Accès gratuit

Cet article a un erratum : [https://doi.org/10.1051/jbio/2022015]


Numéro
Biologie Aujourd’hui
Volume 216, Numéro 1-2, 2022
Page(s) 7 - 28
DOI https://doi.org/10.1051/jbio/2022007
Publié en ligne 25 juillet 2022
  • Abel, J.J. (1926). Crystalline insulin. Proc Natl Acad Sci USA, 12, 132–136. [CrossRef] [PubMed] [Google Scholar]
  • Accili, D., Cama, A., Barbetti, H., Kadowaki, T., Taylor, S.I. (1992). Insulin resistance due to mutations in the insulin receptor gene: an overview. J Endocrinol Invest, 15, 857–864. [CrossRef] [PubMed] [Google Scholar]
  • Accili, D., Drago, J., Lee, E.J., Johnson, M.D., Cool, M.H., Salvatore, P., Asico, L.D., José, P.A., Taylor, S.I., Westphal, A. (1996). Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet, 12, 106–109. [CrossRef] [PubMed] [Google Scholar]
  • Adamo, M., Raizada, M.K., LeRoith, D. (1989). Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol, 3, 71–100. [CrossRef] [PubMed] [Google Scholar]
  • Adams, M.J., Blundell, T.L., Dodson, E.J., Dodson, G.G., Vijayan, M., Baker, E.N., Harding, M.M., Hodgkin, D.C., Rimmer, B., Sheat, S. (1969). Structure of rhombohedral 2 zinc insulin crystals. Nature, 224, 491–495. [CrossRef] [Google Scholar]
  • Ahlquist, R.P. (1948). A study of the adrenotropic receptors. Am J Physiology, 153, 586–600. [CrossRef] [PubMed] [Google Scholar]
  • Allen, F. (1915). Prolonged fasting in diabetes. Am J Med Sci, 150, 480–485. [CrossRef] [Google Scholar]
  • Badertscher, K., Rutty, C.J. (2020). Insulin at 100. Indianapolis, Toronto, Woods Hole, and the “Insulin Road”. Pharmacy in History, 62, 87–111. [CrossRef] [Google Scholar]
  • Bailyes, E.M., Navé, B.T., Soos, M.A., Orr, S.R., Hayward, A.C., Siddle, K. (1997). Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem J, 327(Pt 1), 209–215. [CrossRef] [PubMed] [Google Scholar]
  • Banting, F., Best, C.H. (1922). The internal secretion of the pancreas. J Lab Clin Med, 7, 256–271. [Google Scholar]
  • Banting, F.G., Best, C.H., Collip, J.B., McLeod, J.J.R. (1922). The preparation of pancreatic extracts containing insulin. Trans Roy Soc Canada, Section V, (16), 1–3. [Google Scholar]
  • Bar, R.S., Gorden, P., Roth, J., Kahn, C.R., De Meyts, P. (1976). Fluctuations in the affinity and concentration of insulin receptors on circulating monocytes of obese patients: effect of starvation, refeeding and dieting. J Clin Invest, 58, 1123–1135. [CrossRef] [PubMed] [Google Scholar]
  • Beck-Nielsen, H., Pedersen, O., Bagger, J.P., Sorensen, N.S. (1976). The insulin receptor in normal and obese humans. Acta Endocrinol (Copenh), 83, 565–575. [CrossRef] [Google Scholar]
  • Belfiore, A., Frasca, F., Pandini, G., Sciacca, L., Vigneri, R. (2009). Insulin receptor isoforms and insulin receptor/insulin-like receptor hybrids in physiology and disease. Endocrine Rev, 30, 586–623. [CrossRef] [PubMed] [Google Scholar]
  • Benecke, H., Flier, J.S., Moller, D.E. (1992). Alternatively spliced variants of the insulin receptor protein. Expression in normal and diabetic human tissues. J Clin Invest, 89, 2066–2070. [CrossRef] [PubMed] [Google Scholar]
  • Bergeron, J.J., Posner, B.I., Josefsberg, Z., Sikstrom, R. (1978). Intracellular polypeptide hormone receptors. The demonstration of specific binding sites for insulin and human growth hormone in Golgi fractions isolated from the liver of female rats. J Biol Chem, 253, 4067–4073. [Google Scholar]
  • Biddinger, S.B., Kahn, C.R. (2006). From mice to men: insights into the insulin resistance syndromes. Ann Rev Physiol, 68, 123–158. [CrossRef] [PubMed] [Google Scholar]
  • Black, J.W., Stephenson, J.S. (1962). Pharmacology of a new adrenergic beta-receptor-blocking compound (Nethalide). Lancet, II, 311–314. [CrossRef] [Google Scholar]
  • Black, J.W. (1988-1989), Drugs, hormones and receptors: a personal reflection. Hunterian Soc Trans, 47, 60–69. [Google Scholar]
  • Bliss, M. (1982). The discovery of insulin, The University of Chicago Press, Chicago; McClelland and Stewart Ltd, Toronto, 304 p. Also: Special Centenary Edition (2021), University of Toronto Press, Toronto, 352 p. [Google Scholar]
  • Bliss, M. (1992). Banting: a biography, University of Toronto Press, Toronto, 336 p. [Google Scholar]
  • Blundell, T.L., Dodson, G.G., Hodgkin, D.C., Mercola, D.A. (1972). Insulin: the structure in the crystal and its reflexion in chemistry and biology. Adv Protein Chem, 26, 279–402. [CrossRef] [Google Scholar]
  • Blundell, T.L., Wood, S.P. (1975). Is the evolution of insulin Darwinian or due to selectively neutral mutations? Nature, 257, 197–203. [CrossRef] [PubMed] [Google Scholar]
  • Boucher, J., Kleinridders, A., Kahn, C.R. (2014). Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol, 6(1), a009191. [CrossRef] [PubMed] [Google Scholar]
  • Broer, Y., Lhiaubet, A.M., Rosselin, G., Rostène, W. (1987). Radioautographic and quantitative study of insulin binding sites in the rat brain (In French). C R Acad Sci, 304, 31–36. [Google Scholar]
  • Brown, H., Sanger F., Kitai, R. (1955). The structure of pig and sheep insulins. Biochem J, 60, 556–565. [CrossRef] [PubMed] [Google Scholar]
  • Brüning, J.C., Gantam, D., Burks, D.J., Gillette, J., Schubert, M., Orban, P.C., Klein, R., Krone, W., Müller-Wieland, D., Kahn, C.R. (2000). Role of brain insulin receptor in control of body wight and reproduction. Science, 289, 2122–2125. [CrossRef] [PubMed] [Google Scholar]
  • Butcher, R.W., Crofford, O.B., Gammeltoft, S., Gliemann, J., Gavin, J.R. 3rd, Goldfine, I.D., Kahn, C.R., Rodbell, M., Roth, J., Jarrett, L., Larner, R.J., Lefkowitz, R.J., Levine, R., Marinetti, G.V. (1973). Letter: Insulin activity: the solid matrix. Science, 182, 396–397. Cuatrecasas’ reply: pp. 397–398. [CrossRef] [Google Scholar]
  • Cabail, M.Z., Li, S., Lemmon, E., Bowen, M.E., Hubbard, S.R., Miller, W.T. (2015). The tyrosine kinase domain of the insulin and IGF1 receptors are functional dimers in the activated state. Nat Commun, 6, 6406. [CrossRef] [PubMed] [Google Scholar]
  • Carpentier, J.L., Gorden, P., Barazzone, P., Freychet, P., Le Cam, A., Orci, L. (1979). Intracellular localization of 125I-labeled insulin in hepatocytes from intact rat liver. Proc Natl Acad Sci USA, 76, 2803–2807. [CrossRef] [PubMed] [Google Scholar]
  • Carpentier, J.L. (1994). Insulin receptor internalization: molecular mechanisms and pathophysiological implications. Diabetologia, 37(Suppl 2), S117–S124. [CrossRef] [PubMed] [Google Scholar]
  • Chan, S.J., Nakagawa, S., Steiner, D.F. (2007). Complementation analysis demonstrates that insulin crosslinks both  subunits in a truncated receptor dimer. J Biol Chem, 282, 13754–13758. [CrossRef] [PubMed] [Google Scholar]
  • Christoffersen, C.T., Bornfeldt, K.E., Rotella, C.M., Gonzales, N., Vissing, H., Shymko, R.M., Ten Hoeve, J., Groffen, J., Heisterkamp, N., De Meyts, P. (1994). Negative cooperativity of the insulin-like growth factor-I receptor and a chimeric IGF-I/insulin receptor. Endocrinology, 135, 472–475. [CrossRef] [PubMed] [Google Scholar]
  • Clauser, E. (1993). The Apollinaire Bouchardat Prize 1993. Structural organization and molecular dissection of the functions of the insulin receptor. J Ann Diabetol Hotel Dieu, 1993, 63–80. [Google Scholar]
  • Crofford, O.B. (1968) The uptake and inactivation of native insulin by isolated fat cells. J Biol Chem, 243, 362–369. [CrossRef] [PubMed] [Google Scholar]
