Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 206, Numéro 1, 2012
Page(s) 11 - 24
Section Cardiologie expérimentale et clinique : nouvelles avancées
DOI https://doi.org/10.1051/jbio/2012003
Publié en ligne 3 avril 2012
  • Abi-Gerges A., Richter W., Lefebvre F., Matéo P., Varin A., Heymes C., Samuel J.-L., Lugnier C., Conti M., Fischmeister R., Vandecasteele G., Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on β-adrenergic cAMP signals. Circ Res, 2009, 105, 784–792. [CrossRef] [PubMed] [Google Scholar]
  • Agarwal S.R., MacDougall D.A., Tyser R., Pugh S.D., Calaghan S.C., Harvey R.D., Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes. J Mol Cell Cardiol, 2011, 50, 500–509. [CrossRef] [PubMed] [Google Scholar]
  • Altschuld R.A., Starling R.C., Hamlin R.L., Billman G.E., Hensley J., Castillo L., Fertel R.H., Hohl C.M., Robitaille P.M.L., Jones L.R., Xiao R.P., Lakatta E.G., Response of failing canine and human heart cells to beta(2)-adrenergic stimulation. Circulation, 1995, 92, 1612–1618. [PubMed] [Google Scholar]
  • Baillie G.S., Houslay M.D., Arrestin times for compartmentalised cAMP signalling and phosphodiesterase-4 enzymes. Curr Opin Cell Biol, 2005, 17, 1–6. [CrossRef] [Google Scholar]
  • Baillie G.S., Huston E., Scotland G., Hodgkin M., Gall I., Peden A.H., MacKenzie C., Houslay E.S., Currie R., Pettitt T.R., Walmsley A.R., Wakelam M.J., Warwicker J., Houslay M.D., TAPAS-1, a novel microdomain within the unique N-terminal region of the PDE4A1 cAMP-specific phosphodiesterase that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid. J Biol Chem, 2002, 277, 28298–28309. [CrossRef] [PubMed] [Google Scholar]
  • Baillie G.S., Sood A., McPhee I., Gall I., Perry S.J., Lefkowitz R.J., Houslay M.D., β-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates β-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci USA, 2003, 100, 941–945. [Google Scholar]
  • Balijepalli R.C., Foell J.D., Hall D.D., Hell J.W., Kamp T.J., Localization of cardiac L-type Ca2+ channels to a caveolar macromolecular signaling complex is required for β2-adrenergic regulation. Proc Natl Acad Sci USA, 2006, 103, 7500–7505. [CrossRef] [Google Scholar]
  • Barbuti A., DiFrancesco D., Control of cardiac rate by “funny” channels in health and disease. Ann New York Acad Sci, 2008, 1123, 213–223. [CrossRef] [Google Scholar]
  • Bartel S., Krause E.G., Wallukat G., Karczewski P., New insights into β2-adrenoceptor signaling in the adult rat heart. Cardiovasc Res, 2003, 57, 694–703. [CrossRef] [PubMed] [Google Scholar]
  • Bauman A.L., Soughayer J., Nguyen B.T., Willoughby D., Carnegie G.K., Wong W., Hoshi N., Langeberg L.K., Cooper D.M., Dessauer C.W., Scott J.D., Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl cyclase V/VI complexes. Mol Cell, 2006, 23, 925–931. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Bers D.M., Cardiac excitation-contraction coupling. Nature, 2002, 415, 198–205. [CrossRef] [PubMed] [Google Scholar]
  • Bethke T., Eschenhagen T., Klimkiewicz A., Kohl C., von der Leyen H., Mehl H., Mende U., Meyer W., Neumann J., Rosswag S., Schmitz W., Scholz H., Starbatty J., Stein B., Wenzlaff H., Döring V., Kalmar P., Haverich A., Phosphodiesterase inhibition by enoximone in preparations from nonfailing and failing human hearts. Arzneimittel-Forsch, 1992, 42, 437–445. [Google Scholar]
  • Blackman B.E., Horner K., Heidmann J., Wang D., Richter W., Rich T.C., Conti M., PDE4D and PDE4B function in distinct subcellular compartments in mouse embryonic fibroblasts. J Biol Chem, 2011, 286, 12590–12601. [CrossRef] [PubMed] [Google Scholar]
  • Bolger G.B., Conti M., Houslay M.D., Cellular functions of PDE4 enzymes. In Francis S., Beavo J.A., Houslay M.D. (Eds.), Cyclic Nucleotide Phosphodiesterases in Health and Disease. 2007, CRC Press, Taylor & Francis Group, Chap. 6, 99–130. [Google Scholar]
  • Brette F., Orchard C., T-tubule function in mammalian cardiac myocytes. Circ Res, 2003, 92, 1182–1192. [CrossRef] [PubMed] [Google Scholar]
