Accès gratuit
Numéro |
Biologie Aujourd’hui
Volume 215, Numéro 3-4, 2021
|
|
---|---|---|
Page(s) | 107 - 118 | |
DOI | https://doi.org/10.1051/jbio/2021010 | |
Publié en ligne | 11 mars 2022 |
- Ahn, S., Kim, J., Hara, M.R., Ren, X.R., Lefkowitz, R.J. (2009). {beta}-arrestin 2 mediates anti-apoptotic signaling through regulation of BAD phosphorylation. J Biol Chem, 284, 8855-8865. [CrossRef] [PubMed] [Google Scholar]
- Ahn, S., Shenoy, S.K., Luttrell, L.M., Lefkowitz, R.J. (2020). SnapShot: beta-arrestin functions. Cell, 182, 1362-1362.e1. [CrossRef] [PubMed] [Google Scholar]
- Ayoub, M.A., Landomiel, F., Gallay, N., Jegot, G., Poupon, A., Crépieux, P., Reiter, E. (2015). Assessing gonadotropin receptor function by resonance energy transfer-based assays. Front Endocrinol (Lausanne), 6, 130. [CrossRef] [PubMed] [Google Scholar]
- Barnes, W.G., Reiter, E., Violin, J.D., Ren, X.R., Milligan, G., Lefkowitz, R.J. (2005). Beta-arrestin 1 and galphaq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation. J Biol Chem, 280, 8041-8050. [CrossRef] [PubMed] [Google Scholar]
- Beaulieu, J.M., Sotnikova, T.D., Marion, S., Lefkowitz, R.J., Gainetdinov, R.R., Caron, M.G. (2005). An akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell, 122, 261-273. [CrossRef] [PubMed] [Google Scholar]
- Bruchas, M.R., Macey, T.A., Lowe, J.D., Chavkin, C. (2006). Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem, 281, 18081-18089. [CrossRef] [PubMed] [Google Scholar]
- Busillo, J.M., Armando, S., Sengupta, R., Meucci, O., Bouvier, M., Benovic, J.L. (2010). Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem, 285, 7805-7817. [CrossRef] [PubMed] [Google Scholar]
- Butcher, A.J., Prihandoko, R., Kong, K.C., Mcwilliams, P., Edwards, J.M., Bottrill, A., Mistry, S., Tobin, A.B. (2011). Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. J Biol Chem, 286, 11506-11518. [CrossRef] [PubMed] [Google Scholar]
- Calebiro, D., Nikolaev, V.O., Gagliani, M.C., De Filippis, T., Dees, C., Tacchetti, C., Persani, L., Lohse, M.J. (2009). Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol, 7, e1000172. [CrossRef] [PubMed] [Google Scholar]
- Calebiro, D., Nikolaev, V.O., Persani, L., Lohse, M.J. (2010). Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci, 31, 221-228. [CrossRef] [PubMed] [Google Scholar]
- Carr, R. 3rd, Benovic, J.L. (2016). From biased signalling to polypharmacology: Unlocking unique intracellular signalling using pepducins. Biochem Soc Trans, 44, 555-561. [CrossRef] [PubMed] [Google Scholar]
- Cassier, E., Gallay, N., Bourquard, T., Claeysen, S., Bockaert, J., Crépieux, P., Poupon, A., Reiter, E., Marin, P., Vandermoere, F. (2017). Phosphorylation of beta-arrestin2 at Thr(383) by MEK underlies beta-arrestin-dependent activation of Erk1/2 by GPCRs. Elife, 6. [CrossRef] [Google Scholar]
- Changeux, J.P., Christopoulos, A. (2016). Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell, 166, 1084-1102. [CrossRef] [PubMed] [Google Scholar]
- Charest, P.G., Terrillon, S., Bouvier, M. (2005). Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET. EMBO Rep, 6, 334-340. [CrossRef] [PubMed] [Google Scholar]
- Claing, A., Chen, W., Miller, W.E., Vitale, N., Moss, J., Prémont, R.T., Lefkowitz, R.J. (2001). beta-arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem, 276, 42509-42513. [CrossRef] [PubMed] [Google Scholar]
- De Lean, A., Stadel, J.M., Lefkowitz, R.J. (1980). A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem, 255, 7108-7117. [CrossRef] [PubMed] [Google Scholar]
