngo, T., Norel, X., Nyimanu, D., O’Carroll, A.-M., Offermanns, S., Panaro, M.A., Parmentier, M., Pertwee, R.G., Pin, J.-P., Prossnitz, E.R., Quinn, M., Ramachandran, R., Ray, M., Reinscheid, R.K., Rondard, P., Rovati, G.E., Ruzza, C., Sanger, G.J., Schöneberg, T., Schulte, G., Schulz, S., Segaloff, D.L., Serhan, C.N., Stoddart, L.A., Sugimoto, Y., Summers, R., Tan, V.P., Thal, D., Thomas, W.W., Timmermans, P.B.M.W.M., Tirupula, K., Tulipano, G., Unal, H., Unger, T., Valant, C., Vanderheyden, P., Vaudry, D., Vaudry, H., Vilardaga, J.-P., Walker, C.S., Wang, J.M., Ward, D.T., Wester, H.-J., Willars, G.B., Woodruff, T.M., Yao, C., Ye, R.D. (2021). The Concise Guide to Pharmacology 2021/22: G protein-coupled receptors. Br J Pharmacol, 178(Suppl 1), S27-S156. [PubMed] [Google Scholar]
- Almutairi, F., Lee, J.-K. Rada, B. (2020). Regulator of G protein signaling 10: Structure, expression and functions in cellular physiology and diseases. Cell Signal, 75, 109765. [CrossRef] [PubMed] [Google Scholar]
- Al-Sabah, S., Al-Fulaij, M., Shaaban, G., Ahmed, H.A., Mann, R.J., Donnelly, D., Bünemann, M. Krasel, C. (2014). The GIP receptor displays higher basal activity than the GLP-1 receptor but does not recruit GRK2 or arrestin3 effectively. PLoS One, 9(9), e106890. [CrossRef] [PubMed] [Google Scholar]
- Arang, N., Gutkind, J.S. (2020). G protein-coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett, 594, 4201-4232. [CrossRef] [PubMed] [Google Scholar]
- Avasarala, S., Bikkavilli, R.K., Van Scoyk, M., Zhang, W., Lapite, A., Hostetter, L., Byers, J.T., Heasley, L.E., Sohn, J.W., Winn, R.A. (2013). Heterotrimeric G-protein, Gα16, is a critical downstream effector of non-canonical Wnt signaling and a potent inhibitor of transformed cell growth in non small cell lung cancer. PLoS One, 8(10), e76895. [CrossRef] [PubMed] [Google Scholar]
- Bourne, H.R., Coffino, P., Tomkins, G.M. (1975). Selection of a variant lymphoma cell deficient in adenylate cyclase. Science, 187, 750-752. [CrossRef] [PubMed] [Google Scholar]
- Calebiro, D., Koszegi, Z. (2019). The subcellular dynamics of GPCR signaling. Mol Cell Endocrinol, 483, 24-30. [CrossRef] [PubMed] [Google Scholar]
- Calebiro, D., Nikolaev, V.O., Gagliani, M.C., de Filippis, T., Dees, C., Tacchetti, C., Persani, L., Lohse, M.J. (2009). Persistent CAMP-signals triggered by internalized G-protein–coupled receptors. PLoS Biol, 7(8), e1000172. [CrossRef] [PubMed] [Google Scholar]
- Calebiro, D., Nikolaev, V.O., Persani, L., Lohse, M.J. (2010). Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci, 31, 221-228. [CrossRef] [PubMed] [Google Scholar]
- Cao, W., Luttrell, L.M., Medvedev, A.V., Pierce, K.L., Daniel, K.W., Dixon, T.M., Lefkowitz, R.J., Collins, S. (2000). Direct binding of activated C-Src to the Β3-adrenergic receptor is required for MAP kinase activation. J Biol Chem, 275, 38131-38134. [CrossRef] [PubMed] [Google Scholar]
- Carpenter, B., Tate, C.G. (2017). Active state structures of G protein-coupled receptors highlight the similarities and differences in the G protein and arrestin coupling interfaces. Curr Opin Struct Biol, 45, 124-132. [CrossRef] [PubMed] [Google Scholar]
- Coffino, P., Bourne, H.R., Tomkins, G.M. (1975). Somatic genetic analysis of cyclic AMP action: Selection of unresponsive mutants. J Cell Physiol, 85, 603-610. [CrossRef] [PubMed] [Google Scholar]
- Conklin, B.R., Farfel, Z., Lustig, K.D., Julius, D., Bourne, H.R. (1993). Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. Nature, 363, 274-276. [CrossRef] [PubMed] [Google Scholar]
- Cordeaux, Y., Nickolls, S.A., Flood, L.A., Graber, S.G., Strange, P.G. (2001). Agonist regulation of D(2) dopamine receptor/G protein interaction. Evidence for agonist selection of G protein subtype. J Biol Chem, 276, 28667-28675. [CrossRef] [PubMed] [Google Scholar]
- Davenport, A.P., Harmar, A.J. (2013). Evolving pharmacology of orphan GPCRs: IUPHAR commentary. Br J Pharmacol, 170, 693-695. [CrossRef] [PubMed] [Google Scholar]