  • Buxton I.L.O., Brunton L.L., Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem, 1983, 258, 10233–10239. [PubMed] [Google Scholar]
  • Calaghan S.C., White E., Colyer J., Co-ordinated changes in cAMP, phosphorylated phospholamban, Ca2+ and contraction following beta-adrenergic stimulation of rat heart. Pflügers Arch, 1998, 436, 948–956. [CrossRef] [Google Scholar]
  • Calaghan S., Kozera L., White E., Compartmentalisation of cAMP-dependent signalling by caveolae in the adult cardiac myocyte. J Mol Cell Cardiol, 2008, 45, 88–92. [CrossRef] [PubMed] [Google Scholar]
  • Carlisle Michel J.J., Dodge K.L., Wong W., Mayer N.C., Langeberg L.K., Scott J.D., PKA-phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex. Biochem J, 2004, 381, 587–592. [CrossRef] [PubMed] [Google Scholar]
  • Castro L.R.V., Verde I., Cooper D.M.F., Fischmeister R., Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation, 2006, 113, 2221–2228. [CrossRef] [PubMed] [Google Scholar]
  • Castro L.R.V., Schittl J., Fischmeister R., Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes. Circ Res, 2010, 107, 1232–1240. [CrossRef] [PubMed] [Google Scholar]
  • Chase A., Orchard C.H., Ca efflux via the sarcolemmal Ca ATPase occurs only in the t-tubules of rat ventricular myocytes. J Mol Cell Cardiol, 2011, 50, 187–193. [CrossRef] [PubMed] [Google Scholar]
  • Chen X., Piacentino V.I., Furukawa S., Goldman B., Margulies K.B., Houser S.R., L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ Res, 2002, 91, 517–524. [CrossRef] [PubMed] [Google Scholar]
  • Christ T., Engel A., Ravens U., Kaumann A.J., Cilostamide potentiates more the positive inotropic effects of (-)-adrenaline through β2-adrenoceptors than the effects of (-)-noradrenaline through β1-adrenoceptors in human atrial myocardium. Naunyn-Schmiedebergs Arch Pharmacol, 2006, 374, 249–253. [CrossRef] [Google Scholar]
  • Conti M., Beavo J.A., Biochemistry and physiology of cyclic nucleotide phosphodiesterases: Essential components in cyclic nucleotide signaling. Ann Rev Biochem, 2007, 76, 481–511. [Google Scholar]
  • Corbin J.D., Keely S.L., Characterization and regulation of heart adenosine 3’:5’-monophosphate-dependent protein kinase isozymes. J Biol Chem, 1977a, 252, 910–918. [PubMed] [Google Scholar]
  • Corbin J.D., Sugden P.H., Lincoln T.M., Keely S.L., Compartmentalization of adenosine 3’:5’-monophosphate and adenosine 3’:5’-monophosphate-dependent protein kinase in heart tissue. J Biol Chem, 1977b, 252, 3854–3861. [PubMed] [Google Scholar]
  • De Arcangelis V., Liu R., Soto D., Xiang Y., Differential association of phosphodiesterase 4D isoforms with β2-adrenoceptor in cardiac myocytes. J Biol Chem, 2009, 284, 33824–33832. [CrossRef] [PubMed] [Google Scholar]
  • de Rooij J., Zwartkruis F.J., Verheijen M.H., Cool R.H., Nijman S.M., Wittinghofer A., Bos J.L., Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature, 1998, 396, 474–477. [CrossRef] [PubMed] [Google Scholar]
  • Despa S., Brette F., Orchard C.H., Bers D.M., Na/Ca exchange and Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocytes. Biophys J, 2003, 85, 3388–3396. [CrossRef] [PubMed] [Google Scholar]
  • Di Benedetto G., Zoccarato A., Lissandron V., Terrin A., Li X., Houslay M.D., Baillie G.S., Zaccolo M., Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res, 2008, 103, 836–844. [CrossRef] [PubMed] [Google Scholar]
  • Ding B., Abe J., Wei H., Huang Q., Walsh R.A., Molina C.A., Zhao A., Sadoshima J., Blaxall B.C., Berk B.C., Yan C., Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure. Circulation, 2005a, 111, 2469–2476. [CrossRef] [PubMed] [Google Scholar]
  • Ding B., Abe J., Wei H., Xu H., Che W., Aizawa T., Liu W., Molina C.A., Sadoshima J., Blaxall B.C., Berk B.C., Yan C., A positive feedback loop of phosphodiesterase 3 (PDE3) and inducible cAMP early repressor (ICER) leads to cardiomyocyte apoptosis. Proc Natl Acad Sci USA, 2005b, 102, 14771–14776. [CrossRef] [Google Scholar]