- DeVree, B.T., Mahoney, J.P., Velez-Ruiz, G.A., Rasmussen, S.G., Kuszak, A.J., Edwald, E., Fung, J.J., Manglik, A., Masureel, M., Du, Y., Matt, R.A., Pardon, E., Steyaert, J., Kobilka, B.K., Sunahara, R.K. (2016). Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature, 535, 182-186. [CrossRef] [PubMed] [Google Scholar]
- DeWire, S.M., Violin, J.D. (2011). Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology. Circ Res, 109, 205-216. [CrossRef] [PubMed] [Google Scholar]
- DeWire, S.M., Ahn, S., Lefkowitz, R.J., Shenoy, S.K. (2007). Beta-arrestins and cell signaling. Annu Rev Physiol, 69, 483-510. [CrossRef] [PubMed] [Google Scholar]
- DeWire, S.M., Kim, J., Whalen, E.J., Ahn, S., Chen, M., Lefkowitz, R.J. (2008). Beta-arrestin-mediated signaling regulates protein synthesis. J Biol Chem, 283, 10611-10620. [CrossRef] [PubMed] [Google Scholar]
- Eichel, K., Jullie, D., von Zastrow, M. (2016). beta-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat Cell Biol, 18, 303-310. [CrossRef] [PubMed] [Google Scholar]
- Eichel, K., Jullie, D., Barsi-Rhyne, B., Latorraca, N.R., Masureel, M., Sibarita, J.B., Dror, R.O., von Zastrow, M. (2018). Catalytic activation of beta-arrestin by GPCRs. Nature, 557, 381-386. [CrossRef] [PubMed] [Google Scholar]
- Feinstein, T.N., Wehbi, V.L., Ardura, J.A., Wheeler, D.S., Ferrandon, S., Gardella, T.J., Vilardaga, J.P. (2011). Retromer terminates the generation of cAMP by internalized PTH receptors. Nat Chem Biol, 7, 278-284. [CrossRef] [PubMed] [Google Scholar]
- Feinstein, T.N., Yui, N., Webber, M.J., Wehbi, V.L., Stevenson, H.P., King, J.D., Jr., Hallows, K.R., Brown, D., Bouley, R., Vilardaga, J.P. (2013). Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. J Biol Chem, 288, 27849-27860. [CrossRef] [PubMed] [Google Scholar]
- Ferrandon, S., Feinstein, T.N., Castro, M., Wang, B., Bouley, R., Potts, J.T., Gardella, T.J., Vilardaga, J.P. (2009). Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol, 5, 734-742. [Google Scholar]
- Freedman, N.J., Lefkowitz, R.J. (1996). Desensitization of G protein-coupled receptors. Recent Prog Horm Res, 51, 319-351; discussion 352-353. [PubMed] [Google Scholar]
- Galandrin, S., Oligny-Longpre, G., Bouvier, M. (2007). The evasive nature of drug efficacy: Implications for drug discovery. Trends Pharmacol Sci, 28, 423-430. [CrossRef] [PubMed] [Google Scholar]
- Gao, H., Sun, Y., Wu, Y., Luan, B., Wang, Y., Qu, B., Pei, G. (2004). Identification of beta-arrestin 2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell, 14, 303-317. [CrossRef] [PubMed] [Google Scholar]
- Goodman, O.B., Jr., Krupnick, J.G., Santini, F., Gurevich, V.V., Penn, R.B., Gagnon, A.W., Keen, J.H., Benovic, J.L. (1996). Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature, 383, 447-450. [CrossRef] [PubMed] [Google Scholar]
- Gould, N., Doulias, P.T., Tenopoulou, M., Raju, K., Ischiropoulos, H. (2013). Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem, 288, 26473-26479. [CrossRef] [PubMed] [Google Scholar]
- Grundmann, M., Merten, N., Malfacini, D., Inoue, A., Preis, P., Simon, K., Ruttiger, N., Ziegler, N., Benkel, T., Schmitt, N.K., Ishida, S., Muller, I., Reher, R., Kawakami, K., Inoue, A., Rick, U., Kuhl, T., Imhof, D., Aoki, J., Konig, G.M., Hoffmann, C., Gomeza, J., Wess, J., Kostenis, E. (2018). Lack of beta-arrestin signaling in the absence of active G proteins. Nat Commun, 9, 341. [CrossRef] [PubMed] [Google Scholar]
