Accès gratuit
Biologie Aujourd'hui
Volume 208, Numéro 4, 2014
Page(s) 299 - 310
Section Contributions invitées
Publié en ligne 3 avril 2015
  • Bièche I., Tomasetto C., Régnier C.H., Moog-Lutz C., Rio M.C., Lidereau R., Two distinct amplified regions at 17q11-q21 involved in human primary breast cancer. Cancer Res, 1996, 56, 3886–3890. [PubMed] [Google Scholar]
  • Bierie B., Moses H.L., TGF-β and cancer. Cytokine Growth Factor Rev, 2006, 17, 29–40. [CrossRef] [PubMed] [Google Scholar]
  • Brennan K., Offiah G., McSherry E.A., Hopkins A.M., Tight junctions: a barrier to the initiation and progression of breast cancer? J Biomed Biotechnol, 2010, 2010, 460607. [CrossRef] [PubMed] [Google Scholar]
  • Camilleri-Broet S., Cremer I., Marmey B., Comperat E., Viguie F., Audouin J., Rio M.C., Fridman W.H., Sautes-Fridman C., Régnier C.H., TRAF4 overexpression is a common characteristic of human carcinomas. Oncogene, 2007, 26, 142–147. [CrossRef] [PubMed] [Google Scholar]
  • Chasapis C., Spyroulias G., RING Finger E3 Ubiquitin Ligases: Structure and Drug Discovery. Curr Pharm Des, 2009, 15, 3716–3731. [CrossRef] [PubMed] [Google Scholar]
  • Chung J.Y., Park Y.C., Ye H., Wu H., All TRAF are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci, 2002, 115, 679–688. [PubMed] [Google Scholar]
  • Franke W.W., Discovering the molecular components of intercellular junctions–a historical view. Cold Spring Harb Perspect Biol, 2009, 1, a003061. [CrossRef] [PubMed] [Google Scholar]
  • Furuse M., Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol, 2010, 2, a002907. [CrossRef] [PubMed] [Google Scholar]
  • Garabedian M.J., Logan S.K., Atypical regulation of SRC-3. Trends Biochem Sci, 2008, 33, 301–304. [CrossRef] [PubMed] [Google Scholar]
  • Gassama-Diagne A., Yu W., ter Beest M., Martin-Belmonte F., Kierbel A., Engel J., Mostov K., Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol, 2006, 8, 963–970. [CrossRef] [PubMed] [Google Scholar]
  • Glauner H., Siegmund D., Motejadded H., Scheurich P., Henkler F., Janssen O., Wajant H., Intracellular localization and transcriptional regulation of tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4). Eur J Biochem FEBS, 2002, 269, 4819–4829. [CrossRef] [Google Scholar]
  • Guillot C., Lecuit T., Mechanics of Epithelial Tissue Homeostasis and Morphogenesis. Science, 2013, 340, 1185–1189. [CrossRef] [PubMed] [Google Scholar]
  • Inoue J., Ishida T., Tsukamoto N., Kobayashi N., Naito A., Azuma S., Yamamoto T., Tumor Necrosis Factor Receptor-Associated Factor (TRAF) Family: Adapter Proteins That Mediate Cytokine Signaling. Exp Cell Res, 2000, 254, 14–24. [CrossRef] [PubMed] [Google Scholar]
  • Jeffries T.R., Dove S.K., Michell R.H., Parker P.J., PtdIns-specific MPR Pathway Association of a Novel WD40 Repeat Protein, WIPI49. Mol Biol Cell, 2004, 15, 2652–2663. [CrossRef] [PubMed] [Google Scholar]
  • Kalkan T., Iwasaki Y., Park C.Y., Thomsen G.H., Tumor Necrosis Factor-Receptor–associated Factor-4 Is a Positive Regulator of Transforming Growth Factor-β Signaling That Affects Neural Crest Formation. Mol Biol Cell, 2009, 20, 3436–3450. [CrossRef] [PubMed] [Google Scholar]
  • Kedinger V., Alpy F., Baguet A., Polette M., Stoll I., Chenard M.P., Tomasetto C., Rio M.C., Tumor necrosis factor receptor-associated factor 4 is a dynamic tight junction-related shuttle protein involved in epithelium homeostasis. PLoS ONE, 2008, 3, e3518. [CrossRef] [PubMed] [Google Scholar]
  • Kedinger V., Rio M.-C., TRAF4, the unique family member. Adv Exp Med Biol, 2007, 597, 60–71. [CrossRef] [PubMed] [Google Scholar]