  • Dittrich M., Jurevičius J., Georget M., Rochais F., Fleischmann B.K., Hescheler J., Fischmeister R., Local response of L-type Ca2+ current to nitric oxide in frog ventricular myocytes. J Physiol, 2001, 534, 109–121. [CrossRef] [PubMed] [Google Scholar]
  • Dodge K.L., Khouangsathiene S., Kapiloff M.S., Mouton R., Hill E.V., Houslay M.D., Langeberg L.K., Scott J.D., mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J, 2001, 20, 1921–1930. [CrossRef] [PubMed] [Google Scholar]
  • Dodge-Kafka K.L., Soughayer J., Pare G.C., Carlisle Michel J.J., Langeberg L.K., Kapiloff M.S., Scott J.D. The protein kinase A anchoring protein mAKAP co-ordinates two integrated cAMP effector pathways. Nature, 2005, 437, 574–578. [CrossRef] [PubMed] [Google Scholar]
  • Dodge-Kafka K.L., Langeberg L., Scott J.D., Compartmentation of cyclic nucleotide signaling in the heart: the role of A-kinase anchoring proteins. Circ Res, 2006, 98, 993–1001. [CrossRef] [PubMed] [Google Scholar]
  • Farah A.E., Glucagon and the heart. Exp Pharmacol, 1983, 53, 553–609. [CrossRef] [Google Scholar]
  • Fischmeister R., Castro L., Abi-Gerges A., Rochais F., Vandecasteele G., Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comp Biochem Physiol, Part A, Mol Integr Physiol, 2005, 142, 136–143. [Google Scholar]
  • Fischmeister R., Castro L.R.V., Abi-Gerges A., Rochais F., Jurevičius J., Leroy J., Vandecasteele G., Compartmentation of cyclic nucleotide signaling in the heart: The role of cyclic nucleotide phosphodiesterases. Circ Res, 2006, 99, 816–828. [CrossRef] [PubMed] [Google Scholar]
  • Gao T.Y., Puri T.S., Gerhardstein B.L., Chien A.J., Green R.D., Hosey M.M., Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem, 1997, 272, 19401–19407. [CrossRef] [PubMed] [Google Scholar]
  • Georget M., Mateo P., Vandecasteele G., Lipskaia L., Defer N., Hanoune J., Hoerter J., Lugnier C., Fischmeister R., Cyclic AMP compartmentation due to increased cAMP-phosphodiesterase activity in transgenic mice with a cardiac-directed expression of the human adenylyl cyclase type 8 (AC8). FASEB J, 2003, 17, 1380–1391. [CrossRef] [PubMed] [Google Scholar]
  • Hambleton R., Krall J., Tikishvili E., Honeggar M., Ahmad F., Manganiello V.C., Movsesian M.A., Isoforms of cyclic nucleotide phosphodiesterase PDE3 and their contribution to cAMP-hydrolytic activity in subcellular fractions of human myocardium. J Biol Chem, 2005, 280, 39168–39174. [CrossRef] [PubMed] [Google Scholar]
  • Hartzell H.C., Fischmeister R., Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature, 1986, 323, 273–275. [CrossRef] [PubMed] [Google Scholar]
  • Hartzell H.C., Simmons M.A., Comparison of effects of acetylcholine on calcium and potassium currents in frog atrium and ventricle. J Physiol, 1987, 389, 411–422. [PubMed] [Google Scholar]
  • Hayes J.S., Brunton L.L., Brown J.H., Reese J.B., Mayer S.E., Hormonally specific expression of cardiac protein kinase activity. Proc Natl Acad Sci USA, 1979, 76, 1570–1574. [CrossRef] [Google Scholar]
  • Hohl C.M., Li Q., Compartmentation of cAMP in adult canine ventricular myocytes – Relation to single-cell free Ca2+ transients. Circ Res, 1991, 69, 1369–1379. [PubMed] [Google Scholar]
  • Houslay M.D., Baillie G.S., The role of ERK2 docking and phosphorylation of PDE4 cAMP phosphodiesterase isoforms in mediating cross-talk between the cAMP and ERK signalling pathways. Biochem Soc Trans, 2003, 31, 1186–1190. [CrossRef] [PubMed] [Google Scholar]
  • Hulme J.T., Lin T.W., Westenbroek R.E., Scheuer T., Catterall W.A., β-adrenergic regulation requires direct anchoring of PKA to cardiac Cav 1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci USA, 2003, 100, 13093–13098. [CrossRef] [Google Scholar]
  • Juan-Fita M.J., Vargas M.L., Kaumann A.J., Hernandez Cascales J., Rolipram reduces the inotropic tachyphylaxis of glucagon in rat ventricular myocardium. Naunyn-Schmiedebergs Arch Pharmacol, 2004, 370, 324–329. [CrossRef] [Google Scholar]