- De Lean, A., Stadel, J.M., Lefkowitz, R.J. (1980). A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem, 255, 7108-7117. [CrossRef] [PubMed] [Google Scholar]
- DeGraff, J.L., Gagnon, A.W., Benovic, J.L., Orsini, M.J. (1999). Role of arrestins in endocytosis and signaling of α2-adrenergic receptor subtypes. J Biol Chem, 274, 11253-11259. [CrossRef] [PubMed] [Google Scholar]
- DeVree, B.T., Mahoney, J.P., Vélez-Ruiz, G.A., Rasmussen, S.G.F., Kuszak, A.J., Edwald, E., Fung, J.-J., Manglik, A., Masureel, M., Du, Y., Matt, R.A., Pardon, E., Steyaert, J., Kobilka, B.K., Sunahara, R.K. (2016). Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature, 535, 182-186. [CrossRef] [PubMed] [Google Scholar]
- Doi, M., Murai, I., Kunisue, S., Setsu, G., Uchio, N., Tanaka, R., Kobayashi, S., Shimatani, H., Hayashi, H., Chao, H.-W., Nakagawa, Y., Takahashi, Y., Hotta, Y., Yasunaga, J.-I., Matsuoka, M., Hastings, M.H., Kiyonari, H., Okamura, H. (2016). Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour. Nat Commun, 7, 10583. [CrossRef] [PubMed] [Google Scholar]
- Dorsam, R.T., Gutkind, J.S. (2007). G-protein-coupled receptors and cancer. Nat Rev Cancer, 7, 79-94. [CrossRef] [PubMed] [Google Scholar]
- Doyen, P.J., Beckers, P., Brook, G.A., Hermans, E. (2020). Regulators of G protein signalling as pharmacological targets for the treatment of neuropathic pain. Pharmacol Res, 160, 105148. [CrossRef] [PubMed] [Google Scholar]
- Dror, R.O., Mildorf, T.J., Hilger, D., Manglik, A., Borhani, D.W., Arlow, D.H., Philippsen, A., Villanueva, N., Yang, Z., Lerch, M.T., Hubbell, W.L., Kobilka, B.K., Sunahara, R.K., Shaw, D.E. (2015). Signal transduction. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science, 348, 1361-1365. [CrossRef] [PubMed] [Google Scholar]
- Duc, N.M., Kim, H.R., Chung, K.Y. (2017). Recent progress in understanding the conformational mechanism of heterotrimeric G protein activation. Biomol Ther, 25, 4-11. [CrossRef] [PubMed] [Google Scholar]
- Dupuis, N., Laschet, C., Franssen, D., Szpakowska, M., Gilissen, J., Geubelle, P., Soni, A., Parent, A.-S., Pirotte, B., Chevigné, A., Twizere, J.-C., Hanson, J. (2017). Activation of the orphan G protein-coupled receptor GPR27 by surrogate ligands promotes β-arrestin 2 recruitment. Mol Pharmacol, 91, 595-608. [CrossRef] [PubMed] [Google Scholar]
- Feinstein, T.N., Yui, N., Webber, M.J., Wehbi, V.L., Stevenson, H.P., King, J.D. Jr, Hallows, K.R., Brown, D., Bouley, R., Vilardaga, J.-P. (2013). Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. J Biol Chem, 288, 27849-27860. [CrossRef] [PubMed] [Google Scholar]
- Ferrandon, S., Feinstein, T.N., Castro, M., Wang, B., Bouley, R., Potts, J.T., Gardella, T.J., Vilardaga, J.-P. (2009). Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol, 5, 734-742. [CrossRef] [PubMed] [Google Scholar]
- Fields, T.A., Casey, P.J. (1997). Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins. Biochem J, 321, 561-571. [CrossRef] [PubMed] [Google Scholar]
- Flegel, C., Manteniotis, S., Osthold, S., Hatt, H., Gisselmann, G. (2013). Expression profile of ectopic olfactory receptors determined by deep sequencing. PLoS One, 8, e55368. [CrossRef] [PubMed] [Google Scholar]
- Flock, T., Ravarani, C.N.J., Sun, D., Venkatakrishnan, A.J., Kayikci, M., Tate, C.G., Veprintsev, D.B., Babu, M.M. (2015). Universal allosteric mechanism for Gα activation by GPCRs. Nature, 524, 173-179. [CrossRef] [PubMed] [Google Scholar]
- Flock, T., Hauser, A.S., Lund, N., Gloriam, D.E., Balaji, S., Babu, M.M. (2017). Selectivity determinants of GPCR-G-protein binding. Nature, 545, 317-322. [CrossRef] [PubMed] [Google Scholar]
- Fong, H.K., Yoshimoto, K.K., Eversole-Cire, P., Simon, M.I. (1988). Identification of a GTP-binding protein alpha subunit that lacks an apparent ADP-ribosylation site for pertussis toxin. Proc Natl Acad Sci USA, 85, 3066-3070. [CrossRef] [PubMed] [Google Scholar]
- Fredriksson, R., Lagerström, M.C., Lundin, L.-G., Schiöth, H.B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol, 63, 1256-1272. [CrossRef] [PubMed] [Google Scholar]