  • Croll, T.I., Smith, B.J., Margetts, M.B., Whittaker, J., Weiss, M.A., Ward, C.W., Lawrence, M.C. (2016). Higher-resolution structure of the human insulin receptor ectodomain: multi-modal inclusion of the insert domain. Structure, 24, 469–476. [CrossRef] [PubMed] [Google Scholar]
  • Cuatrecasas, P., Wilchek, M., Anfinsen, C. (1968). Selective enzyme purification by affinity chromatography. Proc Natl Acad Sci USA, 61, 636–643. [CrossRef] [PubMed] [Google Scholar]
  • Cuatrecasas, P. (1969). Interaction of insulin with the cell membrane: the primary action of insulin. Proc Natl Acad Sci USA, 63, 450–457. [CrossRef] [PubMed] [Google Scholar]
  • Cuatrecasas, P. (1971a). Insulin-receptor interactions in adipose tissue cells: direct measurement and properties. Proc Natl Acad Sci USA, 68, 1264–1268. [CrossRef] [PubMed] [Google Scholar]
  • Cuatrecasas, P. (1971b). Perturbation of the insulin receptor of isolated fat cells with proteolytic enzymes. Direct measurement of insulin-receptor interactions. J Biol Chem, 246, 6522–6531. [CrossRef] [PubMed] [Google Scholar]
  • Cuatrecasas, P. (1971c). Unmasking of insulin receptors in fat cells and fat cell membranes. Perturbation of membrane lipids. J Biol Chem, 246, 6532–6542. [CrossRef] [PubMed] [Google Scholar]
  • Cuatrecasas, P. (1971d). Properties of the insulin receptor of isolated fat cell membranes. J Biol Chem, 246, 7265–7274. [CrossRef] [PubMed] [Google Scholar]
  • Cuatrecasas, P., Desbuquois, B., Krug, F. (1971). Insulin-receptor interactions in liver cell membranes. Biochem Biophys Res Commun, 44, 333–339. [CrossRef] [PubMed] [Google Scholar]
  • Cuatrecasas, P. (1972a). The insulin receptor. Diabetes, 21(suppl. 2). Proceedings of the 50th Anniversary Insulin Symposium, Indianapolis, Indiana, Oct. 18-20, 1971, pp. 396–402. [CrossRef] [PubMed] [Google Scholar]
  • Cuatrecasas, P. (1972b). Isolation of the insulin receptor of liver and fat cell membranes. Proc Natl Acad Sci USA, 69, 318–322. [CrossRef] [PubMed] [Google Scholar]
  • Czech, M.P. (1985). The nature and regulation of the insulin receptor structure and function. Ann Rev Physiol, 47, 357–381. [CrossRef] [PubMed] [Google Scholar]
  • Czech, M.P. (2017). Insulin action and resistance in obesity and type 2 diabetes. Nat Med, 23, 804–814. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts, P., Roth, J., Neville, D.M. Jr, Gavin, J.R. III, Lesniak, M.A. (1973). Insulin interaction with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun, 55, 154–161. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts, P., Roth, J. (1975). Cooperativity in ligand binding: a new graphic analysis. Biochem Biophys Res Commun, 66, 1118–1126. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts, P. (1976a). Insulin and growth hormone receptors in human cultured lymphocytes and peripheral blood monocytes, in: M. Blecher (Ed.), Methods in receptor research, Part I; A.E. Laskin, J.A. Last (Eds.), Methods in molecular biology, Marcel Dekker Inc., New York and Basel, pp. 301–383. [Google Scholar]
  • De Meyts, P. (1976b). Cooperative properties of hormone receptors in cell membranes. J Supramol Struct, 4, 241–258. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts, P., Bianco, A.R., Roth, J. (1976). Site-site interactions among insulin receptors: characterization of the negative cooperativity. J Biol Chem, 251, 1877–1888. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts, P., Van Obberghen, E., Roth, J., Wollmer, A., Brandenburg, D. (1978). Mapping of the residues reponsible for the negative cooperativity of the receptor binding region of insulin. Nature, 273, 504–509. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts, P., Rousseau, G.G. (1980). Receptor concepts, a century of evolution. Circ Res, 46, 13–19. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts, P. (1994). The structural basis of insulin and insulin-like growth factor-I (IGF-I) receptor binding and negative cooperativity, and its relevance to mitogenic versus metabolic signaling. Diabetologia, 37, S135–S148. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts, P., Whittaker, J. (2002). Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov, 1, 769–783. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts P. (2004). Insulin and its receptor: structure, function and evolution. Bioessays, 26, 1351–1362. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts, P. (2008). The insulin receptor: a prototype for dimeric, allosteric membrane receptors. Trends Biochem Sci, 33, 376–374. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts, P. (2015a). Receptor tyrosine kinase signal transduction and the molecular basis of signalling specificity, in: D.L. Wheeler, Y. Yarden (Eds.), Receptor tyrosine kinases: structure, functions and role in human disease, Humana Press, Springer, New York, Heidelberg, Dordrecht, London, pp. 51–76. [Google Scholar]
  • De Meyts, P. (2015b). Insulin/receptor binding: the last piece of the puzzle? BioEssays, 37, 389–397. [CrossRef] [PubMed] [Google Scholar]
  • De Meyts, P. (2016). The insulin receptor and its signal transduction network, in: K.R. Feingold, et al. (Eds.), Endotext (Internet), South Dartmouth (MA), MDtext.com Inc., 2000. [Google Scholar]
  • De Meyts, P. (2017). Early recombinant protein therapeutics, in: T. Vaughan, J. Osbourn, B. Jallal (Eds.), Protein therapeutics, Vol. 1. Wiley-VCH Verlag GmbH & Co. KGaA, pp. 3–23. [Google Scholar]
  • De Meyts, P., Lefèbvre, P.J. (2019). Pancreatic hormones, in: G. Litwack (Ed.), Hormonal signaling in biology and medicine, Academic Press/Elsevier, pp. 383–423. [Google Scholar]
  • Derewenda, U., Derewenda, Z., Dodson, G.G., Hubbard, R.E., Korber, F. (1989). Molecular structure of insulin: the insulin monomer and its assembly. Br Med Bull, 45, 4–18. [CrossRef] [PubMed] [Google Scholar]
  • Desbuquois, B., Aurbach, G.D. (1971). Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays. J Clin Endocr Metab, 33, 732–738. [CrossRef] [PubMed] [Google Scholar]
  • Desbuquois, B., Cuatrecasas, P. (1973). Insulin receptors. Ann Rev Med, 24, 233–240. [CrossRef] [PubMed] [Google Scholar]
  • Deyev, I.E., Sohet, F., Vassilenko, K.P., Serova, E.V., Popova, N.V., Zozulya, S.A., Burova, E.B., Houillier, P., Rzhevsky, D.I., Berchatova, A.A., Murashev, A.V., Chugunov, A.O., Efremov, R.G., Nikolsky, N.N., Beertelli, E., Eladari, D., Petrenko, A.G. (2011). Insulin receptor-related receptor as an extracellular alkali sensor. Cell Metab, 13, 679–689. [CrossRef] [PubMed] [Google Scholar]
  • Di Guglielmo, G.M., Drake, P.G., Baass, E.C., Authier, F., Posner, B.I., Bergeron, J.J. (1998). Insulin receptor internalization and signalling. Mol Cell Biochem, 182, 59–63. [CrossRef] [PubMed] [Google Scholar]
  • Dodson, G.G. (2002). Insulin: sequence, structure and function – A story of surprises, in: M. Federwisch, M. Leyck Diecken, P. De Meyts (Eds.), Insulin and related proteins, Kluwer Academic Publishers, Netherlands, pp. 29–39. [Google Scholar]
  • Dolman, C.E. (1981). Paul Ehrlich, in: Dictionary of Scientific Biography, Vol. 3, 10th ed, Charles Scribner’s Sons, pp. 295–305. [Google Scholar]
  • Du, Y.C., Zhang, Y.S., Lu, Z.X., Tsou, C.L. (1961). Resynthesis of insulin from its glycyl and phenylalanyl chains. Sci Sin, 10, 84–104. [PubMed] [Google Scholar]
  • Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J.H., Masiarz, F., Kan, Y.W., Goldfine, I.D., Roth, R.A., Rutter, W.J. (1985). The human insulin receptor cDNA: The structural basis for hormone-activated signalling. Cell, 40, 747–758. [CrossRef] [PubMed] [Google Scholar]
  • Eck, M.J, Dhe-Paganon, S., Trub, J., Nolte, R.T., Shoelson, S.E. (1996). Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell, 85, 695–705. [CrossRef] [PubMed] [Google Scholar]
  • Ehrlich, P. (1897). Die Wertbemessung des Diphterieheilserums und deren theoretische Grundlagen (Klinisches Jahrbuch), in: Himmelweit (Ed.), The collected papers of Paul Ehrlich, Vol. II, pp. 86–106. [Google Scholar]
  • Ehrlich, P., Morgenroth, J. (1900). Über Hämolysine. Dritte Mittheilung (Berliner Klinische Wochenschrift), in: Himmelweit (Ed.), The collected papers of Paul Ehrlich, Vol. II, pp. 196–204. [Google Scholar]
  • Evans, R.M. (1988). The steroid and thyroid hormone receptor superfamily. Science, 240, 889–895. [CrossRef] [PubMed] [Google Scholar]
  • Favelyukis, S., Till, J.H., Hubbard, S.R., Miller, W.T. (2001). Structure and autoregulation of the insulin-like growth factor-I receptor kinase. Nat Struct Biol, 8, 1058–1062. [CrossRef] [PubMed] [Google Scholar]
  • Flier, J.S., Kahn, C.R., Roth, J., Bar, R.S. (1975). Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance. Science, 190, 63–65. [CrossRef] [PubMed] [Google Scholar]
  • Flier, J.S., Kahn, C.R., Jarrett, D.B., Roth, J. (1976). Characterization of antibodies to the insulin receptor: a cause of insulin resistant diabetes in man. J Clin Invest, 58, 1442–1449. [CrossRef] [PubMed] [Google Scholar]
  • Flier, J.S., Kahn, C.R. (2021). Insulin: a pacesetter for the shape of modern biomedical science and the Nobel Prize. Mol Metab, 52, 101194 [CrossRef] [PubMed] [Google Scholar]
  • Fralick, M., Zinman, B. (2021). The discovery of insulin in Toronto: beginning a 100-year journey of research and clinical achievement. Diabetologia, 64, 947–953. [CrossRef] [PubMed] [Google Scholar]
  • Frattali, A.L, Pessin, J.E. (1993). Relationship between alpha subunit ligand occupancy and beta subunit autophosphorylation in insulin/insulin-like growth factor-1 hybrid receptors. J Biol Chem, 268, 7393–7400. [CrossRef] [PubMed] [Google Scholar]
  • Freychet, P., Rosselin, G., Dolais, J. (1969). Radioimmunoassay of thyrotropin (TSH) in human plasma [in French]. Presse Med, 77, 13–16. [Google Scholar]
  • Freychet, P., Roth, J., Neville, D.M. Jr. (1971a). Monoiodoinsulin: demonstration of its biological activity and binding to fat cells and liver membranes. Biochem Biophys Res Commun, 43, 400–408. [CrossRef] [PubMed] [Google Scholar]
  • Freychet, P., Roth, J., Neville, D.M. Jr. (1971b). Insulin receptors in the liver. Specific binding of 125I-insulin to the plasma membrane and its relation to insulin bioactivity. Proc Natl Acad Sci USA, 68, 1833–1837. [CrossRef] [PubMed] [Google Scholar]
  • Freychet, P., Laudat, M.H., Laudat, P., Rosselin, G., Kahn, C.R., Gorden, P., Roth, J. (1972). Impairment of insulin binding to the fat cell plasma membrane in the obese hyperglycemic mouse. FEBS Lett, 25, 339–342. [CrossRef] [PubMed] [Google Scholar]
  • Freychet, P. (2000). Insulin receptors and insulin actions in the nervous system. Diabetes Metab Res Rev, 16, 390–392. [CrossRef] [PubMed] [Google Scholar]
  • Freychet, P. (2002). Prix Maurice Dérot 2002. 1971-2002: Une histoire du récepteur de l’insuline. J Ann Diabetol Hotel-Dieu, 2002, 249–267. [Google Scholar]
  • Gambhir, K.K., Archer, J.A., Bradley, C.J. (1978). Characteristics of the human erythrocyte insulin receptors. Diabetes, 27, 701–708. [CrossRef] [PubMed] [Google Scholar]
  • Gammeltoft, S., Gliemann, J. (1973). Binding and degradation of 125I-labelled insulin by isolated rat fat cells. Biochim Biophys Acta, 320, 16–32. [CrossRef] [PubMed] [Google Scholar]
  • Gammeltoft, S. (1984). Insulin receptors: binding kinetics and structure-activity relationships of insulin. Physiol Rev, 64, 1321–1378. [CrossRef] [PubMed] [Google Scholar]
  • Gammeltoft, S., Van Obberghen, E. (1986). Protein kinase activity of the insulin receptor. Biochem J, 235, 1–11. [CrossRef] [PubMed] [Google Scholar]
  • Gauguin, L., Klaproth, B., Sajid, W., Andersen, A.S., McNeil, K., Forbes, B.E., De Meyts, P. (2008a). Structural basis for the lower affinity of the insulin-like growth factors for the insulin receptor. J Biol Chem, 283, 2604–2613. [CrossRef] [PubMed] [Google Scholar]
  • Gauguin, L., Delaine, C., Alvino, C.L., McNeil, K.A., Wallace, J.C., Forbes, B.E., De Meyts, P. (2008b). Alanine scanning of a putative receptor binding surface of insulin-like growth factor-I. J Biol Chem, 283, 20821–20829. [CrossRef] [PubMed] [Google Scholar]
  • Gavin, J.R. 3rd, Roth, J., Neville, D.M. Jr, DE Meyts, P., Buell, D.N. (1974). Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci USA, 71, 84–88. [CrossRef] [PubMed] [Google Scholar]
  • Geiger, D., Carpentier, J.L., Gorden, P., Orci, L. (1989). Downregulation of insulin receptors is related to insulin internalization. Exp Cell Res, 185, 33–40. [CrossRef] [PubMed] [Google Scholar]
  • Gerstein, H.C., Rutty, C.J. (2021). Insulin therapy: the discovery that shaped a century. Can J Diabetes, 45, 793–803. [Google Scholar]
  • Glendorf, T., Sorensen, A.R., Nishimura, E., Pettersson, I., Kjeldsen, T. (2008). Importance of the solvent-exposed residues of the insulin B-chain alpha-helix for receptor binding. Biochemistry, 47, 4743–4751. [CrossRef] [PubMed] [Google Scholar]
  • Glick, S.M., Roth, J., Yalow, R.S., Berson, S.A. (1963). Immunoassay of human growth hormone in plasma, Nature. 199, 784–787. [CrossRef] [PubMed] [Google Scholar]
  • Goeddel, D.V., Kleid, D.G., Bolivar, F., Heynecker, H.L., Yansura, D.G., Crea, R., Hirose, T., Krasjewski, A., Itakura, K., Riggs, A.D. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci, USA, 76, 106–110. [CrossRef] [PubMed] [Google Scholar]
  • Goodfriend, T.L., Lin, S.Y. (1970). Receptors for angiotensin I and II. Circ Res, 27(Suppl 1), 163–164. [PubMed] [Google Scholar]
  • Gorden, P., Carpentier, J.L., Freychet, P., Le Cam, A., Orci, L. (1978). Intracellular translocation of iodine-125-labelled insulin: direct demonstration in isolated hepatocytes. Science, 200, 782–785. [CrossRef] [PubMed] [Google Scholar]
  • Gorsky, J., Toft, D., Shyamala, G., Smith, D., Notides, A. (1968). Hormone receptors: studies on the interaction of estrogens with the uterus. Recent Prog Horm Res, 24, 45–80. [PubMed] [Google Scholar]
  • Gozlan M. (2021). Diabète: l’histoire émouvante des premiers patients traités par l’insuline. Le Monde, blog Réalités Biomédicales, 13-11-2021. https://www.lemonde.fr/blog/realitesbiomedicales/2021/11/13/diabete-lhistoire-emouvante-des-premiers-patients-traites-par-linsuline/. [Google Scholar]
  • Greene, G.L. (2013). In memoriam: Elwood Jensen (1920-2012). Mol Endocrinol, 27, 1589–1591. [CrossRef] [Google Scholar]
  • Grigorescu, F., Lambert, B., De Meyts, P. (1982). L’utilité clinique de la mesure des récepteurs insuliniques sur les érythrocytes. J Ann Diabetol Hôtel-Dieu, 1982, 31–34. [Google Scholar]
  • Gustafsson, J.-A. (2016). Historical overview of nuclear receptors. J Steroid Biochem Mol Biol, 157, 3–6. [CrossRef] [PubMed] [Google Scholar]
  • Gutmann, T., Kim, K.H., Grzybek, M., Walz, T., Coskun, Ü. (2018). Vizualization of ligand-induced transmembrane signaling in the full-length human insulin receptor. J Cell Biol, 217, 1643–1649. [CrossRef] [PubMed] [Google Scholar]