  • Jurevičius J., Fischmeister R., cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by β-adrenergic agonists. Proc Natl Acad Sci USA, 1996, 93, 295–299. [CrossRef] [Google Scholar]
  • Katano Y., Endoh M., Differential effects of Ro 20-1724 and isobutylmethylxanthine on the basal force of contraction and beta-adrenoceptor-mediated response in the rat ventricular myocardium. Biochem Biophys Res Commun, 1990, 167, 123–129. [CrossRef] [PubMed] [Google Scholar]
  • Katano Y., Endoh M., Effects of a cardiotonic quinolinone derivative Y-20487 on the isoproterenol-induced positive inotropic action and cyclic AMP accumulation in rat ventricular myocardium: comparison with rolipram, Ro 20-1724, milrinone, and isobutylmethylxanthine. J Cardiovasc Pharmacol, 1992, 20, 715–722. [PubMed] [Google Scholar]
  • Kauffman R.F., Crowe V.G., Utterback B.G., Robertson D.W., LY195115: a potent, selective inhibitor of cyclic nucleotide phosphodiesterase located in the sarcoplasmic reticulum. Mol Pharmacol, 1986, 30, 609–616. [PubMed] [Google Scholar]
  • Kaumann A., Semmler A.B., Molenaar P., The effects of both noradrenaline and CGP12177, mediated through human β1-adrenoceptors, are reduced by PDE3 in human atrium but PDE4 in CHO cells. Naunyn-Schmiedebergs Arch Pharmacol, 2007, 375, 123–131. [CrossRef] [Google Scholar]
  • Keely S.L., Prostaglandin E1 activation of heart cAMP-dependent protein kinase: apparent dissociation of protein kinase activation from increases in phosphorylase activity and contractile force. Mol Pharmacol, 1979, 15, 235–245. [PubMed] [Google Scholar]
  • Kerfant B.G., Zhao D., Lorenzen-Schmidt I., Wilson L.S., Cai S., Chen S.R., Maurice D.H., Backx P.H., PI3KY is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes. Circ Res, 2007, 101, 400–408. [CrossRef] [PubMed] [Google Scholar]
  • Kostic M.M., Erdogan S., Rena G., Borchert G., Hoch B., Bartel S., Scotland G., Huston E., Houslay M.D., Krause E.G., Altered expression of PDE1 and PDE4 cyclic nucleotide phosphodiesterase isoforms in 7-oxo-prostacyclin-preconditioned rat heart. J Mol Cell Cardiol, 1997, 29, 3135–3146. [CrossRef] [PubMed] [Google Scholar]
  • Kuschel M., Zhou Y.Y., Spurgeon H.A., Bartel S., Karczewski P., Zhang S.J., Krause E.G., Lakatta E.G., Xiao R.P., β2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart. Circulation, 1999, 99, 2458–2465. [PubMed] [Google Scholar]
  • Laflamme M.A., Becker P.L., Gs and adenylyl cyclase in transverse tubules of heart: implications for cAMP-dependent signaling. Am J Physiol Heart Circ Physiol, 1999, 277, H1841–H1848. [Google Scholar]
  • Lehnart S.E., Wehrens X.H.T., Reiken S., Warrier S., Belevych A.E., Harvey R.D., Richter W., Jin S.L.C., Conti M., Marks A., Phosphodiesterase 4D deficiency in the ryanodine receptor complex promotes heart failure and arrhythmias. Cell, 2005, 123, 23–35. [Google Scholar]
  • Leroy J., Abi-Gerges A., Nikolaev V.O., Richter W., Lechene P., Mazet J.-L., Conti M., Fischmeister R., Vandecasteele G., Spatiotemporal dynamics of β-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: Role of phosphodiesterases. Circ Res, 2008, 102, 1091–1100. [CrossRef] [PubMed] [Google Scholar]
  • Leroy J., Richter W., Mika D., Castro L.R.V., Abi-Gerges A., Xie M., Scheitrum C., Lefebvre F., Schittl J., Westenbroek R., Catterall W.A., Charpentier F., Conti M., Fischmeister R., Vandecasteele G., Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias. J Clin Invest, 2011, 121, 2651–2661. [CrossRef] [PubMed] [Google Scholar]
  • Lugnier C., Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Therap, 2006, 109, 366–398. [CrossRef] [PubMed] [Google Scholar]
  • Lugnier C., Muller B., Le Bec A., Beaudry C., Rousseau E., Characterization of indolidan-sensitive and rolipram-sensitive cyclic nucleotide phosphodiesterases in canine and human cardiac microsomal fractions. J Pharmacol Exp Therap, 1993, 265, 1142–1151. [Google Scholar]