- Gurevich, V.V., Benovic, J.L. (1993). Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. J Biol Chem, 268, 11628-11638. [CrossRef] [PubMed] [Google Scholar]
- Halls, M.L. (2012). Constitutive formation of an RXFP1-signalosome: a novel paradigm in GPCR function and regulation. Br J Pharmacol, 165, 1644-1658. [CrossRef] [PubMed] [Google Scholar]
- Halls, M.L., Cooper, D.M. (2010). Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, beta-arrestin 2, PDE4D3 complex. EMBO J, 29, 2772-2787. [CrossRef] [PubMed] [Google Scholar]
- Heitzler, D., Durand, G., Gallay, N., Rizk, A., Ahn, S., Kim, J., Violin, J.D., Dupuy, L., Gauthier, C., Piketty, V., Crépieux, P., Poupon, A., Clément, F., Fages, F., Lefkowitz, R.J., Reiter, E. (2012). Competing G protein-coupled receptor kinases balance G protein and beta-arrestin signaling. Mol Syst Biol, 8, 590. [CrossRef] [PubMed] [Google Scholar]
- Irannejad, R., Tomshine, J.C., Tomshine, J.R., Chevalier, M., Mahoney, J.P., Steyaert, J., Rasmussen, S.G., Sunahara, R.K., El-Samad, H., Huang, B., von Zastrow, M. (2013). Conformational biosensors reveal GPCR signalling from endosomes. Nature, 495, 534-538. [CrossRef] [PubMed] [Google Scholar]
- Ismail, S., Gherardi, M.J., Froese, A., Zanoun, M., Gigoux, V., Clerc, P., Gaits-Iacovoni, F., Steyaert, J., Nikolaev, V.O., Fourmy, D. (2016). Internalized receptor for glucose-dependent insulinotropic peptide stimulates adenylyl cyclase on early endosomes. Biochem Pharmacol, 120, 33-45. [CrossRef] [PubMed] [Google Scholar]
- Iwata, K., Luo, J., Penn, R.B., Benovic, J.L. (2005). Bimodal regulation of the human H1 histamine receptor by G protein-coupled receptor kinase 2. J Biol Chem, 280, 2197-2204. [CrossRef] [PubMed] [Google Scholar]
- Jensen, J.B., Lyssand, J.S., Hague, C., Hille, B. (2009). Fluorescence changes reveal kinetic steps of muscarinic receptor-mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels. J Gen Physiol, 133, 347-359. [CrossRef] [PubMed] [Google Scholar]
- Kahsai, A.W., Wisler, J.W., Lee, J., Ahn, S., Cahill Iii, T.J., Dennison, S.M., Staus, D.P., Thomsen, A.R., Anasti, K.M., Pani, B., Wingler, L.M., Desai, H., Bompiani, K.M., Strachan, R.T., Qin, X., Alam, S.M., Sullenger, B.A., Lefkowitz, R.J. (2016). Conformationally selective RNA aptamers allosterically modulate the beta2-adrenoceptor. Nat Chem Biol, 12, 709-716. [CrossRef] [PubMed] [Google Scholar]
- Kang, J., Shi, Y., Xiang, B., Qu, B., Su, W., Zhu, M., Zhang, M., Bao, G., Wang, F., Zhang, X., Yang, R., Fan, F., Chen, X., Pei, G., Ma, L. (2005). A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell, 123, 833-847. [CrossRef] [PubMed] [Google Scholar]
- Kang, Y., Zhou, X.E., Gao, X., He, Y., Liu, W., Ishchenko, A., Barty, A., White, T.A., Yefanov, O., Han, G.W., Xu, Q., De Waal, P.W., Ke, J., Tan, M.H., Zhang, C., Moeller, A., West, G.M., Pascal, B.D., Van Eps, N., Caro, L.N., Vishnivetskiy, S.A., Lee, R.J., Suino-Powell, K.M., Gu, X., Pal, K., Ma, J., Zhi, X., Boutet, S., Williams, G.J., Messerschmidt, M., Gati, C., Zatsepin, N.A., Wang, D., James, D., Basu, S., Roy-Chowdhury, S., Conrad, C.E., Coe, J., Liu, H., Lisova, S., Kupitz, C., Grotjohann, I., Fromme, R., Jiang, Y., Tan, M., Yang, H., Li, J., Wang, M., Zheng, Z., Li, D., Howe, N., Zhao, Y., Standfuss, J., Diederichs, K., Dong, Y., Potter, C.S., Carragher, B., Caffrey, M., Jiang, H., Chapman, H.N., Spence, J.C., Fromme, P., Weierstall, U., Ernst, O.P., Katritch, V., Gurevich, V.V., Griffin, P.R., Hubbell, W.L., Stevens, R.C., Cherezov, V., Melcher, K., Xu, H.E. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523, 561-567. [CrossRef] [PubMed] [Google Scholar]