- García-Nafría, J., Tate, C.G. (2019). Cryo-EM structures of GPCRs coupled to Gs, Gi and Go. Mol Cell Endocrinol, 488, 1-13. [CrossRef] [PubMed] [Google Scholar]
- Gazi, L., Nickolls, S.A.: Strange, P.G. (2003). Functional coupling of the human dopamine D2 receptor with G alpha I1, G alpha I2, G alpha I3 and G alpha o G proteins: Evidence for agonist regulation of G protein selectivity. Br J Pharmacol, 138, 775-786. [CrossRef] [PubMed] [Google Scholar]
- Gilman, A.G. (2012). Silver spoons and other personal reflections. Annu Rev Pharmacol Toxicol, 52, 1-19. [Google Scholar]
- Grundmann, M., Merten, N., Malfacini, D., Inoue, A., Preis, P., Simon, K., Rüttiger, N., Ziegler, N., Benkel, T., Schmitt, N.K., Ishida, S., Müller, I., Reher, R., Kawakami, K., Inoue, A., Rick, U., Kühl, T., Imhof, D., Aoki, J., König, G.M., Hoffmann, C., Gomeza, J., Wess, J. Kostenis, E. (2018). Lack of beta-arrestin signaling in the absence of active G proteins. Nat Commun, 9(341), 1-16. [CrossRef] [PubMed] [Google Scholar]
- Hanyaloglu, A.C., von Zastrow, M. (2008). Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol, 48, 537-568. [CrossRef] [PubMed] [Google Scholar]
- Hauser, A.S., Attwood, M.M., Rask-Andersen, M., Schiöth, H.B., Gloriam, D.E. (2017). Trends in GPCR drug discovery: New agents, targets and indications. Nat Rev Drug Discov, 16, 829-842. [CrossRef] [PubMed] [Google Scholar]
- Hauser, A.S., Avet, C., Normand, C., Manchini, A., Inoue, A., Bouvier, M., Gloriam, D. (2021). GPCR-G Protein Selectivity − a Unified Meta-Analysis. https://doi.org/10.1101/2021.09.07.459250. [Google Scholar]
- Hebert-Chatelain, E., Desprez, T., Serrat, R., Bellochio, L., Grandes, P., Benard, G., Marsicano, G. (2016). A cannabinoid link between mitochondria and memory. Biochim Biophys Acta Bioenerg, 1857, e118. [CrossRef] [Google Scholar]
- Hepler, J.R., Gilman, A.G. (1992). G proteins. Trends Biochem Sci, 17, 383-387. [CrossRef] [PubMed] [Google Scholar]
- Hermans, E. (2003). Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol Ther, 99, 25-44. [CrossRef] [PubMed] [Google Scholar]
- Hislop, J.N., Caunt, C.J., Sedgley, K.R., Kelly, E., Mundell, S., Green, L.D. McArdle, C.A. (2005). Internalization of gonadotropin-releasing hormone receptors (GnRHRs): Does arrestin binding to the C-terminal tail target GnRHRs for dynamin-dependent internalization? J Mol Endocrinol, 35, 177-189. [CrossRef] [PubMed] [Google Scholar]
- Hollinger, S., Hepler, J.R. (2002). Cellular regulation of RGS proteins: Modulators and integrators of G protein signaling. Pharmacol Rev, 54, 527-559. [CrossRef] [PubMed] [Google Scholar]
- Iiri, T., Herzmark, P., Nakamoto, J.M., van Dop, C., Bourne, H.R. (1994). Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function. Nature, 371, 164-168. [CrossRef] [PubMed] [Google Scholar]
- Inoue, A., Raimondi, F., Kadji, F.M.N., Singh, G., Kishi, T., Uwamizu, A., Ono, Y., Shinjo, Y., Ishida, S., Arang, N., Kawakami, K., Gutkind, J.S., Aoki, J., Russell, R.B. (2019). Illuminating G-protein-coupling selectivity of GPCRs. Cell, 177, 1933-1947. [CrossRef] [PubMed] [Google Scholar]
- Irannejad, R., Tomshine, J.C., Tomshine, J.R., Chevalier, M., Mahoney, J.P., Steyaert, J., Rasmussen, S.G.F., Sunahara, R.K., El-Samad, H., Huang, B., von Zastrow, M. (2013). Conformational biosensors reveal GPCR signalling from endosomes. Nature, 495, 534-538. [CrossRef] [PubMed] [Google Scholar]
- Irannejad, R., von Zastrow, M. (2014). GPCR signaling along the endocytic pathway. Curr Opin Cell Biol, 27, 109-116. [CrossRef] [PubMed] [Google Scholar]
- Ismail, S., Gherardi, M.-J., Froese, A., Zanoun, M., Gigoux, V., Clerc, P., Gaits-Iacovoni, F., Steyaert, J., Nikolaev, V.O., Fourmy, D. (2016). Internalized receptor for glucose-dependent insulinotropic peptide stimulates adenylyl cyclase on early endosomes. Biochem Pharmacol, 120, 33-45. [CrossRef] [PubMed] [Google Scholar]