  • Lugnier C., Keravis T., Le Bec A., Pauvert O., Proteau S., Rousseau E., Characterization of cyclic nucleotide phosphodiesterase isoforms associated to isolated cardiac nuclei. Biochim Biophys Acta, 1999, 1472, 431–446. [CrossRef] [PubMed] [Google Scholar]
  • Lynch M.J., Baillie G.S., Mohamed A., Li X., Maisonneuve C., Klussmann E., van Heeke G., Houslay M.D., RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta -arrestin to control the PKA/AKAP79-mediated switching of the b2-adrenergic receptor to activation of ERK in HEK293 cells. J Biol Chem, 2005, 280, 33178–33189. [CrossRef] [PubMed] [Google Scholar]
  • Marx S.O., Reiken S., Hisamatsu Y., Jayaraman T., Burkhoff D., Rosemblit N., Marks A.R., PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (Ryanodine receptor): Defective regulation in failing hearts. Cell, 2000, 101, 365–376. [CrossRef] [PubMed] [Google Scholar]
  • Marx S.O., Kurokawa J., Reiken S., Motoike H., D’Armiento J., Marks A.R., Kass R.S., Requirement of a macromolecular signaling complex for β-adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science, 2002, 295, 496–499. [CrossRef] [PubMed] [Google Scholar]
  • Masunaga R., Nagasaka A., Sawai Y., Hayakawa N., Nakai A., Hotta K., Kato Y., Hishida H., Takahashi H., Naka M., Shimada Y., Tanaka T., Hidaka H., Itoh M., Changes in cyclic nucleotide phosphodiesterase activity and calmodulin concentration in heart muscle of cardiomyopathic hamsters. J Mol Cell Cardiol, 2004, 37, 767–774. [CrossRef] [PubMed] [Google Scholar]
  • Mehats C., Andersen C.B., Filopanti M., Jin S.L.C., Conti M., Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab, 2002, 13, 29–35. [CrossRef] [PubMed] [Google Scholar]
  • Métrich M., Lucas A., Gastineau M., Samuel J.-L., Heymes C., Morel E., Lezoualc’h F., Exchange protein activated by cAMP (Epac) mediates β-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res, 2008, 102, 959–965. [CrossRef] [PubMed] [Google Scholar]
  • Miller C.L., Oikawa M., Cai Y., Wojtovich A.P., Nagel D.J., Xu X., Xu H., Florio V., Rybalkin S.D., Beavo J.A., Chen Y.F., Li J.D., Blaxall B.C., Abe J., Yan C., Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ Res, 2009, 105, 956–964. [CrossRef] [PubMed] [Google Scholar]
  • Mokni W., Keravis T., Etienne-Selloum N., Walter A., Kane M.O., Schini-Kerth V.B., Lugnier C., Concerted regulation of cGMP and cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II. PLoS One, 2010, 5, e14227. [CrossRef] [PubMed] [Google Scholar]
  • Mongillo M., McSorley T., Evellin S., Sood A., Lissandron V., Terrin A., Huston E., Hannawacker A., Lohse M.J., Pozzan T., Houslay M.D., Zaccolo M., Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res, 2004, 95, 65–75. [CrossRef] [Google Scholar]
  • Mongillo M., Tocchetti C.G., Terrin A., Lissandron V., Cheung Y.F., Dostmann W.R., Pozzan T., Kass D.A., Paolocci N., Houslay M.D., Zaccolo M., Compartmentalized phosphodiesterase-2 activity blunts β-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res, 2006, 98, 226–234. [Google Scholar]
  • Morel E., Marcantoni A., Gastineau M., Birkedal R., Rochais F., Garnier A., Lompré A.-M., Vandecasteele G., Lezoualc’h F., The cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res, 2005, 97, 1296–1304. [CrossRef] [PubMed] [Google Scholar]
  • Movsesian M.A., Altered cAMP-mediated signalling and its role in the pathogenesis of dilated cardiomyopathy. Cardiovasc Res, 2004, 62, 450–459. [CrossRef] [PubMed] [Google Scholar]
  • Movsesian M.A., Bristow M.R., Alterations in cAMP-mediated signaling and their role in the pathophysiology of dilated cardiomyopathy. Curr Topics Dev Biol, 2005, 68, 25–48. [Google Scholar]
  • Muller B., Stoclet J.-C., Lugnier C., Cytosolic and membrane-bound cyclic nucleotide phosphodiesterases from guinea pig cardiac ventricles. Eur J Pharmacol, 1992, 225, 263–272. [CrossRef] [PubMed] [Google Scholar]