- Kara, E., Crépieux, P., Gauthier, C., Martinat, N., Piketty, V., Guillou, F., Reiter, E. (2006). A phosphorylation cluster of five serine and threonine residues in the C-terminus of the follicle-stimulating hormone receptor is important for desensitization but not for beta-arrestin-mediated ERK activation. Mol Endocrinol, 20, 3014-3026. [CrossRef] [PubMed] [Google Scholar]
- Kenakin, T. (2003). Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol Sci, 24, 346-354. [CrossRef] [PubMed] [Google Scholar]
- Khoury, E., Nikolajev, L., Simaan, M., Namkung, Y., Laporte, S.A. (2014). Differential regulation of endosomal GPCR/beta-arrestin complexes and trafficking by MAPK. J Biol Chem, 289, 23302-23317. [CrossRef] [PubMed] [Google Scholar]
- Kim, Y.M., Barak, L.S., Caron, M.G., Benovic, J.L. (2002). Regulation of arrestin-3 phosphorylation by casein kinase II. J Biol Chem, 277, 16837-16846. [CrossRef] [PubMed] [Google Scholar]
- Kim, J., Ahn, S., Ren, X.R., Whalen, E.J., Reiter, E., Wei, H., Lefkowitz, R.J. (2005). Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci USA, 102, 1442-1447. [CrossRef] [PubMed] [Google Scholar]
- Kobilka, B.K. (2011). Structural insights into adrenergic receptor function and pharmacology. Trends Pharmacol Sci, 32, 213-218. [CrossRef] [PubMed] [Google Scholar]
- Kook, S., Zhan, X., Kaoud, T.S., Dalby, K.N., Gurevich, V.V., Gurevich, E.V. (2013). Arrestin-3 binds c-Jun N-terminal kinase 1 (JNK1) and JNK2 and facilitates the activation of these ubiquitous JNK isoforms in cells via scaffolding. J Biol Chem, 288, 37332-37342. [CrossRef] [PubMed] [Google Scholar]
- Landomiel, F., Gallay, N., Jegot, G., Tranchant, T., Durand, G., Bourquard, T., Crépieux, P., Poupon, A., Reiter, E. (2014). Biased signalling in follicle stimulating hormone action. Mol Cell Endocrinol, 382, 452-459. [CrossRef] [PubMed] [Google Scholar]
- Laporte, S.A., Oakley, R.H., Zhang, J., Holt, J.A., Ferguson, S.S., Caron, M.G., Barak, L.S. (1999). The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA, 96, 3712-3717. [CrossRef] [PubMed] [Google Scholar]
- Latorraca, N.R., Wang, J.K., Bauer, B., Townshend, R.J.L., Hollingsworth, S.A., Olivieri, J.E., Xu, H.E., Sommer, M.E., Dror, R.O. (2018). Molecular mechanism of GPCR-mediated arrestin activation. Nature, 557, 452-456. [CrossRef] [PubMed] [Google Scholar]
- Lee, M.H., Appleton, K.M., Strungs, E.G., Kwon, J.Y., Morinelli, T.A., Peterson, Y.K., Laporte, S.A., Luttrell, L.M. (2016). The conformational signature of beta-arrestin2 predicts its trafficking and signalling functions. Nature, 531, 665-668. [CrossRef] [PubMed] [Google Scholar]
- Lefkowitz, R.J., Shenoy, S.K. (2005). Transduction of receptor signals by beta-arrestins. Science, 308, 512-517. [CrossRef] [PubMed] [Google Scholar]
- Lima-Fernandes, E., Enslen, H., Camand, E., Kotelevets, L., Boularan, C., Achour, L., Benmerah, A., Gibson, L.C., Baillie, G.S., Pitcher, J.A., Chastre, E., Etienne-Manneville, S., Marullo, S., Scott, M.G. (2011). Distinct functional outputs of PTEN signalling are controlled by dynamic association with beta-arrestins. EMBO J, 30, 2557-2568. [CrossRef] [PubMed] [Google Scholar]