  • Gutmann, T., Schäfer, I.B., Poojari, C., Brankatschk, B., Vattilainen, I., Strauss, M., Coskun, Ü. (2020). Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. J Cell Biol, 219(1), e201907210. [CrossRef] [PubMed] [Google Scholar]
  • Harrison, L.C., Kasuga, M., Van Obberghen, E. (1982). The insulin receptor of the human lymphocyte: insulin-induced down-regulation of 126 000 and 90 000 glycosylated subunits. Diabetologia, 22, 233–238. [CrossRef] [PubMed] [Google Scholar]
  • Havrankova, J., Roth, J., Brownstein, M. (1978). Insulin receptors are widely distributed in the central nervous system of the rat. Nature, 272, 827–829. [CrossRef] [PubMed] [Google Scholar]
  • Hegele, R.A., Maltman, G.M. (2020). Insulin’s centenary: the birth of an idea. Lancet Diabetes Endocrinol, 8, 971–977. [CrossRef] [PubMed] [Google Scholar]
  • Hirsch, I.B., Junega, R., Beals, J.M., Antalis, C.J., Wright, C.E. Jr. (2020). The evolution of insulin and how it informs therapy and treatment choices. Endocrine Rev, 41, 733–755. [CrossRef] [Google Scholar]
  • House, P.D.R., Weidemann, M.J. (1970). Characterization of an 125I-insulin binding plasma membrane fraction from rat liver. Biochem Biophys Res Commun, 41, 541–548. [CrossRef] [PubMed] [Google Scholar]
  • House, P.D.R. (1971a). Kinetics of 125I-isulin binding to rat liver plasma membrane. FEBS Lett, 16, 339–342. [CrossRef] [PubMed] [Google Scholar]
  • House, P.D.R. (1971b). Rat liver plasma membranes: isolation, enzymatic functions, and interaction with insulin. Ph.D. thesis, Australian University, Canberra, Australia, 172 p. [Google Scholar]
  • House, P.D.R., Poulis, P., Weidemann, M.J. (1972). Isolation of a plasma membrane subfraction from rat liver containing an insulin-sensitive cyclic-AMP phosphodiesterase. Eur J Biochem, 24, 429–437. [CrossRef] [PubMed] [Google Scholar]
  • Hua, Q.X., Shoelson, S.E., Kochoyan, M., Weiss, M.A. (1991). Receptor binding redefined by a structural switch in a mutant human insulin. J Mol Biol, 279, 1–7. [Google Scholar]
  • Huang, K., Xu, B., Hu, S.K., Chu, Y.C., Hua, Q.X., Qu, Y., Li, B., Wmg, S., Wang, R.Y., Nakagawa, S.H., Theede, A.M., Whittaker, J., De Meyts, P., Katsoyannis, P.G., Weiss, M.A. (2004). How insulin binds: the central B-chain -helix contacts the N-terminal domain of the insulin receptor -subunit. J Mol Biol, 341, 529–550. [CrossRef] [PubMed] [Google Scholar]
  • Hubbard, S.R., Wei, L., Ellis, L., Hendrickson, W.A. (1994). Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature, 372, 746–754. [CrossRef] [PubMed] [Google Scholar]
  • Hubbard, S.R. (1997). Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J, 16, 5572–5581. [CrossRef] [PubMed] [Google Scholar]
  • Hubbard, S.R., Miller, W.T. (2007). Receptor tyrosine kinases: mechanisms of activation and signalling. Curr Opin Cell Biol, 19, 117–123. [CrossRef] [PubMed] [Google Scholar]
  • Hubbard, S.R. (2013). The insulin receptor: both a prototypical and atypical receptor tyrosine kinase. Cold Spring Harbour Perspect Biol, 5, a008946. [Google Scholar]
  • Hunter, W.W., Greenwood, F.C. (1962). Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature, 194, 495–496. [CrossRef] [PubMed] [Google Scholar]
  • Jacobs, S., Hazum, E., Shechter Y, Cuatrecasas, P. (1979). Insulin receptor: covalent labeling and identification of subunits. Proc Natl Acad Sci USA, 76, 4918–4921. [CrossRef] [PubMed] [Google Scholar]
  • Jensen, A.M. (2000). Analysis of structure-function relationships of the insulin molecule by alanine-scanning mutagenesis. Master’s Thesis, Copenhagen University, Denmark. [Google Scholar]
  • Jensen, E.V. (1958). Studies of growth phenomena using tritium labeled steroids, in: Proceedings of the 4th International Congress Biochemistry, Vol. 15, p. 119 (abstract). [Google Scholar]
  • Jensen, E.V., Jacobson, H.I. (1960). Fate of steroid estrogens in target tissues, in: G. Pincus, E.P. Vollmer (Eds.), Biological activities of steroids in relation to cancers, Academic Press, New York, pp. 161–174. [CrossRef] [Google Scholar]
  • Jensen, E.V. (1962). On the mechanism of estrogen action. Perspect Biol Med, 6, 47–59. [CrossRef] [PubMed] [Google Scholar]
  • Jensen, E.V., Jacobson, H.I. (1962). Basic guides to the mechanism of estrogen action. Rec Prog Horm Res, 18, 387–414. [Google Scholar]
  • Jensen, E.V., Desombre, E.R., Hurst, D.J., Kawashima, T., Jungblut, P.W. (1967). Estrogen-receptor interactions in target tissues. Arch Anat Microsc Morph Exp, 56, 547–569. [Google Scholar]
  • Jensen, E.V., Desombre, E.R. (1973). Estrogen-receptor interaction: estrogenic hormones effect transformation of specific receptor proteins to a biochemically functional form. Science, 182, 126–134. [CrossRef] [PubMed] [Google Scholar]
  • Jensen, E.V., Jacobson, H.I., Walf, A.A., Frye, C.A. (2010). Estrogen action: a historic perspective on the implications of considering alternative approaches. Physiol Behav, 99, 151–162. [CrossRef] [PubMed] [Google Scholar]
  • Jörgens, V., Porta, M., eds. (2020). Unveiling diabetes – Historical milestones in diabetology. Frontiers in diabetes, Vol. 29, Karger, 309 p. [Google Scholar]
  • Joshi, R.L., Lamothe, B., Cordonnier, N., Mesbah, K., Monthious, E., Jami, J., Bucchini, D. (1996). Targeted disruption in the insulin receptor gene in the mouse results in neonatal lethality. EMBO J, 15, 1542–1547. [CrossRef] [PubMed] [Google Scholar]
  • Jospe N., Kaplowitz, P.B., Furlanetto, R.W. (1996). Homozygous nonsense mutation in the insulin receptor gene in a patient with severe congenital insulin resistance, leprechaunism and the role of the insulin-like growth factor receptor. Clin Endocrinol, 45, 229–255. [CrossRef] [PubMed] [Google Scholar]
  • Kadowaki, T., Bevins, C.L., Cama, A., Ojaama, K., Marcus-Samuels, B., Kadowaki, H., Beitz, L., McKeon, C., Taylor, S.I. (1988). Two mutant alleles of the insulin receptor gene in a patient with extreme insulin resistance. Science, 240, 787–790. [CrossRef] [PubMed] [Google Scholar]
  • Kahn, C.R., Neville, D.M. Jr, Gorden, P. Freychet, P., Roth, J. (1972). Insulin receptor defect in insulin resistance: studies in the obese-hyperglycemic mouse. Biochem Biophys Res Commun, 48, 135–142. [CrossRef] [PubMed] [Google Scholar]
  • Kahn, C.R., Flier, J.S., Bar, R.S., Archer, J.A., Gorden, P., Martin, M.M., Roth, J. (1976). The syndromes of insulin resistance and acanthosis nigricans. Insulin-receptor disorders in man. N Engl J Med, 294, 739–745. [CrossRef] [PubMed] [Google Scholar]
  • Kahn, C.R., Baird, K.L., Flier, J.S., Grunfeld, C., Harmon, J.T., Harrison, L.C., Karlsson, F.A., Kasuga, M., King, G.L., Lang, U.L., Podskalny, J.M., Van Obberghen, E. (1981). Insulin receptors, receptor antibodies, and the mechanism of insulin action. Recent Prog Horm Res, 37, 477–538. [PubMed] [Google Scholar]
  • Kahn, C.R. (2003a). Knockout mice challenge our concepts of glucose homeostasis and the pathogenesis of diabetes. Exp Diabesity Res, 4, 169–182. [CrossRef] [PubMed] [Google Scholar]
  • Kahn, C.R. (2003b). The Gordon Wilson Lecture. Lessons about the control of glucose homeostasis and the pathogenesis of diabetes from knockout mice. Trans Am Clin Climatol Assoc, 114, 125–148. [Google Scholar]