  • Nagendran J., Archer S.L., Soliman D., Gurtu V., Moudgil R., Haromy A., St Aubin C., Webster L., Rebeyka I.M., Ross D.B., Light P.E., Dyck J.R., Michelakis E.D., Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation, 2007, 116, 238–248. [CrossRef] [PubMed] [Google Scholar]
  • Nikolaev V.O., Lohse M.J., Monitoring of cAMP synthesis and degradation in living cells. Physiology (Bethesda), 2006, 21, 86–92. [CrossRef] [PubMed] [Google Scholar]
  • Nikolaev V.O., Bunemann M., Schmitteckert E., Lohse M.J., Engelhardt S., Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching β1-adrenergic but locally confined β2-adrenergic receptor-mediated signaling. Circ Res, 2006, 99, 1084–1091. [CrossRef] [PubMed] [Google Scholar]
  • Nikolaev V.O., Moshkov A., Lyon A.R., Miragoli M., Novak P., Paur H., Lohse M.J., Korchev Y.E., Harding S.E., Gorelik J., β2-Adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science, 2010, 327, 1653–1657. [CrossRef] [PubMed] [Google Scholar]
  • Oki N., Takahashi S.I., Hidaka H., Conti M., Short term feedback regulation of cAMP in FRTL-5 thyroid cells. Role of PDE4D3 phosphodiesterase activation. J Biol Chem, 2000, 275, 10831–10837. [CrossRef] [PubMed] [Google Scholar]
  • Osadchii O.E., Cardiac hypertrophy induced by sustained β-adrenoreceptor activation: pathophysiological aspects. Heart Fail Rev, 2007, 12, 66–86. [CrossRef] [PubMed] [Google Scholar]
  • Ostrom R.S., Violin J.D., Coleman S., Insel P.A., Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: Colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes. Mol Pharmacol, 2000, 57, 1075–1079. [PubMed] [Google Scholar]
  • Ostrom R.S., Gregorian C., Drenan R.M., Xiang Y., Regan J.W., Insel P.A., Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem, 2001, 276, 42063–42069. [CrossRef] [PubMed] [Google Scholar]
  • Patrucco E., Notte A., Barberis L., Selvetella G., Maffei A., Brancaccio M., Marengo S., Russo G., Azzolino O., Rybalkin S.D., Silengo L., Altruda F., Wetzker R., Wymann M.P., Lembo G., Hirsch E., PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell, 2004, 118, 375–387. [CrossRef] [PubMed] [Google Scholar]
  • Patrucco E., Albergine M.S., Santana L.F., Beavo J.A., Phosphodiesterase 8A (PDE8A) regulates excitation-contraction coupling in ventricular myocytes. J Mol Cell Cardiol, 2010, 49, 330–333. [CrossRef] [PubMed] [Google Scholar]
  • Perino A., Ghigo A., Ferrero E., Morello F., Santulli G., Baillie G.S., Damilano F., Dunlop A.J., Pawson C., Walser R., Levi R., Altruda F., Silengo L., Langeberg L.K., Neubauer G., Heymans S., Lembo G., Wymann M.P., Wetzker R., Houslay M.D., Iaccarino G., Scott J.D., Hirsch E., Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110g. Mol Cell, 2011, 42, 84–95. [CrossRef] [PubMed] [Google Scholar]
  • Perry S.J., Baillie G.S., Kohout T.A., McPhee I., Magiera M.M., Ang K.L., Miller W.E., McLean A.J., Conti M., Houslay M.D., Lefkowitz R.J., Targeting of cyclic AMP degradation to β2-adrenergic receptors by β-arrestins. Science, 2002, 298, 834–836. [CrossRef] [PubMed] [Google Scholar]
  • Rapundalo S.T., Solaro R.J., Kranias E.G., Inotropic responses to isoproterenol and phosphodiesterase inhibitors in intact guinea pig hearts: comparison of cyclic AMP levels and phosphorylation of sarcoplasmic reticulum and myofibrillar proteins. Circ Res, 1989, 64, 104–111. [PubMed] [Google Scholar]
  • Reeves M.L., Leigh B.K., England P.J., The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem J, 1987, 241, 535–541. [PubMed] [Google Scholar]
  • Rich T.C., Fagan K.A., Nakata H., Schaack J., Cooper D.M.F., Karpen J.W., Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol, 2000, 116, 147–161. [CrossRef] [PubMed] [Google Scholar]
  • Richter W., Jin S.L., Conti M., Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue. Biochem J, 2005, 388, 803–811. [CrossRef] [PubMed] [Google Scholar]
  • Richter W., Day P., Agraval R., Bruss M.D., Granier S., Wang Y.L., Rasmussen S.G.F., Horner K., Wang P., Lei T., Patterson A.J., Kobilka B.K., Conti M., Signaling from β1- and β2-adrenergic receptors is defined by differential interactions with PDE4. EMBO J, 2008, 27, 384–393. [CrossRef] [PubMed] [Google Scholar]