- Karamitri, A., Plouffe, B., Bonnefond, A., Chen, M., Gallion, J., Guillaume, J.-L., Hegron, A., Boissel, M., Canouil, M., Langenberg, C., Wareham, N.J., Le Gouill, C., Lukasheva, V., Lichtarge, O., Froguel, P., Bouvier, M., Jockers, R. (2018). Type 2 diabetes-associated variants of the MT2 melatonin receptor affect distinct modes of signaling. Sci Signal, 11(eaan6622), 1-14. [CrossRef] [Google Scholar]
- Katritch, V., Cherezov, V., Stevens, R.C. (2013). Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol, 53, 531-556. [CrossRef] [PubMed] [Google Scholar]
- Kenakin, T. (2011). Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther, 336, 296-302. [CrossRef] [PubMed] [Google Scholar]
- Kenakin, T. (2013). New concepts in pharmacological efficacy at 7TM receptors: IUPHAR review 2. Br J Pharmacol, 168, 554-575. [CrossRef] [PubMed] [Google Scholar]
- Kimple, M.E., Joseph, J.W., Bailey, C.L., Fueger, P.T., Hendry, I.A., Newgard, C.B., Casey, P.J. (2008). Gαz negatively regulates insulin secretion and glucose clearance. J Biol Chem, 283, 4560-4567. [CrossRef] [PubMed] [Google Scholar]
- Knight, K.M., Ghosh, S., Campbell, S.L., Lefevre, T.J., Olsen, R.H.J., Smrcka, A.V., Valentin, N.H., Yin, G., Vaidehi, N., Dohlman, H.G. (2021). A universal allosteric mechanism for G protein activation. Mol Cell, 81, 1384-1396. [CrossRef] [PubMed] [Google Scholar]
- Kolb, P., Kenakin, T., Alexander, S., Bermudez, M., Bohn, L., Breinholt, C., Bouvier, M., Ehlert, F., Hill, S.J., Martemyanov, K., Neubig, R., Onaran, O.H., Rajagopal, S., Roth, B.L., Selent, J., Shukla, A.K., Sommer, M.E., Gloriam, D.E. (2021). International Union of Basic and Clinical Pharmacology. Recommendations for GPCR ligand bias. Authorea, September. https://doi.org/10.22541/au.163129851.17708337/v1. [Google Scholar]
- Kostenis, E., Waelbroeck, M., Milligan, G. (2005). Techniques: Promiscuous Gα proteins in basic research and drug discovery. Trends Pharmacol Sci, 26, 595-602. [CrossRef] [PubMed] [Google Scholar]
- Kostenis, E., Pfeil, E.M., Annala, S. (2020). Heterotrimeric Gq proteins as therapeutic targets? J Biol Chem, 295, 5206-5215. [CrossRef] [PubMed] [Google Scholar]
- Kotowski, S.J., Hopf, F.W., Seif, T., Bonci, A., von Zastrow, M. (2011). Endocytosis promotes rapid dopaminergic signaling. Neuron, 71, 278-290. [CrossRef] [PubMed] [Google Scholar]
- Kuna, R.S., Girada, S.B., Asalla, S., Vallentyne, J., Maddika, S., Patterson, J.T., Smiley, D.L., DiMarchi, R.D., Mitra, P. (2013). Glucagon-like peptide-1 receptor-mediated endosomal cAMP generation promotes glucose-stimulated insulin secretion in pancreatic β-cells. Am J Physiol Endocrinol Metab, 305, E161-E170. [CrossRef] [PubMed] [Google Scholar]
- Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J.P., Miranda, C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, Y., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J.C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R.H., Wilson, R.K., Hillier, L.W., McPherson, J.D., Marra, M.A., Mardis, E.R., Fulton, L.A., Chinwalla, A.T., Pepin, K.H., Gish, W.R., Chissoe, S.L., Wendl, M.C., Delehaunty, K.D., Miner, T.L., Delehaunty, A., Kramer, J.B., Cook, L.L., Fulton, R.S., Johnson, D.L., Minx, P.J., Clifton, S.W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J.F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R.A., Muzny, D.M., Scherer, S.E., Bouck, J.B., Sodergren, E.J., Worley, K.C., Rives, C.M., Gorrell, J.H., Metzker, M.L., Naylor, S.L., Kucherlapati, R.S., Nelson, D.L., Weinstock, G.M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D.R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H.M., Dubois, J., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu J., Wang J., Huang, G., Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R.W., Federspiel, N.A., Abola, A.P., Proctor, M.J., Myers, R.M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D.R., Olson, M.V., Kaul, R., Raymond, C., Shimizu, N., Kawasaki, K., Minoshima, S., Evans, G.A., Athanasiou, M., Schultz, R., Roe, B.A., Chen, F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R., McCombie, W.R., de