  • Kasten, F.H. (1996). Paul Ehrlich: pathfinder in cell biology. 1. Chronicle of his life and accomplishments in immunology, cancer research and chemotherapy. Biotech Histochem, 71, 2–37. [CrossRef] [PubMed] [Google Scholar]
  • Kasuga, M., Kahn, C.R., Hedo, J.A., Van Obberghen, E., Yamada, K.M. (1981a). Insulin-induced receptor loss in cultured human lymphocytes is due to accelerated receptor degradation. Proc Natl Acad Sci USA, 78, 6917–6921. [CrossRef] [PubMed] [Google Scholar]
  • Kasuga, M., Van Obberghen, E., Yamada, K.M., Harrison, L.C. (1981b). Autoantibodies against the insulin receptor recognize the insulin binding subunits of an oligomeric receptor. Diabetes, 30, 354–357. [CrossRef] [PubMed] [Google Scholar]
  • Kasuga, M., Karlsson, F.A., Kahn, C.R. (1982a). Insulin stimulates the phosphorylation of the 95 000 dalton subunit of its own receptor. Science, 215, 185–187. [CrossRef] [PubMed] [Google Scholar]
  • Kasuga, M., Zick, Y., Blithe, D.L, Crettaz, M., Kahn, C.R. (1982b). Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature, 298, 667–669. [CrossRef] [PubMed] [Google Scholar]
  • Kasuga, M., Zick, Y., Blithe, D.L., Karlsson, F.A., Häring, H.U., Kahn, C.R. (1982c). Insulin stimulation of phosphorylation of the beta subunit of the insulin receptor. Formation of both phosphoserine and phosphotyrosine. J Biol Chem, 257, 9891–9894. [CrossRef] [PubMed] [Google Scholar]
  • Kasuga M., Fujita-Yamaguchi, Y., Blithe, D.L., Kahn, C.R. (1983). Tyrosine-specific protein kinase activity is associated with the purified insulin receptor. Proc Natl Acad Sci USA, 80, 2137–2141. [CrossRef] [PubMed] [Google Scholar]
  • Kasuga, M. (2019). Structure and function of the insulin receptor – a personal perspective. Proc Jpn Acad Sci, B 95, 581–589. [CrossRef] [PubMed] [Google Scholar]
  • Katsoyannis, P.G. (1967). Synthetic insulins. Rec Prog Horm Res, 23, 505–563. [Google Scholar]
  • Katzen, H. (1973). Biological activity of insulin-sepharose? Science, 179, 1142–1143. Cuatrecasas’ answer: pp. 1143–1144. [CrossRef] [PubMed] [Google Scholar]
  • Kavran, J.M., McCabe, J.M., Byrne, P.O., Connacher, M.K., Wang, Z., Ramek, A., Sarabipour, S., Shan, Y., Shaw, D.E., Hristova, K., Cole, P.A., Leahy, D. (2014). How IGF-I activates its receptor. eLife, 10.7554/eLife 03772. [PubMed] [Google Scholar]
  • Kido, Y., Burks, D.J., Withers, D., Brüning, J.C., Kahn, C.R., White, M.F., Accili, D. (2000). Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest, 105, 199–205. [CrossRef] [PubMed] [Google Scholar]
  • Kiselyov, V.V., Versteyhe, S., Gauguin, L., De Meyts, P. (2009). Harmonic oscillator model of the insulin and IGF1 receptor’s allosteric binding and activation. Mol Sys Biol, 5, 243. [CrossRef] [Google Scholar]
  • Kitamura, T., Kahn, C.R., Accili, D. (2003). Insulin receptor knockout mice. Ann Rev Physiol, 65, 313–332. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Kleinridders, A., Ferris, H.A. Cai, W., Kahn, C.R. (2014). Insulin action in brain regulates systemic metabolism and brain function. Diabetes, 63, 2232–2243. [CrossRef] [PubMed] [Google Scholar]
  • Knudsen, L., De Meyts, P., Kiselyov, V.V. (2011). Insight into the molecular basis for the kinetic differences between the two insulin receptor isoforms. Biochem J, 440, 297–403. [Google Scholar]
  • Kristensen, C., Kjeldsen, T., Wiberg, F.C., Schäffer, L., Hach, M., Havelund, S., Bass, J., Steiner, D.F., Andersen, A.S. (1997). Alanine scanning mutagenesis of insulin. J Biol Chem, 272, 12978–12983. [CrossRef] [PubMed] [Google Scholar]
  • Krook, A., Brueton, L., O’Rahilly, S. (1993). Homozygous nonsense mutation in the insulin receptor gene in infant with leprechaunism. Lancet, 342, 277–278. [CrossRef] [PubMed] [Google Scholar]
  • Krug, U., Krug, F., Cuatrecasas, P. (1972). Emergence of insulin receptors on human lymphocytes during in vitro transformation. Proc Natl Acad Sci USA, 69, 2604–2608. [CrossRef] [PubMed] [Google Scholar]
  • Lamothe, B., Baudry, A., Desbois, P., Lamotte, L., Bucchini, D., De Meyts, P., Joshi, R.L. (1998). Genetic engineering in mice: impact on insulin signalling and action. Biochem J, 335, 193–204. [CrossRef] [PubMed] [Google Scholar]
  • Lane, M.D., Ronnett, G., Slieker, L.J., Kohanski, R.A., Olson, T.L. (1985). Post-translational processing and activation of insulin and EGF proreceptors. Biochimie, 67, 1069–1080. [CrossRef] [PubMed] [Google Scholar]
  • Langley, J.N. (1905). On the reaction of cells and nerve endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol, 33, 374–413. [CrossRef] [PubMed] [Google Scholar]
  • Lawrence, M.C., Ward, C.W. (2015). Structural features of the receptor tyrosine kinases ectodomains, in: D.L. Wheeler, Y. Yarden, (Eds.), Receptor tyrosine kinases: structure, functions and role in human disease, Humana Press, Springer, New York, Heidelberg, Dordrecht, London, pp. 163–193. [Google Scholar]
  • Lawrence, M.C. (2021). Understanding insulin and its receptor from their three-dimensional structures. Mol Metab, 52, 101255. [CrossRef] [PubMed] [Google Scholar]
  • Lefkowitz, R.J., Roth, J., Pastan, I. (1970a). Radioreceptor assay of adrenocorticotropic hormone: new approach to assay of polypeptide hormones in plasma. Science, 170, 633–635. [CrossRef] [PubMed] [Google Scholar]
  • Lefkowitz, R.J., Roth, J., Pastan, I. (1970b). Effect of calcium on ACTH stimulation of the adrenal: separation of hormone binding from adenylcyclase activation. Nature, 228, 864–866. [CrossRef] [PubMed] [Google Scholar]
  • Lefkowitz, R.J, Roth, J., Pricer, W., Pastan, I. (1970c). ACTH receptors in the adrenal: specific binding of ACTH-I125 and its relation to adenylcyclase. Proc Natl Acad Sci USA, 65, 745–752. [CrossRef] [PubMed] [Google Scholar]
  • Lefkowitz, R.J., Roth, J., Pastan, I. (1971). ACTH-receptor interaction in the adrenal: a model for the initial step in the action of hormones that stimulate adenylcyclase. Ann NY Acad Sci, 185, 195–209. [CrossRef] [Google Scholar]
  • Lemmon, M.A, Schlessinger, J. (2010). Cell signalling by receptor tyrosine kinases. Cell, 141, 1117–1134. [CrossRef] [PubMed] [Google Scholar]
  • Levine, R., Goldstein, M., Klein, S., Huddleston, B. (1949). The action of insulin on the distribution of galactose in eviscerated and nephrectomized dogs. J Biol Chem, 179, 985–986. [CrossRef] [PubMed] [Google Scholar]
  • Levine R. (1965). Cell membrane as a primary site of insulin action. Fed Proc, 24, 1071–1073. [PubMed] [Google Scholar]
  • Levine, R. (1981). Insulin action: 1948-80. Diabetes Care, 1, 38–44. [CrossRef] [PubMed] [Google Scholar]
  • Lewis, G.F., Brubaker, P.L. (2021). The discovery of insulin revisited: lessons for the modern era. J Clin Invest, 131, e142239. [CrossRef] [Google Scholar]
  • Li, J., Park, J., Mayer, J.P., Webb, K.J., Uchikawa, E., Wu, J., Liu, S., Zhang, X., Stowell, M.H.B., Choi, E., Bai, X.-C. (2022). Synergistic activation of the insulin receptor via two distinct sites. Nat Struct Mol Biol, 29, 357–368. [CrossRef] [PubMed] [Google Scholar]
  • Limbird L., De Meyts, P., Lefkowitz, R.J. (1975). Beta-adrenergic receptors: evidence for negative cooperativity. Biochem Biophys Res Commun, 64, 1160–1168. [CrossRef] [PubMed] [Google Scholar]
  • Lin, S.Y., Goodfriend, T.L. (1970). Angiotensin receptors. Am J Physiol, 218, 1319–1328. [CrossRef] [PubMed] [Google Scholar]
  • Lin, S.Y., Ellis, H., Weisblum, B., Goodfriend, T.L. (1970). Preparation and properties of iodinated angiotensins. Biochem Pharmacol. 19, 651–652. [CrossRef] [PubMed] [Google Scholar]