- Lin, F.T., Krueger, K.M., Kendall, H.E., Daaka, Y., Fredericks, Z.L., Pitcher, J.A., Lefkowitz, R.J. (1997). Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. J Biol Chem, 272, 31051-31057. [CrossRef] [PubMed] [Google Scholar]
- Lin, F.T., Miller, W.E., Luttrell, L.M., Lefkowitz, R.J. (1999). Feedback regulation of beta-arrestin 1 function by extracellular signal-regulated kinases. J Biol Chem, 274, 15971-15974. [CrossRef] [PubMed] [Google Scholar]
- Lin, F.T., Chen, W., Shenoy, S., Cong, M., Exum, S.T., Lefkowitz, R.J. (2002). Phosphorylation of beta-arrestin2 regulates its function in internalization of beta(2)-adrenergic receptors. Biochemistry, 41, 10692-10699. [CrossRef] [PubMed] [Google Scholar]
- Lohse, M.J., Calebiro, D. (2013). Cell biology: Receptor signals come in waves. Nature, 495, 457-458. [CrossRef] [PubMed] [Google Scholar]
- Lohse, M.J., Hofmann, K.P. (2015). Spatial and temporal aspects of signaling by G protein-coupled receptors. Mol Pharmacol, 88, 572-578. [CrossRef] [PubMed] [Google Scholar]
- Lohse, M.J., Nikolaev, V.O., Hein, P., Hoffmann, C., Vilardaga, J.P., Bunemann, M. (2008). Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol Sci, 29, 159-165. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Luo, J., Busillo, J.M., Benovic, J.L. (2008). M3 muscarinic acetylcholine receptor-mediated signaling is regulated by distinct mechanisms. Mol Pharmacol, 74, 338-347. [CrossRef] [PubMed] [Google Scholar]
- Luttrell, L.M., Roudabush, F.L., Choy, E.W., Miller, W.E., Field, M.E., Pierce, K.L., Lefkowitz, R.J. (2001). Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA, 98, 2449-2454. [CrossRef] [PubMed] [Google Scholar]
- Luttrell, L.M., Wang, J., Plouffe, B., Smith, J.S., Yamani, L., Kaur, S., Jean-Charles, P.Y., Gauthier, C., Lee, M.H., Pani, B., Kim, J., Ahn, S., Rajagopal, S., Reiter, E., Bouvier, M., Shenoy, S.K., Laporte, S.A., Rockman, H.A., Lefkowitz, R.J. (2018). Manifold roles of beta-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal, 11(549), eaat7650. [CrossRef] [PubMed] [Google Scholar]
- Martini, L., Hastrup, H., Holst, B., Fraile-Ramos, A., Marsh, M., Schwartz, T.W. (2002). NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype. Mol Pharmacol, 62, 30-37. [CrossRef] [PubMed] [Google Scholar]
- McDonald, P.H., Cote, N.L., Lin, F.T., Prémont, R.T., Pitcher, J.A., Lefkowitz, R.J. (1999). Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation. J Biol Chem, 274, 10677-10680. [CrossRef] [PubMed] [Google Scholar]
- McDonald, P.H., Chow, C.W., Miller, W.E., Laporte, S.A., Field, M.E., Lin, F.T., Davis, R.J., Lefkowitz, R.J. (2000). Beta-arrestin 2: A receptor-regulated MAPK scaffold for the activation of JNK3. Science, 290, 1574-1577. [CrossRef] [PubMed] [Google Scholar]
- Mujic-Delic, A., De Wit, R.H., Verkaar, F., Smit, M.J. (2014). GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics. Trends Pharmacol Sci, 35, 247-255. [CrossRef] [PubMed] [Google Scholar]
- Mullershausen, F., Zecri, F., Cetin, C., Billich, A., Guerini, D., Seuwen, K. (2009). Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat Chem Biol, 5, 428-434. [Google Scholar]
- Nelson, C.D., Perry, S.J., Regier, D.S., Prescott, S.M., Topham, M.K., Lefkowitz, R.J. (2007). Targeting of diacylglycerol degradation to M1 muscarinic receptors by beta-arrestins. Science, 315, 663-666. [CrossRef] [PubMed] [Google Scholar]
- Nobles, K.N., Guan, Z., Xiao, K., Oas, T.G., Lefkowitz, R.J. (2007). The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins 1 and 2. J Biol Chem, 282, 21370-21381. [CrossRef] [PubMed] [Google Scholar]