  • Kutateladze T.G., Translation of the phosphoinositide code by PI effectors. Nat Chem Biol, 2010, 6, 507–513. [CrossRef] [PubMed] [Google Scholar]
  • Latorre I.J., Frese K.K., Javier R.T., Tight Junction Proteins and Cancer. InTight Junctions”, 2006, pp. 116–134. [Google Scholar]
  • Levy L., Hill C.S., Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev, 2006, 17, 41–58. [CrossRef] [PubMed] [Google Scholar]
  • Li S., Lu K., Wang J., An L., Yang G., Chen H., Cui Y., Yin X., Xie P., Xing G., He F., Zhang L., Ubiquitin ligase Smurf1 targets TRAF family proteins for ubiquitination and degradation. Mol Cell Biochem, 2010, 338, 11–17. [CrossRef] [PubMed] [Google Scholar]
  • Martin-Belmonte F., Gassama A., Datta A., Yu W., Rescher U., Gerke V., Mostov K., PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell, 2007, 128, 383−397. [CrossRef] [PubMed] [Google Scholar]
  • Martin T.A., Mason M.D., Jiang W.G., Tight junctions in cancer metastasis. Front Biosci J Virtual Libr, 2011, 16, 898–936. [CrossRef] [Google Scholar]
  • Meerschaert K., Tun M.P., Remue E., De Ganck A., Boucherie C., Vanloo B., Degeest G., Vandekerckhove J., Zimmermann P., Bhardwaj N., Lu H., Cho W., Gettemans J., The PDZ2 domain of zonula occludens-1 and -2 is a phosphoinositide binding domain. Cell Mol. Life Sci CMLS, 2009, 66, 3951–3966. [CrossRef] [Google Scholar]
  • Napetschnig J., Wu H., Molecular Basis of NF-κB Signaling. Annu Rev Biophys, 2013, 42, 443–468. [CrossRef] [PubMed] [Google Scholar]
  • Niessen C.M., Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol, 2007, 127, 2525–2532. [CrossRef] [PubMed] [Google Scholar]
  • Ozdamar B., Bose R., Barrios-Rodiles M., Wang H.-R., Zhang Y., Wrana J.L., Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science, 2005, 307, 1603–1609. [CrossRef] [PubMed] [Google Scholar]
  • Park Y.C., Burkitt V., Villa A.R., Tong L., Wu H., Structural basis for self-association and receptor recognition of human TRAF2. Nature, 1999, 398, 533–538. [CrossRef] [PubMed] [Google Scholar]
  • Pineda G., Ea C.-K., Chen Z.J. Ubiquitination and TRAF signaling. In TNF Receptor Associated Factors (TRAF), Wu H (Ed), 2007, pp 80–92. Springer, New York. Available at:˙7 [Accessed June 20, 2013] [Google Scholar]
  • Régnier C.H., Tomasetto C., Moog-Lutz C., Chenard M.P., Wendling C., Basset P., Rio M.C., Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J Biol Chem, 1995, 270, 25715–25721. [CrossRef] [PubMed] [Google Scholar]
  • Rhodes D.R., Yu J., Shanker K., Deshpande N., Varambally R., Ghosh D., Barrette T., Pandey A., Chinnaiyan A.M., Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA, 2004, 101, 9309–9314. [CrossRef] [Google Scholar]
  • Rosenhouse-Dantsker A., Logothetis D.E., Molecular characteristics of phosphoinositide binding. Pflüg Arch Eur J Physiol, 2007, 455, 45–53. [CrossRef] [Google Scholar]
  • Rothe M., Wong S.C., Henzel W.J., Goeddel D.V., A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell, 1994, 78, 681–692. [CrossRef] [PubMed] [Google Scholar]
  • Rousseau A., Rio M.-C., Alpy F., TRAF4, at the Crossroad between Morphogenesis and Cancer. Cancers, 2011, 3, 2734–2749. [CrossRef] [PubMed] [Google Scholar]
  • Rousseau A., McEwen A.G., Poussin-Courmontagne P., Rognan D., Nominé Y., Rio M.-C., Tomasetto C., Alpy F., TRAF4 Is a Novel Phosphoinositide-Binding Protein Modulating Tight Junctions and Favoring Cell Migration. PLoS Biol, 2013, 11, e1001726. [CrossRef] [PubMed] [Google Scholar]