  • Lou, M., Garrett, T.P, McKern, N.M., Hoyne, P.A., Epa, V.C., Bentley, J.D., Lovrecz, G.O., Cosgrove, L.J., Frenkel, M.J., Ward, C.W. (2006). Crystal structure of the first three domains of the human insulin receptor reveals major differences from the IGF-1 receptor in the regions governing ligand specificity. Proc Natl Acad Sci USA, 103, 12429–12434. [CrossRef] [PubMed] [Google Scholar]
  • Ludvigsen, S., Olsen, H.B., Kaarsholm, N.C. (1998). A structural switch in a mutant insulin exposes key residues for receptor binding. J Mol Biol, 279, 1–7. [CrossRef] [PubMed] [Google Scholar]
  • Lukens, F.D.W. (1959). William C. Stadie (1886-1959). Diabetes, 8, 476–478. [CrossRef] [PubMed] [Google Scholar]
  • Massague, J., Pilch, P.F., Czech, M.P. (1980). Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries. Proc Natl Acad Sci USA, 77, 7137–7141. [CrossRef] [PubMed] [Google Scholar]
  • Mazaira, G.I., Zgajnar, N.R., Lotufo, C.M., Daneri-Becerra, C., Sivils, J.C., Soto, O.B., Cox, M.B., Galigniana, M.D. (2018). The nuclear receptor field: a historical overview and future challenges. Nucl Receptor Res, 5. https://doi.org/10.11131/2018/101320. [Google Scholar]
  • McKern, N.M., Lawrence, M.C., Streltsov, V.A., Lou, M-Z., Adams, T.E., Lovrecz, G.O., Elieman, T.C., Richards, K.M., Bentley, J.D., Pilling, P.A., Hoyne, P.A., Cartledge, K.A., Pham, T.M., Lewis, J.L., Sankovich, S.E., Stoichevska, V., Da Silva, E., Robinson, C.P., Frenkel, M.J., Sparrow, L.G., Fernley, R.T., Epa, V.C., Ward, C.W. (2006). Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature, 44, 3218–3221. [Google Scholar]
  • Menting, J.G., Whittaker, J., Margetts, M.B., Whittaker, L., Kong, G.K., Smith, B.J., Watson, C.J., Zakova, L., Kletvikova, E., Jiracek, J., Chan, S.J., Steiner, D.F., Dodson, G.G., Brzozowski, A.M., Weiss, M.A., Ward, C.W., Lawrence, M.C. (2013). How insulin engages its primary binding site on the insulin receptor. Nature, 493, 241–245. [CrossRef] [PubMed] [Google Scholar]
  • Menting, J.G., Yang, Y., Chan, S.J., Phillips, N.B., Smith, B.J., Whittaker, J., Wickramasinghe, N.P., Whittaker, L.J., Pandyarajan, V., Wan, Z.-I., Yadav, S.P., Carroll, J.M., Strokes, N., Roberts, C.T. Jr., Ismail-Belgi, F., Milewski, W., Steiner, D.F., Chauhan, V.S., Ward, C.W., Weiss, M.A., Lawrence, M.C. (2014). Protective hinge in insulin opens to enable its receptor engagement. Proc Natl Acad Sci USA, 111, E3395–E3404. [CrossRef] [PubMed] [Google Scholar]
  • Mosthaf, L., Giako, K., Dull, T.J., Coussens, L., Ullrich, A., McClain, D.A. (1990). Functionally distinct insulin receptors generated by tissue specific alternative splicing. EMBO J, 9, 2409–2413. [CrossRef] [PubMed] [Google Scholar]
  • Moxham, C.P., Duzonio, V., Jacobs, S. (1989). Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptors heterodimers. J Biol Chem, 264, 13238–13244. [CrossRef] [PubMed] [Google Scholar]
  • Nandi, A., Kitamura, Y., Kahn, C.R., Accili, D. (2003). Mouse models of insulin resistance. Physiol Rev, 84, 623–647. [Google Scholar]
  • Neville, D.M. (1960). The isolation of a cell membrane fraction from rat liver. J Biophys Biochem Cytol, 8, 413–422. [CrossRef] [Google Scholar]
  • Neville, D.M. Jr (1974). Receptors for polypeptide hormones: direct studies of insulin binding to purified liver plasma membranes. In Vitro, 9, 445–454. [CrossRef] [PubMed] [Google Scholar]
  • Neville, D.M., Kahn, C.R. (1974). Isolation of plasma membranes for cell surface membrane receptor studies, in: A.I. Laskin, J.A. Last (Eds.), Methods in Molecular Biology, Vol. 4, Subcellular Particles, Structures and Organelles, pp. 57–88. [Google Scholar]
  • Newerly, K., Berson, S.A. (1957). Lack of specificity of insulin-I131-binding by isolated rat diaphragm. Proc Soc Exp Biol Med, 94, 751–755. [CrossRef] [Google Scholar]
  • Nielsen, J., Brandt, J., Boesen, T., Hummelshoj, T., Slaaby, R., Schluckebier, G., Nissen, P. (2022). Structural investigations of full-length insulin receptor dynamics and signalling. J Mol Biol, 434, 167458. [CrossRef] [PubMed] [Google Scholar]
  • Olefsky, J.M. (1976). Decreased insulin binding to adipocytes and circulating monocytes from obese subjects. J Clin Invest, 57, 1165–1172. [CrossRef] [PubMed] [Google Scholar]
  • Pautsch, A., Zoephel, A., Ahorn, H., Spevak, W., Hauptmann, R., Nar, H. (2001). Crystal structure of bis-phosphorylated IGF-I receptor kinase: insight into domain movements upon kinase activation. Structure, 9, 955–965. [CrossRef] [PubMed] [Google Scholar]
  • Pawson, T. (2004). Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell, 116, 191–203. [CrossRef] [PubMed] [Google Scholar]
  • Pedersen, O., Beck-Nielsen, H. (1976). A study of insulin receptors in human mononuclear leucocytes. Acta Endocrinol (Copenh), 83, 556–564. [CrossRef] [Google Scholar]
  • Pedersen, O., Hjollund E., Beck-Nielsen, H., Lindskov, H.O., Sonne, O., Gliemann, J. (1981). Insulin receptor binding and receptor-mediated degradation in human adipocytes. Diabetologia, 20, 636–641. [PubMed] [Google Scholar]
  • Pelicci, G., Dente, L., De Giuseppe, A., Verducci-Galletti, B., Giuli, S., Mele, S., Vetriani, C., Giorgio, M., Pandolfi, P.P., Cesareni, G., Pelicci, P.G. (1996). A family of Shc related proteins with conserved PTB, CH1 and SH2 regions. Oncogene, 13, 633–641. [PubMed] [Google Scholar]
  • Petersen, M.C., Shulman, G.I. (2018). Mechanisms of insulin action and insulin resistance. Physiol Rev, 98, 2133–2223. [CrossRef] [PubMed] [Google Scholar]
  • Petruzelli, L.M., Ganguly, S., Smith, C.J., Cobb, M.H., Rubin, C.S., Rosen, O.M. (1982). Insulin activates a tyrosine-specific protein kinase in extracts of 3T3-L1 adipocytes and human placenta. Proc Natl Acad Sci USA, 79, 6792–6796. [CrossRef] [PubMed] [Google Scholar]
  • Porte, D.J., Baskin, D.G., Schwartz, M.W. (2005). Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to human. Diabetes, 54, 1264–1276. [CrossRef] [PubMed] [Google Scholar]
  • Posner, B.I., Kelly, P.A., Shiu, R.P.C., Friesen, H.G. (1974). Studies of insulin, growth hormone and prolactin binding: tissue distribution, species variation and characterization. Endocrinology, 95, 521–531. [CrossRef] [PubMed] [Google Scholar]
  • Posner, B.I., Khan, M.N., Bergeron, J.J. (1985). Internalization of insulin: structures involved and significance. Adv Exp Med Biol, 189, 159–173. [CrossRef] [PubMed] [Google Scholar]
  • Prüll, C.-R., Maehle, A.-H., Halliwell, R.F. (2009). A short history of the drug receptor concept, in: J.V. Pickstone (General Ed.), Science, Technology and Medicine in Modern History, Palgrave Macmillan, Basingstoke, Hampshire, England, 239 p. [Google Scholar]
  • Psiachou, H., Mitton, S., Alaghband-Zadeh, J., Hone, J., Taylor, S.I., Sinclair, L. (1993). Leprechaunism and homozygous nonsense mutation in the insulin receptor gene. Lancet, 342, 924. [CrossRef] [PubMed] [Google Scholar]
  • Pullen, R.A., Lindsay, D.G., Wood, S.P., Tickle, I.J., Blundell, T.L., Wollmer, A., Krail, G., Brandenburg, D., Zahn, H., Gliemann, J., Gammeltoft, S. (1976). The receptor-binding region of insulin. Nature, 259, 369–373. [CrossRef] [PubMed] [Google Scholar]
  • Raspé, G. (Ed.) (1971). Schering workshop on steroid hormone “receptors”, in: Advances in the Biosciences 7, Pergamon press-Vieweg, Braunschweig. [Google Scholar]