la Bastide, M., Dedhia, N., Blöcker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J.A., Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown, D.G., Burge, C.B., Cerutti, L., Chen, H.C., Church, D., Clamp, M., Copley, R.R., Doerks, T., Eddy, S.R., Eichler, E.E., Furey, T.S., Galagan, J., Gilbert, J.G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L.S., Jones, T.A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W.J., Kitts, P., Koonin, E.V., Korf, I., Kulp, D., Lancet, D., Lowe, T.M., McLysaght, A., Mikkelsen, T., Moran, J.V., Mulder, N., Pollara, V.J., Ponting, C.P., Schuler, G., Schultz, J., Slater, G., Smit, A.F., Stupka, E., Szustakowki, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y.I., Wolfe, K.H., Yang, S.P., Yeh, R.F., Collins, F., Guyer, M.S., Peterson, J., Felsenfeld, A., Wetterstrand, K.A., Patrinos, A., Morgan, M.J., de Jong, P., Catanese, J.J., Osoegawa, K., Shizuya, H., Choi, S., Chen, Y.J., Szustakowki, J., International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860-921. [CrossRef] [PubMed] [Google Scholar]
- Laschet, C., Dupuis, N., Hanson, J. (2018). The G protein-coupled receptors deorphanization landscape. Biochem Pharmacol, 153, 62-74. [CrossRef] [PubMed] [Google Scholar]
- Laschet, C., Dupuis, N., Hanson, J. (2019). A dynamic and screening-compatible nanoluciferase-based complementation assay enables profiling of individual GPCR-G protein interactions. J Biol Chem, 294, 4079-4090. [CrossRef] [PubMed] [Google Scholar]
- Laschet, C., Hanson, J. (2021). Nanoluciferase-based complementation assay to detect GPCR-G protein interaction. Methods Mol Biol, 2268, 149-157. [CrossRef] [PubMed] [Google Scholar]
- Le Mercier, A., Bonnavion, R., Yu, W., Alnouri, M.W., Ramas, S., Zhang, Y., Jäger, Y., Roquid, K.A., Jeong, H.-W., Sivaraj, K.K., Cho, H., Chen, X., Strilic, B., Sijmonsma, T., Adams, R., Schroeder, T., Rieger, M.A., Offermanns, S. (2021). GPR182 is an endothelium-specific atypical chemokine receptor that maintains hematopoietic stem cell homeostasis. Proc Natl Acad Sci USA, 118(e2021596118), 1-10. [Google Scholar]
- Lefkowitz, R.J. (2018). A serendipitous scientist. Annu Rev Pharmacol Toxicol, 58, 17-32. [CrossRef] [PubMed] [Google Scholar]
- Li, J., Ge, Y., Huang, J.-X., Strømgaard, K., Zhang, X., Xiong, X.-F. (2020). Heterotrimeric G proteins as therapeutic targets in drug discovery. J Med Chem, 63, 5013-5030. [CrossRef] [PubMed] [Google Scholar]
- Lohse, M.J., Calebiro, D. (2013). Cell biology: Receptor signals come in waves. Nature, 495, 457-458. [CrossRef] [PubMed] [Google Scholar]
- Lohse, M.J., Hofmann, K.P. (2015). Spatial and temporal aspects of signaling by G-protein-coupled receptors. Mol Pharmacol, 88, 572-578. [CrossRef] [PubMed] [Google Scholar]
- Lyga, S., Volpe, S., Werthmann, R.C., Götz, K., Sungkaworn, T., Lohse, M.J., Calebiro, D. (2016). Persistent CAMP signaling by internalized LH receptors in ovarian follicles. Endocrinology, 157, 1613-1621. [PubMed] [Google Scholar]
- Magalhaes, A.C., Dunn, H. Ferguson, S.S. (2012). Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol, 165, 1717-1736. [CrossRef] [PubMed] [Google Scholar]
- Mahoney, J.P., Sunahara, R.K. (2016). Mechanistic insights into GPCR-G protein interactions. Curr Opin Struct Biol, 41, 247-254. [CrossRef] [PubMed] [Google Scholar]
- Mancini, A., Avet, C., Breton, B., Le Gouill, C., Hauser, A., Normand, C., Gross, F., Lukasheva, V., Hogue, M., Morissette, S., Fauman, E., Fortin, J., Schann, S., Leroy, X., Gloriam, D., Bouvier, M. (2021). Use of novel EbBRET biosensors for comprehensive signaling profiling of one hundred therapeutically relevant human GPCRs. FASEB J, 35(S1). https://doi.org/10.1096/fasebj.2021.35.s1.01694. [Google Scholar]
- Marshall, F.H., Jones, K.A., Kaupmann, K., Bettler, B. (1999). GABAB receptors − the first 7TM heterodimers. Trends Pharmacol Sci, 20, 396-399. [CrossRef] [PubMed] [Google Scholar]