  • Rousseau A., Wilhelm L.P., Tomasetto C., Alpy F., The phosphoinositide-binding protein TRAF4 modulates tight junction stability and migration of cancer cells. Tissue Barriers, 2014, 2, e975597. [CrossRef] [PubMed] [Google Scholar]
  • Rozan L.M., El-Deiry W.S., Identification and characterization of proteins interacting with Traf4, an enigmatic p53 target. Cancer Biol Ther, 2006, 5, 1228–1235. [CrossRef] [PubMed] [Google Scholar]
  • Sax J.K., El-Deiry W.S., Identification and Characterization of the Cytoplasmic Protein TRAF4 as a p53-regulated Proapoptotic Gene. J Biol Chem, 2003, 278, 36435–36444. [CrossRef] [PubMed] [Google Scholar]
  • Shewan A., Eastburn D.J., Mostov K., Phosphoinositides in cell architecture. Cold Spring Harb Perspect Biol, 2011, 3, a004796. [CrossRef] [PubMed] [Google Scholar]
  • Shin K., Fogg V.C., Margolis B., Tight junctions and cell polarity. Annu Rev Cell Dev Biol, 2006, 22, 207–235. [CrossRef] [PubMed] [Google Scholar]
  • Steed E., Balda M.S., Matter K., Dynamics and functions of tight junctions. Trends Cell Biol, 2010, 20, 142–149. [CrossRef] [PubMed] [Google Scholar]
  • StJohnston D., Sanson B., Epithelial polarity and morphogenesis. Curr Opin Cell Biol, 2011, 23, 540–546. [CrossRef] [PubMed] [Google Scholar]
  • Tomasetto C., Régnier C., Moog-Lutz C., Mattei M.G., Chenard M.P., Lidereau R., Basset P., Rio M.C., Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11-q21.3 region of chromosome 17. Genomics, 1995, 28, 367–376. [CrossRef] [PubMed] [Google Scholar]
  • Wang X., Jin C., Tang Y., Tang L.-Y., Zhang Y.E., Ubiquitination of Tumor Necrosis Factor Receptor-associated Factor 4 (TRAF4) by Smad Ubiquitination Regulatory Factor 1 (Smurf1) Regulates Motility of Breast Epithelial and Cancer Cells. J Biol Chem, 2013, 288, 21784–21792. [CrossRef] [PubMed] [Google Scholar]
  • Wu H., Assembly of post-receptor signaling complexes for the tumor necrosis factor receptor superfamily. Adv Protein Chem, 2004, 68, 225–279. [CrossRef] [PubMed] [Google Scholar]
  • Wu H., Feng W., Chen J., Chan L.N., Huang S., Zhang M., PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell, 2007, 28, 886–898. [CrossRef] [PubMed] [Google Scholar]
  • Xu L.-G., Li L.-Y., Shu H.-B., TRAF7 Potentiates MEKK3-induced AP1 and CHOP Activation and Induces Apoptosis. J Biol Chem, 2004, 279, 17278−17282. [CrossRef] [PubMed] [Google Scholar]
  • Ye H., Park Y.C., Kreishman M., Kieff E., Wu H., The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell, 1999, 4, 321–330. [CrossRef] [PubMed] [Google Scholar]
  • Yi P., Xia W., Wu R.-C., Lonard D.M., Hung M.-C., O’Malley B.W., SRC-3 coactivator regulates cell resistance to cytotoxic stress via TRAF4-mediated p53 destabilization. Genes Dev, 2013, 27, 274–287. [CrossRef] [PubMed] [Google Scholar]
  • Yoon J.H., Cho Y., Park H.H., Structure of the TRAF4 TRAF domain with a coiled-coil domain and its implications for the TRAF4 signalling pathway. Acta Crystallogr D Biol Crystallogr, 2014, 70, 2–10. [CrossRef] [PubMed] [Google Scholar]
  • Zapata J.M., Martinez-Garcia V., Lefebvre S., Phylogeny of the TRAF/MATH domain. Adv Exp Med Biol, 2007, 597, 1–24 [CrossRef] [PubMed] [Google Scholar]
  • Zhang L., Zhou F., García de Vinuesa A., de Kruijf E.M., Mesker W.E., Hui L., Drabsch Y., Li Y., Bauer A., Rousseau A., Sheppard K.-A., Mickanin C., Kuppen P.J.K., Lu C.X., Ten Dijke P., TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis. Mol Cell, 2013, 51, 559–572 [CrossRef] [PubMed] [Google Scholar]
  • Zotti T., Vito P., Stilo R., The seventh ring: Exploring TRAF7 functions. J Cell Physiol, 2012, 227, 1280−1284 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.