- Nobles, K.N., Xiao, K., Ahn, S., Shukla, A.K., Lam, C.M., Rajagopal, S., Strachan, R.T., Huang, T.Y., Bressler, E.A., Hara, M.R., Shenoy, S.K., Gygi, S.P., Lefkowitz, R.J. (2011). Distinct phosphorylation sites on the beta(2)-adrenergic receptor establish a barcode that encodes differential functions of beta-arrestin. Sci Signal, 4, ra51. [CrossRef] [PubMed] [Google Scholar]
- Noma, T., Lemaire, A., Naga Prasad, S.V., Barki-Harrington, L., Tilley, D.G., Chen, J., Le Corvoisier, P., Violin, J.D., Wei, H., Lefkowitz, R.J., Rockman, H.A. (2007). Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest, 117, 2445-2458. [Google Scholar]
- Nuber, S., Zabel, U., Lorenz, K., Nuber, A., Milligan, G., Tobin, A.B., Lohse, M.J., Hoffmann, C. (2016). beta-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature, 531, 661-664. [CrossRef] [PubMed] [Google Scholar]
- Nygaard, R., Zou, Y., Dror, R.O., Mildorf, T.J., Arlow, D.H., Manglik, A., Pan, A.C., Liu, C.W., Fung, J.J., Bokoch, M.P., Thian, F.S., Kobilka, T.S., Shaw, D.E., Mueller, L., Prosser, R.S., Kobilka, B.K. (2013). The dynamic process of beta(2)-adrenergic receptor activation. Cell, 152, 532-542. [CrossRef] [PubMed] [Google Scholar]
- O’Hayre, M., Eichel, K., Avino, S., Zhao, X., Steffen, D.J., Feng, X., Kawakami, K., Aoki, J., Messer, K., Sunahara, R., Inoue, A., Von Zastrow, M., Gutkind, J.S. (2017). Genetic evidence that beta-arrestins are dispensable for the initiation of beta2-adrenergic receptor signaling to ERK. Sci Signal, 10(484), eaal 3395. [Google Scholar]
- Oakley, R.H., Laporte, S.A., Holt, J.A., Caron, M.G., Barak, L.S. (2000). Differential affinities of visual arrestin, beta arrestin1, and beta arrestin 2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem, 275, 17201-17210. [CrossRef] [PubMed] [Google Scholar]
- Oakley, R.H., Laporte, S.A., Holt, J.A., Barak, L.S., Caron, M.G. (2001). Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis. J Biol Chem, 276, 19452-19460. [CrossRef] [PubMed] [Google Scholar]
- Ozawa, K., Whalen, E.J., Nelson, C.D., Mu, Y., Hess, D.T., Lefkowitz, R.J., Stamler, J.S. (2008). S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking. Mol Cell, 31, 395-405. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Perroy, J., Pontier, S., Charest, P.G., Aubry, M., Bouvier, M. (2004). Real-time monitoring of ubiquitination in living cells by BRET. Nat Methods, 1, 203-208. [CrossRef] [PubMed] [Google Scholar]
- Perry, S.J., Baillie, G.S., Kohout, T.A., McPhee, I., Magiera, M.M., Ang, K.L., Miller, W.E., McLean, A.J., Conti, M., Houslay, M.D., Lefkowitz, R.J. (2002). Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science, 298, 834-836. [CrossRef] [PubMed] [Google Scholar]
- Rasmussen, S.G., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., Mathiesen, J.M., Shah, S.T., Lyons, J.A., Caffrey, M., Gellman, S.H., Steyaert, J., Skiniotis, G., Weis, W.I., Sunahara, R.K., Kobilka, B.K. (2011). Crystal structure of the beta 2 adrenergic receptor-Gs protein complex. Nature, 477, 549-555. [CrossRef] [PubMed] [Google Scholar]
- Reiter, E., Lefkowitz, R.J. (2006). GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab, 17, 159-165. [CrossRef] [PubMed] [Google Scholar]
- Reiter, E., Ahn, S., Shukla, A.K., Lefkowitz, R.J. (2012). Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol, 52, 179-197. [CrossRef] [PubMed] [Google Scholar]