- Martemyanov, K.A. (2021). Mechanisms of Gβγ release upon GPCR activation. Trends Biochem Sci, 46, 703-704. [CrossRef] [PubMed] [Google Scholar]
- Masuho, I., Balaji, S., Muntean, B.S., Skamangas, N.K., Chavali, S., Tesmer, J.J.G., Babu, M.M., Martemyanov, K.A. (2020). A global map of G protein signaling regulation by RGS proteins. Cell, 183, 503-521. [CrossRef] [PubMed] [Google Scholar]
- Masuho, I., Skamangas, N.K., Muntean, B.S., Martemyanov, K.A. (2021). Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling. Cell Syst, 12, 324-337. [CrossRef] [PubMed] [Google Scholar]
- McKee, E.E., Bentley, A.T., Smith, R.M. Jr, Ciaccio, C.E. (1999). Origin of guanine nucleotides in isolated heart mitochondria. Biochem Biophys Res Commun, 257, 466-472. [CrossRef] [PubMed] [Google Scholar]
- McLaughlin, J.N., Shen, L., Holinstat, M., Brooks, J.D., Dibenedetto, E., Hamm, H.E. (2005). Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. J Biol Chem, 280, 25048-25059. [CrossRef] [PubMed] [Google Scholar]
- Milligan, G. Kostenis, E. (2006). Heterotrimeric G-proteins: A short history. Br J Pharmacol, 147, Suppl 1, S46-S55. [CrossRef] [PubMed] [Google Scholar]
- Milligan, G., Ward, R.J., Marsango, S. (2019). GPCR homo-oligomerization. Curr Opin Cell Biol, 57, 40-47. [CrossRef] [PubMed] [Google Scholar]
- Moreira, I.S. (2014). Structural features of the G-protein/GPCR interactions. Biochim Biophys Acta, 1840, 16-33. [CrossRef] [PubMed] [Google Scholar]
- Mukhopadhyay, S., Howlett, A.C. (2005). Chemically distinct ligands promote differential CB1 cannabinoid receptor-Gi protein interactions. Mol Pharmacol, 67, 2016-2024. [CrossRef] [PubMed] [Google Scholar]
- Muntean, B.S., Masuho, I., Dao, M., Sutton, L.P., Zucca, S., Iwamoto, H., Patil, D.N., Wang, D., Birnbaumer, L., Blakely, R.D., Grill, B., Martemyanov, K.A. (2021). Gαo is a major determinant of cAMP signaling in the pathophysiology of movement disorders. Cell Rep, 34, 1-18. [Google Scholar]
- Northup, J.K., Sternweis, P.C., Smigel, M.D., Schleifer, L.S., Ross, E.M., Gilman, A.G. (1980). Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci USA, 77, 6516-6520. [CrossRef] [PubMed] [Google Scholar]
- O’Hayre, M., Eichel, K., Avino, S., Zhao, X., Steffen, D.J., Feng, X., Kawakami, K., Aoki, J., Messer, K., Sunahara, R., Inoue, A., von Zastrow, M., Gutkind, J.S. (2017). Genetic evidence that β-arrestins are dispensable for the initiation of β2-adrenergic receptor signaling to ERK. Sci Signal, 10(eaal3395), 1-13. [Google Scholar]
- Okashah, N., Wan, Q., Ghosh, S., Sandhu, M., Inoue, A., Vaidehi, N., Lambert, N.A. (2019). Variable G protein determinants of GPCR coupling selectivity. Proc Natl Acad Sci USA, 116, 12054-12059. [CrossRef] [PubMed] [Google Scholar]
- Okinaga, S., Slattery, D., Humbles, A., Zsengeller, Z., Morteau, O., Kinrade, M.B., Brodbeck, R.M., Krause, J.E., Choe, H.-R., Gerard, N.P. Gerard, C. (2003). C5L2: A nonsignaling C5A binding protein. Biochemistry, 42, 9406-9415. [CrossRef] [PubMed] [Google Scholar]
- Oldham, W.M., Van Eps, N., Preininger, A.M., Hubbell, W.L., Hamm, H.E. (2006). Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat Struct Mol Biol, 13, 772-777. [CrossRef] [PubMed] [Google Scholar]
- Oldham, W.M., Hamm, H.E. (2007). How do receptors activate G proteins? Adv Protein Chem, 74, 67-93. [CrossRef] [PubMed] [Google Scholar]
- Oldham, W.M., Hamm, H.E. (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol, 9, 60-71. [CrossRef] [PubMed] [Google Scholar]
- Pandey, S., Kumari, P., Baidya, M., Kise, R., Cao, Y., Dwivedi-Agnihotri, H., Banerjee, R., Li, X.X., Cui, C.S., Lee, J.D., Kawakami, K., Maharana, J., Ranjan, A., Chaturvedi, M., Jhingan, G.D., Laporte, S.A., Woodruff, T.M., Inoue, A., Shukla, A.K. (2021). Intrinsic bias at non-canonical, β-arrestin-coupled seven transmembrane receptors. Mol Cell, 81, 4605-4621. [CrossRef] [PubMed] [Google Scholar]