  • Richter W., Xie M., Scheitrum C., Krall J., Movsesian M.A., Conti M., Conserved expression and functions of PDE4 in rodent and human heart. Basic Res Cardiol, 2011, 106, 249–262. [CrossRef] [PubMed] [Google Scholar]
  • Rochais F., Vandecasteele G., Lefebvre F., Lugnier C., Lum H., Mazet J.-L., Cooper D.M.F., Fischmeister R., Negative feedback exerted by PKA and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes. An in vivo study using adenovirus-mediated expression of CNG channels. J Biol Chem, 2004, 279, 52095–52105. [CrossRef] [PubMed] [Google Scholar]
  • Rochais F., Abi-Gerges A., Horner K., Lefebvre F., Cooper D.M.F., Conti M., Fischmeister R., Vandecasteele G., A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes. Circ Res, 2006, 98, 1081–1088. [CrossRef] [PubMed] [Google Scholar]
  • Rybin V.O., Pak E., Alcott S., Steinberg S.F., Developmental changes in β2-adrenergic receptor signaling in ventricular myocytes: the role of Gi proteins and caveolae microdomains. Mol Pharmacol, 2003, 63, 1338–1348. [CrossRef] [PubMed] [Google Scholar]
  • Sato N., Asai K., Okumura S., Takagi G., Shannon R.P., Fujita Yamaguchi Y., Ishikawa Y., Vatner S.F., Vatner D.E., Mechanisms of desensitization to a PDE inhibitor (Milrinone) in conscious dogs with heart failure. Am J Physiol Heart Circ Physiol, 1999, 45, H1699–H1705. [Google Scholar]
  • Saucerman J.J., Zhang J., Martin J.C., Peng L.X., Stenbit A.E., Tsien R.Y., McCulloch A.D., Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci USA, 2006, 103, 12923–12928. [CrossRef] [Google Scholar]
  • Schroder F., Handrock R., Beuckelmann D.J., Hirt S., Hullin R., Priebe L., Schwinger R.H.G., Weil J., Herzig S., Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation, 1998, 98, 969–976. [PubMed] [Google Scholar]
  • Scott J.D., Santana L.F., A-kinase anchoring proteins: getting to the heart of the matter. Circulation, 2010, 121, 1264–1271. [CrossRef] [PubMed] [Google Scholar]
  • Sette C., Conti M., Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase – Involvement of serine 54 in the enzyme activation. J Biol Chem, 1996, 271, 16526–16534. [CrossRef] [PubMed] [Google Scholar]
  • Shahid M., Nicholson C.D., Comparison of cyclic nucleotide phosphodiesterase isoenzymes in rat and rabbit ventricular myocardium – Positive inotropic and phosphodiesterase inhibitory effects of Org-30029, milrinone and rolipram. Naunyn-Schmiedebergs Arch Pharmacol, 1990, 342, 698–705. [CrossRef] [Google Scholar]
  • Shahid M., Wilson M., Nicholson C.D., Marshall R.J., Species-dependent differences in the properties of particulate cyclic nucleotide phosphodiesterase from rat and rabbit ventricular myocardium. J Pharma Pharmacol, 1990, 42, 283–284. [CrossRef] [Google Scholar]
  • Simmons M.A., Hartzell H.C., Role of phosphodiesterase in regulation of calcium current in isolated cardiac myocytes. Mol Pharmacol, 1988, 33, 664–671. [PubMed] [Google Scholar]
  • Smith C.J., Huang R., Sun D., Ricketts S., Hoegler C., Ding J.Z., Moggio R.A., Hintze T.H., Development of decompensated dilated cardiomyopathy is associated with decreased gene expression and activity of the milrinone-sensitive cAMP phosphodiesterase PDE3A. Circulation, 1997, 96, 3116–3123. [PubMed] [Google Scholar]
  • Sonnenburg W.K., Mullaney P.J., Beavo J.A., Molecular Cloning of a Cyclic GMP-Stimulated Cyclic Nucleotide Phosphodiesterase cDNA – Identification and Distribution of Isozyme Variants. J Biol Chem, 1991, 266, 17655–17661. [PubMed] [Google Scholar]
  • Stangherlin A., Gesellchen F., Zoccarato A., Terrin A., Fields L.A., Berrera M., Surdo N.C., Craig M.A., Smith G., Hamilton G., Zaccolo M., cGMP signals modulate cAMP levels in a compartment-specific manner to regulate catecholamine-dependent signaling in cardiac myocytes. Circ Res, 2011, 108, 929–939. [CrossRef] [PubMed] [Google Scholar]