- Ren, X.R., Reiter, E., Ahn, S., Kim, J., Chen, W., Lefkowitz, R.J. (2005). Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci USA, 102, 1448-1453. [CrossRef] [PubMed] [Google Scholar]
- Shenoy, S.K., McDonald, P.H., Kohout, T.A., Lefkowitz, R.J. (2001). Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science, 294, 1307-1313. [CrossRef] [PubMed] [Google Scholar]
- Shenoy, S.K., Drake, M.T., Nelson, C.D., Houtz, D.A., Xiao, K., Madabushi, S., Reiter, E., Prémont, R.T., Lichtarge, O., Lefkowitz, R.J. (2006). β-arrestin-dependent, G protein-independent ERK1/2 activation by the beta 2 adrenergic receptor. J Biol Chem, 281, 1261-1273. [CrossRef] [PubMed] [Google Scholar]
- Shenoy, S.K., Barak, L.S., Xiao, K., Ahn, S., Berthouze, M., Shukla, A.K., Luttrell, L.M., Lefkowitz, R.J. (2007). Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. J Biol Chem, 282, 29549-29562. [CrossRef] [PubMed] [Google Scholar]
- Shukla, A.K., Violin, J.D., Whalen, E.J., Gesty-Palmer, D., Shenoy, S.K., Lefkowitz, R.J. (2008). Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors. Proc Natl Acad Sci USA, 105, 9988-9993. [CrossRef] [PubMed] [Google Scholar]
- Shukla, A.K., Westfield, G.H., Xiao, K., Reis, R.I., Huang, L.Y., Tripathi-Shukla, P., Qian, J., Li, S., Blanc, A., Oleskie, A.N., Dosey, A.M., Su, M., Liang, C.R., Gu, L.L., Shan, J.M., Chen, X., Hanna, R., Choi, M., Yao, X.J., Klink, B.U., Kahsai, A.W., Sidhu, S.S., Koide, S., Penczek, P.A., Kossiakoff, A.A., Woods, V.L., Jr., Kobilka, B.K., Skiniotis, G., Lefkowitz, R.J. (2014). Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature, 512, 218-222. [CrossRef] [PubMed] [Google Scholar]
- Staus, D.P., Wingler, L.M., Strachan, R.T., Rasmussen, S.G., Pardon, E., Ahn, S., Steyaert, J., Kobilka, B.K., Lefkowitz, R.J. (2014). Regulation of beta2-adrenergic receptor function by conformationally selective single-domain intrabodies. Mol Pharmacol, 85, 472-481 [CrossRef] [PubMed] [Google Scholar]
- Staus, D.P., Strachan, R.T., Manglik, A., Pani, B., Kahsai, A.W., Kim, T.H., Wingler, L.M., Ahn, S., Chatterjee, A., Masoudi, A., Kruse, A.C., Pardon, E., Steyaert, J., Weis, W.I., Prosser, R.S., Kobilka, B.K., Costa, T., Lefkowitz, R.J. (2016). Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature, 535, 448-452. [CrossRef] [PubMed] [Google Scholar]
- Strachan, R.T., Sun, J.P., Rominger, D.H., Violin, J.D., Ahn, S., Rojas Bie Thomsen, A., Zhu, X., Kleist, A., Costa, T., Lefkowitz, R.J. (2014). Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor (GPCR). J Biol Chem, 289, 14211-14224. [CrossRef] [PubMed] [Google Scholar]
- Sun, Y., Cheng, Z., Ma, L., Pei, G. (2002). Beta-arrestin 2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem, 277, 49212-49219. [CrossRef] [PubMed] [Google Scholar]
- Thomsen, A.R., Plouffe, B., Cahill, T.J. 3rd, Shukla, A.K., Tarrasch, J.T., Dosey, A.M., Kahsai, A.W., Strachan, R.T., Pani, B., Mahoney, J.P., Huang, L., Breton, B., Heydenreich, F.M., Sunahara, R.K., Skiniotis, G., Bouvier, M., Lefkowitz, R.J. (2016). GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling. Cell, 166, 907-919. [CrossRef] [PubMed] [Google Scholar]
- Tobin, A.B., Butcher, A.J., Kong, K.C. (2008). Location, location, location..site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci, 29, 413-420. [CrossRef] [PubMed] [Google Scholar]
- Tsvetanova, N.G., Irannejad, R., von Zastrow, M. (2015). G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes. J Biol Chem, 290, 6689-6696. [CrossRef] [PubMed] [Google Scholar]