  • Ravishandran, K.S. (2001). Signaling via Shc family adapter proteins. Oncogene, 20, 6322–6330. [CrossRef] [PubMed] [Google Scholar]
  • Riggs, A.D. (2021). Making, cloning and expression of human insulin genes in bacteria: the path to Humulin. Endocrine Rev, 42, 374–380. [CrossRef] [PubMed] [Google Scholar]
  • Rostène, W. (2013). Les caprices du Nobel. À la découverte du diabète et du stress, L’Harmattan, Paris, 230 p. [Google Scholar]
  • Rostène, W., De Meyts, P. (2021a). Insulin: a 100-year-old discovery with a fascinating history. Endocrine Rev, 42, 503–527. [CrossRef] [PubMed] [Google Scholar]
  • Rostène, W., De Meyts, P. (2021b). La fabuleuse découverte de l’insuline. Pour la Science, 525, 72–79. [CrossRef] [Google Scholar]
  • Roth, J. (1973). Peptide hormone binding to receptors: a review of direct studies in vitro. Metabolism, 22, 1059–1073. [CrossRef] [PubMed] [Google Scholar]
  • Roth, J. (1975a). Assay of peptide hormone receptors using cell receptors: application to insulin and to human growth hormone. Methods Enzymol, 37, 66–82. [CrossRef] [Google Scholar]
  • Roth, J. (1975b). Methods for assaying immunologic and biologic properties of iodinated peptides. Methods Enzymol, 37, 223–233. [CrossRef] [Google Scholar]
  • Roth J., Kahn, C.R., Lesniak, M.A., Gorden, P., De Meyts, P., Megyesi, K., Neville, D.M. Jr, Gavin, J.R. 3rd, Soll, A.H., Freychet, P., Goldfine, I.D., Bar, R.S., Archer, J.A. (1975c). Receptors for insulin, NSILA-s, and growth hormone: applications to disease states in man. Recent Prog Horm Res, 31, 95–139. [Google Scholar]
  • Roth, J., Qureshi, S., Whitford, I., Vranic, M., Kahn, C.R., Fantus, I.G., Dirks, J.H. (2012). Insulin’s discovery: new insights into its ninetieth birthday. Diabetes Metab Res Rev, 28, 293–304. [CrossRef] [PubMed] [Google Scholar]
  • Roth, R.A., Cassell, D.J. (1983). Insulin receptor: evidence that it is a protein kinase. Science, 219, 299–301. [CrossRef] [PubMed] [Google Scholar]
  • Rousseau, G.G. (2013). Fifty years ago: the quest for steroid hormone receptors. Mol Cell Endocrinol, 375, 10–13. [CrossRef] [PubMed] [Google Scholar]
  • Rousseau, G. (2021). Sur la piste des messagers cellulaires. Carnets de voyage d’un explorateur, in: B. Pequignot (Ed.), Science et Société, L’Harmattan, Paris, 149 p. [Google Scholar]
  • Saltiel, A.R., Pessin, J.E. (2007). Mechanisms of insulin action. Medical intelligence Unit. Landes Bioscience, Austin, Texas; Springer Science + Business Media, New York, New York, 214 p. [Google Scholar]
  • Saltiel, A.R.S., Whitford, I., Vranic, M., Kahn, C.R., Fantus, I.G., Dirks, J.H. (2012). Insulin’s discovery: new insights into its ninetieth birthday. Diabetes Metab Res Rev, 28, 293–304. [CrossRef] [PubMed] [Google Scholar]
  • Saltiel, A.R. (2021). Insulin signaling in health and disease. J Clin Invest, 131(1), e142241. [CrossRef] [Google Scholar]
  • Schäffer, L. (1994). A model for insulin binding to the insulin receptor. Eur J Biochem, 221, 1127–1132. [CrossRef] [PubMed] [Google Scholar]
  • Seino, S., Bell, G.I. (1989). Alternative splicing of the human insulin receptor messenger RNA. Biochem Biophys Res Commun, 159, 312–316. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Seino, S., Seino, M., Nishi, S., Bell, G.I. (1989). Structure of the human insulin receptor gene and characterization of his promoter. Proc Natl Acad Sci USA, 86, 114–118. [CrossRef] [MathSciNet] [Google Scholar]
  • Semple, R.K., Savage, D.B., Cochran, E.K, Gorden, P., O’Rahilly, S. (2011). Genetic syndromes of extreme insulin resistance. Endocr Rev, 32, 498–514. [CrossRef] [PubMed] [Google Scholar]
  • Smith, B.J., Huang, K., Kong, G., Chan, S.J., Nakagawa, S., Menting, J.G., Hu, S.-Q., Whittaker, J., Steiner, D.F., Katsoyannis, P.G., Ward, C.W., Weiss, M.A., Lawrence, M.C. (2010). Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proc Natl Acad Sci USA, 107, 6771–6776. [CrossRef] [PubMed] [Google Scholar]
  • Soll, A.H., Goldfine, I.D., Roth, J., Kahn, C.R. (1974). Thymic lymphocytes in obese (ob/ob) mice. A mirror of the insulin receptor defect in liver and fat. J Biol Chem, 249, 4127–4131. [CrossRef] [PubMed] [Google Scholar]
  • Soll, A.H., Kahn, C.R., Neville, D.M. Jr. (1975a). Insulin binding to liver plasma membranes in the obese hyperglycemic (ob/ob) mouse. Demonstration of a decreased number of functionally normal receptors. J Biol Chem, 250, 4702–4707. [CrossRef] [PubMed] [Google Scholar]
  • Soll, A.H., Kahn, C.R., Neville, D.M. Jr, Roth, J. (1975b). Insulin receptor deficiency in genetic and acquired obesity. J Clin Invest, 56, 769–780. [CrossRef] [PubMed] [Google Scholar]
  • Soos, M.A., Siddle, K., Baron, M.D., Heward, J.M., Luzio, J.P., Bellatin, J., Lennox, E.S. (1986). Monoclonal antibodies reacting with multiple epitopes of the human insulin receptors. Biochem J, 235, 199–208. [CrossRef] [PubMed] [Google Scholar]
  • Soos, M.A., Siddle, K. (1989). Immunological relationship between receptors for insulin and insulin-like growth factor I. Evidence for structural heterogeneity of insulin-like growth factor I receptors involving hybrids with insulin receptors. Biochem, 263, 553–563. [CrossRef] [PubMed] [Google Scholar]
  • Soos, M.A., Whittaker, J., Lammers, R., Ullrich, A., Siddle, K. (1990). Receptors for insulin and insulin-like growth factor-I can form hybrid dimers. Characterization of hybrid receptors in transfected cells. Biochem J, 270, 383–390. [CrossRef] [PubMed] [Google Scholar]
  • Soos, M.A., Field, C.E., Siddle, K. (1993). Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J, 290, 419–426. [CrossRef] [PubMed] [Google Scholar]
  • Stadie, W.C., Haugaard, N., Vaughan, M. (1952). Studies of insulin binding with isotopically labeled insulin. J Biol Chem, 199, 729–739. [CrossRef] [PubMed] [Google Scholar]
  • Stadie, W.C. (1954). Current concepts of the action of insulin. Physiol Rev, 34, 52–100. [CrossRef] [PubMed] [Google Scholar]
  • Stadie, W.C. (1956). The Banting Memorial Lecture 1956. Recent advances in insulin research. Diabetes, 5, 263–275. [CrossRef] [PubMed] [Google Scholar]
  • Stadtmauer, L.A., Rosen, O.M. (1983). Phosphorylation of exogenous substrates by the insulin receptor – associated protein kinase. J Biol Chem, 258, 6682–6685. [CrossRef] [PubMed] [Google Scholar]
  • Steiner, D.F., Cunningham, D., Spigelman, K., Aren, B. (1967). Insulin biosynthesis: evidence for a precursor. Science, 157, 697–700. [CrossRef] [PubMed] [Google Scholar]
  • Sun, X.J., Rothenberg, P., Kahn, C.R., Backer, J.M., Araki, E., Wilden, P.A., Cahill, D.A., Goldstein, B.J., White, M.F. (1991). Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature, 352, 73–77. [CrossRef] [PubMed] [Google Scholar]
  • Süveges, D., Jura, N. (2015). Structural features of the kinase domain, in: D.L. Wheeler, Y. Yarden (Eds.), Receptor tyrosine kinases: structure, functions and role in human disease, Humana Press, Springer, New York, Heidelberg, Dordrecht, London, pp. 195–223. [Google Scholar]
  • Taniguchi, C.M., Emmanuelli, B., Kahn, C.R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol, 7, 85–96. [CrossRef] [PubMed] [Google Scholar]
  • Taylor, S.I. (1992). Lilly lecture: molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin receptor gene. Diabetes, 41, 1473–1490. [CrossRef] [PubMed] [Google Scholar]