- Peterson, Y.K., Luttrell, L.M. (2017). The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol Rev, 69, 256-297. [CrossRef] [PubMed] [Google Scholar]
- Pfeil, E.M., Brands, J., Merten, N., Vögtle, T., Vescovo, M., Rick, U., Albrecht, I.-M., Heycke, N., Kawakami, K., Ono, Y., Ngako Kadji, F.M., Hiratsuka, S., Aoki, J., Häberlein, F., Matthey, M., Garg, J., Hennen, S., Jobin, M.-L., Seier, K., Calebiro, D., Pfeifer, A., Heinemann, A., Wenzel, D., König, G.M., Nieswandt, B., Fleischmann, B.K., Inoue, A., Simon, K., Kostenis, E. (2020). Heterotrimeric G protein subunit Gαq is a master switch for Gβγ-mediated calcium mobilization by Gi-coupled GPCRs. Mol Cell, 80, 940-954. [CrossRef] [PubMed] [Google Scholar]
- Preininger, A.M., Meiler, J., Hamm, H.E. (2013). Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: A perspective. J Mol Biol, 425, 2288-2298. [CrossRef] [PubMed] [Google Scholar]
- Qu, L., Pan, C., He, S.-M., Lang, B., Gao, G.-D., Wang, X.-L., Wang, Y. (2019). The Ras superfamily of small GTPases in non-neoplastic cerebral diseases. Front Mol Neurosci, 12, 121. [CrossRef] [PubMed] [Google Scholar]
- Rajagopal, S., Kim, J., Ahn, S., Craig, S., Lam, C.M., Gerard, N.P., Gerard, C., Lefkowitz, R.J. (2010). β-arrestin- but not G protein-mediated signaling by the “Decoy” receptor CXCR7. Proc Natl Acad Sci USA, 107, 628-632. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Rasmussen, S.G.F., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., Mathiesen, J.M., Shah, S.T.A., Lyons, J.A., Caffrey, M., Gellman, S.H., Steyaert, J., Skiniotis, G., Weis, W.I., Sunahara, R.K., Kobilka, B.K. (2011). Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature, 477, 549-555. [CrossRef] [PubMed] [Google Scholar]
- Rodbell, M., Birnbaumer, L., Pohl, S.L. Krans, H.M. (1971). The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J Biol Chem, 246, 1877-1882. [CrossRef] [PubMed] [Google Scholar]
- Ross, E.M. Gilman, A.G. (1977). Reconstitution of catecholamine-sensitive adenylate cyclase activity: Interactions of solubilized components with receptor-replete membranes. Proc Natl Acad Sci USA, 74, 3715-3719. [CrossRef] [PubMed] [Google Scholar]
- Samama, P., Cotecchia, S., Costa, T. Lefkowitz, R.J. (1993). A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem, 268, 4625-4636. [CrossRef] [PubMed] [Google Scholar]
- Schwindinger, W.F., Miric, A., Zimmerman, D., Levine, M.A. (1994). A novel Gs alpha mutant in a patient with Albright hereditary osteodystrophy uncouples cell surface receptors from adenylyl cyclase. J Biol Chem, 269, 25387-25391. [CrossRef] [PubMed] [Google Scholar]
- Sjögren, B. (2017). The evolution of regulators of G protein signalling proteins as drug targets − 20 years in the making: IUPHAR review 21. Br J. Pharmacol, 174, 427-437. [CrossRef] [Google Scholar]
- Sleno, R., Hébert, T.E. (2019). Shaky ground − The nature of metastable GPCR signalling complexes. Neuropharmacology, 152, 4-14. [CrossRef] [PubMed] [Google Scholar]
- Sprang, S.R. (2016). Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis. Biopolymers, 105, 449-462. [CrossRef] [PubMed] [Google Scholar]
- Sriram, K., Insel, P.A. (2018). G protein-coupled receptors as targets for approved drugs: How many targets and how many drugs? Mol Pharmacol, 93, 251-258. [CrossRef] [PubMed] [Google Scholar]
- Sugino, S., Farrag, M. Ruiz-Velasco, V. (2016). Gα14 subunit-mediated inhibition of voltage-gated Ca2+ and K+ channels via neurokinin-1 receptors in rat celiac-superior mesenteric ganglion neurons. J Neurophysiol, 115, 1577-1586. [CrossRef] [PubMed] [Google Scholar]
- Sutherland, E.W., Robison, G.A. (1966). The role of cyclic-3’,5’-AMP in responses to catecholamines and other hormones. Pharmacol Rev, 18, 145-161. [PubMed] [Google Scholar]
- Sutherland, E.W. (1971). Studies on the mechanism of hormone action. Presented at the Nobel Prize lecture, Stockholm, Sweden. [Google Scholar]
- Syrovatkina, V., Alegre, K.O., Dey, R., Huang, X.-Y. (2016). Regulation, signaling, and physiological functions of G-proteins. J Mol Biol, 428, 3850-3868. [CrossRef] [PubMed] [Google Scholar]