  • Steinberg S.F., Brunton L.L., Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Ann Rev Pharmacol Toxicol, 2001, 41, 751–773. [Google Scholar]
  • Stork P.J.S., Schmitt J.M., Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol, 2002, 12, 258–266. [CrossRef] [PubMed] [Google Scholar]
  • Tasken K., Aandahl E.M., Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev, 2004, 84, 137–167. [CrossRef] [PubMed] [Google Scholar]
  • Terrenoire C., Houslay M.D., Baillie G.S., Kass R.S., The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem, 2009, 284, 9140–9146. [CrossRef] [PubMed] [Google Scholar]
  • Terrin A., Di Benedetto G., Pertegato V., Cheung Y.F., Baillie G., Lynch M.J., Elvassore N., Prinz A., Herberg F.W., Houslay M.D., Zaccolo M., PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J Cell Biol, 2006, 175, 441–451. [CrossRef] [PubMed] [Google Scholar]
  • Vandeput F., Wolda S.L., Krall J., Hambleton R., Uher L., McCaw K.N., Radwanski P.B., Florio V., Movsesian M.A., Cyclic nucleotide phosphodiesterase PDE1C in human cardiac myocytes. J Biol Chem, 2007, 282, 32749–32757. [CrossRef] [PubMed] [Google Scholar]
  • Verde I., Vandecasteele G., Lezoualc’h F., Fischmeister R., Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Brit J Pharmacol, 1999, 127, 65–74. [Google Scholar]
  • Verde I., Pahlke G., Salanova M., Zhang G., Wang S., Coletti D., Onuffer J., Jin S.L.C., Conti M., Myomegalin is a novel protein of the Golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem, 2001, 276, 11189–11198. [CrossRef] [PubMed] [Google Scholar]
  • Vila Petroff M.G., Egan J.M., Wang X., Sollott S.J., Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res, 2001, 89, 445–452. [CrossRef] [PubMed] [Google Scholar]
  • Warrier S., Ramamurthy G., Eckert R.L., Nikolaev V.O., Lohse M.J., Harvey R.D., cAMP microdomains and L-type Ca2+ channel regulation in guinea-pig ventricular myocytes. J Physiol, 2007, 580, 765–776. [CrossRef] [PubMed] [Google Scholar]
  • Wechsler J., Choi Y.H., Krall J., Ahmad F., Manganiello V.C., Movsesian M.A., Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes. J Biol Chem, 2002, 277, 38072–38078. [CrossRef] [PubMed] [Google Scholar]
  • Weishaar R.E., Kobylarz-Singer D.C., Steffen R.P., Kaplan H.R., Subclasses of cyclic AMP-specific phosphodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility. Circ Res, 1987, 61, 539–547. [CrossRef] [PubMed] [Google Scholar]
  • Willoughby D., Cooper D.M., Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev, 2007, 87, 965–1010. [CrossRef] [PubMed] [Google Scholar]
  • Xiang Y., Naro F., Zoudilova M., Jin S.L., Conti M., Kobilka B., Phosphodiesterase 4D is required for β2-adrenoceptor subtype-specific signaling in cardiac myocytes. Proc Natl Acad Sci USA, 2005, 102, 909–914. [CrossRef] [Google Scholar]
  • Xiao R.P., Lakatta E.G., b1-Adrenoceptor stimulation and β2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res, 1993, 73, 286–300. [PubMed] [Google Scholar]
  • Xiao R.P., Hohl C., Altschuld R., Jones L., Livingston B., Ziman B., Tantini B., Lakatta E.G., β2-adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility, or phospholamban phosphorylation. J Biol Chem, 1994, 269, 19151–19156. [PubMed] [Google Scholar]
  • Yan C., Miller C.L., Abe J., Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart. Circ Res, 2007, 100, 489–501. [CrossRef] [PubMed] [Google Scholar]
  • Yang J.C., Drazba J.A., Ferguson D.G., Bond M., A-kinase anchoring protein 100 (AKAP100) is localized in multiple subcellular compartments in the adult rat heart. J Cell Biol, 1998, 142, 511–522. [CrossRef] [PubMed] [Google Scholar]
  • Yang Z., Pascarel C., Steele D.S., Kornukai K., Brette F., Orchard C.H., Na+-Ca2+ exchange activity is localized in the T-tubules of rat ventricular myocytes. Circ Res, 2002, 91, 315–322. [CrossRef] [PubMed] [Google Scholar]
  • Zaccolo M., Pozzan T., Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science, 2002, 295, 1711–1715. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.