  • Taylor, S.I., Cama, A., Accili, D., Barbetti, F., Quon, M.J., de la Luz Sierra, M., Suzuki, Y., Koller, E., Levy-Toledano, R., Wertheimer, E., Moncadaj, V.Y., Kadowaki, H., Kadowaki, T. (1992). Mutations in the insulin receptor gene. Endocr Rev, 13, 566–595. [CrossRef] [PubMed] [Google Scholar]
  • Thomopoulos P, Testa U, Vainchenker W. (1982). Erythrocyte receptors of insulin (in French). (1982). J Ann Diabetol Hôtel-Dieu, 1982, 19–30. [Google Scholar]
  • Thorsoe, K.S., Schlein, M., Steensgaard, D.B., Brandt, J., Schluckebier, G., Naver, H. (2010). Kinetic evidence for the sequential association of insulin binding sites 1 and 2 to the insulin receptor and the influence of receptor isoform. Biochemistry, 49, 6234–6246. [CrossRef] [PubMed] [Google Scholar]
  • Tornqvist, H.E., Pierce, M.W., Frackelton, A.R., Nemenoff, R.A., Avruch, J. (1987). Identification of insulin receptor tyrosine residues autophosphorylated in vitro. J Biol Chem, 262, 10212–10219. [CrossRef] [PubMed] [Google Scholar]
  • Treadway, J., Morrison, B., Goldfine, I., Pessin, J. (1990). Assembly of insulin/insulin-like growth factor-I hybrid receptors in vitro. J Biol Chem, 264, 21450–21453. [Google Scholar]
  • Uchikawa, E., Choi, E., Shang, G., Yu, H., Bai, X.-C. (2019). Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. ELife, 8, e48630. [CrossRef] [PubMed] [Google Scholar]
  • Ullrich, A., Bell, J.R., Chen, E.Y., Herrera, R., Petruzelli, L.M., Dull, T.J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O.M., Ramachandran, J. (1985). Human insulin receptor and its relationship to the tyrosine family of oncogenes. Nature, 313, 756–761. [CrossRef] [PubMed] [Google Scholar]
  • Unger, R.H., Eisentraut, A.M., McCall, M.S., Keller, S., Lanz, H.C., Madison, L.L. (1959). Glucagon antibodies and their use for immunoassay of glucagon. Proc Soc Exp Biol Med, 102, 621–623. [CrossRef] [Google Scholar]
  • Van Obberghen, E., Kasuga, M., Le Cam, A., Hedo, J.A., Itin, A., Harrison, L.C. (1981). Biosynthetic labeling of the insulin receptor: Studies of subunits in cultured human IM-9 lymphocytes. Proc Natl Acad Sci USA, 78, 1052–1056. [CrossRef] [PubMed] [Google Scholar]
  • Van Obberghen, E., Rossi, B., Kowalski, A., Gazzano, H., Ponzio, G. (1983). Receptor-mediated phosphorylation of the hepatic insulin receptor. Evidence that the Mr 95 000 receptor subunit is its own kinase. Proc Natl Acad Sci USA, 80, 945–949. [CrossRef] [PubMed] [Google Scholar]
  • Vecchio, I., Tornali, C., Bragazzi, N.L., Martini, M. (2018). The discovery of insulin: an important milestone in the history of medicine. Front Endocrinol (Lausanne), 9, 613. [CrossRef] [PubMed] [Google Scholar]
  • Vialettes, B. (2020). Jesse Roth, James R. Gavin, 3rd, Pierre Freychet, et C. Ronald Kahn. Les décrypteurs de la boîte noire de la transduction du message insulinique. https://www.sciencedirect.com/science/article/pii/S1957255720002072Manuscript_855659b0da756333cab86cf49fa70b03. [Google Scholar]
  • Vorwerk, P., Christoffersen, C.T., Müller, J., Vestergaard, H., Pedersen, O., De Meyts, P. (1999). Alternative splicing of exon 17 and a missense mutation in exon 20 of the insulin receptor gene in two siblings with a novel syndrome of insulin resistance (congenital fiber-type disproportion myopathy). Horm Res, 52, 211–220. [PubMed] [Google Scholar]
  • Ward, C.W., Lawrence, M.C. (2011). Landmarks in insulin research. Front Endocrinol (Lausanne), 2, 76. https://doi.org/10.3389/fendo.2011.00076. [CrossRef] [PubMed] [Google Scholar]
  • Ward, C.W., Menting, J.G., Lawrence, M.C. (2013). The insulin receptor changes conformation in unforeseen ways on ligand binding: sharpening the picture of insulin receptor activation. Bioessays, 37, 389–397. [Google Scholar]
  • Weis, F., Menting, J.G., Margetts, M.B., Chan, S.J., Xu, Y., Tennagels, N., Wohlfart, P., Langer, T., Müller, C.W., Dreyer, M.K., Lawrence, M.C. (2018). The signalling conformation of the insulin receptor ectodomain. Nat Commun, 9, 4420. [CrossRef] [PubMed] [Google Scholar]
  • Weiss, M.A., Steiner, D.F., Philipson, L.H. (2014). Insulin biosynthesis, secretion, structure and structure-activity relationships, in: K.R. Feingold, et al. (Eds.), Endotext (Internet), South Dartmouth (MA), MDText.com, Inc., 2000. [Google Scholar]
  • Wertheimer, E., Lu, S.P., Backeljauw, P.F., Davenport, M.L., Taylor, S.I. (1993). Homozygous deletion of the human insulin receptor gene results in leprechaunism. Lancet, 342, 277–278. [CrossRef] [PubMed] [Google Scholar]
  • Wheeler, D.L., Yarden, Y. (Eds) (2015a). Receptor tyrosine kinases: structure, functions and role in human disease, Humana Press, Springer, New York, Heidelberg, Dordrecht, London, 474 pp. [Google Scholar]
  • Wheeler, D.L., Yarden, Y. (Eds) (2015b). Receptor tyrosine kinases: family and subfamilies, Humana Press, Springer, New York, Heidelberg, Dordrecht, London, 878 pp. [Google Scholar]
  • White, M.F. (1998). The IRS signaling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem, 182, 3–11. [CrossRef] [PubMed] [Google Scholar]
  • White, M.F., Copps, K.D. (2016). The mechanisms of insulin action, in: J.L. Jameson, L.J. De Groot, D.M. de Kretser, L.C. Giudice, A.B. Grossman, S. Melmed, J.T. Potts Jr, G.C. Weir (Eds.), Endocrinology. Adult and pediatric, 7th ed., Elsevier Saunders, Vol. 1, pp. 556–585. [CrossRef] [Google Scholar]
  • White, M.F., Kahn, C.R. (2021). Insulin action at the molecular level – 100 years of progress. Mol Metab, 52, 101304. [CrossRef] [PubMed] [Google Scholar]
  • Whittaker, L., Hao, C., Fu, W., Whittaker, J. (2008). High affinity insulin binding: insulin interacts with two receptor ligand binding sites. Biochemistry, 47, 12900–12909. [CrossRef] [PubMed] [Google Scholar]
  • Whittaker, J., Whittaker, L.J., Roberts, C.T. Jr., Phillips, N.B., Ismail-Belgi, F., Lawrence, M.C., Weiss, M.A. (2012). -helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase. Proc Natl Acad Sci USA, 109, 11166–11171. [CrossRef] [PubMed] [Google Scholar]
  • Yalow, R.S., Berson, S.A. (1960). Immunoassay of endogenous plasma insulin in man. J Clin Invest, 39, 1157–1175. [CrossRef] [PubMed] [Google Scholar]
  • Yamamoto, R., Shiba, T., Tobe, K., Shibasaki, Y., Koshio, O., Izumi, T., Odawara M., Mikami, Y., Matsuura, N., Akanuma, Y., Takaku, F., Kasuga, M. (1990). Defect in tyrosine kinase activity of the insulin receptor from a patient with insulin resistance with acanthosis nigricans. J Clin Endocrinol Metab, 70, 869–878. [CrossRef] [PubMed] [Google Scholar]
  • Yip, C.C., Yeung, C.W., Moule, M.L. (1980). Photoaffinity labeling of insulin receptor proteins of liver plasma membrane preparations. Biochemistry, 19, 70–76. [CrossRef] [PubMed] [Google Scholar]
  • Yu, K.T., Pessin, J.E., Czech, M.P. (1985). Regulation of insulin receptor kinase by multisite phosphorylation. Biochimie, 67, 1081–1093. [CrossRef] [PubMed] [Google Scholar]
  • Zahn H. (2000). My journey from wool research to insulin. J Pept Sci, 6, 1–10. [CrossRef] [PubMed] [Google Scholar]
  • Zick, Y., Kasuga, M., Kahn, C.R., Roth, J. (1983a). Characterization of insulin-mediated phosphorylation of the insulin receptor in a cell-free system. J Biol Chem, 258, 75–80. [CrossRef] [PubMed] [Google Scholar]
  • Zick, Y., Whittaker, J., Roth, J. (1983b). Insulin-stimulated phosphorylation of its own receptor. Activation of a tyrosine-specific protein kinase that is tightly associated with the receptor. J Biol Chem. 258, 3431–3434. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.