- Szpakowska, M., Nevins, A.M., Meyrath, M., Rhainds, D., D’huys, T., Guité-Vinet, F., Dupuis, N., Gauthier, P.-A., Counson, M., Kleist, A., St-Onge, G., Hanson, J., Schols, D., Volkman, B.F., Heveker, N., Chevigné, A. (2018). Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Br J Pharmacol, 175, 1419-1438. [CrossRef] [PubMed] [Google Scholar]
- Tadevosyan, A., Vaniotis, G., Allen, B.G., Hébert, T.E., Nattel, S. (2012). G protein-coupled receptor signalling in the cardiac nuclear membrane: Evidence and possible roles in physiological and pathophysiological function. J Physiol, 590, 1313-1330. [CrossRef] [PubMed] [Google Scholar]
- Taussig, R., Tang, W.J., Hepler, J.R., Gilman, A.G. (1994). Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem, 269, 6093-6100. [CrossRef] [PubMed] [Google Scholar]
- Tobin, A.B. (2008). G-protein-coupled receptor phosphorylation: Where, when and by whom. Br J Pharmacol, 153(Suppl 1), S167-S176. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Van Eps, N., Preininger, A.M., Alexander, N., Kaya, A.I., Meier, S., Meiler, J., Hamm, H.E, Hubbell, W.L. (2011). Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proc Natl Acad Sci USA, 108, 9420-9424. [CrossRef] [PubMed] [Google Scholar]
- Von Moo, E., Harpsøe, K., Hauser, A.S., Masuho, I., Bräuner-Osborne, H., Gloriam, D.E., Martemyanov, K.A. (2021). Ligand-directed bias of G protein signaling at the dopamine D2 receptor. Cell Chem Biol. https://doi.org/10.1016/j.chembiol.2021.07.004. [Google Scholar]
- von Zastrow, M., Sorkin, A. (2021). Mechanisms for regulating and organizing receptor signaling by endocytosis. Annu Rev Biochem, 90, 709-737. [CrossRef] [PubMed] [Google Scholar]
- Wettschureck, N., Offermanns, S. (2005). Mammalian G proteins and their cell type specific functions. Physiol Rev, 85, 1159-1204. [CrossRef] [PubMed] [Google Scholar]
- Wong, Y.H., Conklin, B.R., Bourne, H.R. (1992). Gz-mediated hormonal inhibition of cyclic AMP accumulation. Science, 255, 339-342. [CrossRef] [PubMed] [Google Scholar]
- Worzfeld, T., Wettschureck, N., Offermanns, S. (2008). G(12)/G(13)-mediated signalling in mammalian physiology and disease. Trends Pharmacol Sci, 29, 582-589. [CrossRef] [PubMed] [Google Scholar]
- Wright, S.C. Bouvier, M. (2021). Illuminating the complexity of GPCR pathway selectivity − Advances in biosensor development. Curr Opin Struct Biol, 69, 142-149. [CrossRef] [PubMed] [Google Scholar]
- Wright, S.C., Lukasheva, V., Le Gouill, C., Kobayashi, H., Breton, B., Mailhot-Larouche, S., Blondel-Tepaz, É., Antunes Vieira, N., Costa-Neto, C., Héroux, M., Lambert, N.A., Parreiras-E-Silva, L.T., Bouvier, M. (2021). BRET-based effector membrane translocation assay monitors GPCR-promoted and endocytosis-mediated Gq activation at early endosomes. Proc Natl Acad Sci USA, 118, e2025846118. [CrossRef] [PubMed] [Google Scholar]
- Yang, J., Wu, J., Kowalska, M.A., Dalvi, A., Prevost, N., O’Brien, P.J., Manning, D., Poncz, M., Lucki, I., Blendy, J.A. Brass, L.F. (2000). Loss of signaling through the G protein, Gz, results in abnormal platelet activation and altered responses to psychoactive drugs. Proc Natl Acad Sci USA, 97, 9984-9989. [CrossRef] [PubMed] [Google Scholar]
- Yano, H., Cai, N.-S., Xu, M., Verma, R.K., Rea, W., Hoffman, A.F., Shi, L., Javitch, J.A., Bonci, A., Ferré, S. (2018). Gs- versus Golf-dependent functional selectivity mediated by the dopamine D1 receptor. Nat Commun, 9, 486. [CrossRef] [PubMed] [Google Scholar]
- Zhuang, X., Belluscio, L., Hen, R. (2000). Golfα mediates dopamine D1 receptor signaling. J Neurosci, 20, RC91 (1-5). [CrossRef] [PubMed] [Google Scholar]
- Zou, Q.-Y., Zhao, Y.-J., Zhou, C., Liu, A.-X., Zhong, X.-Q., Yan, Q., Li, Y., Yi, F.-X., Bird, I.M., Zheng, J. (2019). G Protein α subunit 14 mediates fibroblast growth factor 2-induced cellular responses in human endothelial cells. J Cell Physiol, 234, 10184-10195. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.