- Vilardaga, J.P., Jean-Alphonse, F.G., Gardella, T.J. (2014). Endosomal generation of cAMP in GPCR signaling. Nat Chem Biol, 10, 700-706. [Google Scholar]
- Violin, J.D., Lefkowitz, R.J. (2007). Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci, 28, 416-422. [CrossRef] [PubMed] [Google Scholar]
- Wacker, D., Wang, C., Katritch, V., Han, G.W., Huang, X.P., Vardy, E., McCorvy, J.D., Jiang, Y., Chu, M., Siu, F.Y., Liu, W., Xu, H.E., Cherezov, V., Roth, B.L., Stevens, R.C. (2013). Structural features for functional selectivity at serotonin receptors. Science, 340, 615-619. [CrossRef] [PubMed] [Google Scholar]
- Walters, R.W., Shukla, A.K., Kovacs, J.J., Violin, J.D., DeWire, S.M., Lam, C.M., Chen, J.R., Muehlbauer, M.J., Whalen, E.J., Lefkowitz, R.J. (2009). beta-Arrestin 1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J Clin Invest, 119, 1312-1321. [CrossRef] [PubMed] [Google Scholar]
- Watson, C., Chen, G., Irving, P., Way, J., Chen, W.J., Kenakin, T. (2000). The use of stimulus-biased assay systems to detect agonist-specific receptor active states: implications for the trafficking of receptor stimulus by agonists. Mol Pharmacol, 58, 1230-1238. [CrossRef] [PubMed] [Google Scholar]
- Wei, H., Ahn, S., Shenoy, S.K., Karnik, S.S., Hunyady, L., Luttrell, L.M., Lefkowitz, R.J. (2003). Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA, 100, 10782-10787. [CrossRef] [PubMed] [Google Scholar]
- Whalen, E.J., Foster, M.W., Matsumoto, A., Ozawa, K., Violin, J.D., Que, L.G., Nelson, C.D., Benhar, M., Keys, J.R., Rockman, H.A., Koch, W.J., Daaka, Y., Lefkowitz, R.J., Stamler, J.S. (2007). Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell, 129, 511-522. [CrossRef] [PubMed] [Google Scholar]
- Whalen, E.J., Rajagopal, S., Lefkowitz, R.J. (2011). Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med, 17, 126-139. [CrossRef] [PubMed] [Google Scholar]
- Wyatt, D., Malik, R., Vesecky, A.C., Marchese, A. (2011). Small ubiquitin-like modifier modification of arrestin-3 regulates receptor trafficking. J Biol Chem, 286, 3884-3893. [CrossRef] [PubMed] [Google Scholar]
- Xiao, K., Shenoy, S.K., Nobles, K., Lefkowitz, R.J. (2004). Activation-dependent conformational changes in {beta}-arrestin 2. J Biol Chem, 279, 55744-55753. [CrossRef] [PubMed] [Google Scholar]
- Xiao, K., McClatchy, D.B., Shukla, A.K., Zhao, Y., Chen, M., Shenoy, S.K., Yates, J.R. 3rd, Lefkowitz, R.J. (2007). Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc Natl Acad USA, 104, 12011-12016. [CrossRef] [PubMed] [Google Scholar]
- Xiao, K., Sun, J., Kim, J., Rajagopal, S., Zhai, B., Villen, J., Haas, W., Kovacs, J.J., Shukla, A.K., Hara, M.R., Hernandez, M., Lachmann, A., Zhao, S., Lin, Y., Cheng, Y., Mizuno, K., Ma’ayan, A., Gygi, S.P., Lefkowitz, R.J. (2010). Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci USA, 107, 15299-15304. [CrossRef] [PubMed] [Google Scholar]
- Yan, D., Stocco, R., Sawyer, N., Nesheim, M.E., Abramovitz, M., Funk, C.D. (2011). Differential signaling of cysteinyl leukotrienes and a novel cysteinyl leukotriene receptor 2 (CysLT(2)) agonist, N-methyl-leukotriene C(4), in calcium reporter and beta arrestin assays. Mol Pharmacol, 79, 270-278. [CrossRef] [PubMed] [Google Scholar]
- Zidar, D.A., Violin, J.D., Whalen, E.J., Lefkowitz, R.J. (2009). Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci USA, 106, 9649-9654. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.