Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 210, Numéro 4, 2016
|
|
---|---|---|
Page(s) | 191 - 203 | |
Section | Nucléotides cycliques : signalisation et rôles physiopathologiques | |
DOI | https://doi.org/10.1051/jbio/2017005 | |
Publié en ligne | 22 mars 2017 |
- Akin D., Manier D.H., Sanders-Bush, E, Shelton R.C. (2005). Signal transduction abnormalities in melancholic depression. Int J Neuropsychopharmacol, 8, 5–16. [CrossRef] [PubMed] [Google Scholar]
- Allen M.D., Zhang J. (2006) Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem Biophys Res Commun, 348, 716–721. [CrossRef] [PubMed] [Google Scholar]
- Ariano M.A., Lewicki J.A., Brandwein H.J., Murad F. (1982) Immunohistochemical localization of guanylate cyclase within neurons of rat brain. Proc Natl Acad Sci USA, 79, 1316–1320. [CrossRef] [Google Scholar]
- Bateup H.S., Svenningsson P., Kuroiwa M., Gong S., Nishi A., Heintz N., Greengard P. (2008) Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat Neurosci, 11, 932–939. [CrossRef] [PubMed] [Google Scholar]
- Bertran-Gonzalez J., Bosch C., Maroteaux M., Matamales M., Hervé D., Valjent E., Girault J.A. (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci, 28, 5671–5685. [CrossRef] [PubMed] [Google Scholar]
- Bockaert J., Perroy J., Becamel C., Marin P., Fagni L. (2010) GPCR interacting proteins (GIPs) in the nervous system : Roles in physiology and pathologies. Annu Rev Pharmacol Toxicol, 50, 89–109. [CrossRef] [PubMed] [Google Scholar]
- Calabresi P., Gubellini P., Centonze D., Sancesario G., Morello M., Giorgi, M, Pisani A., Bernardi G. (1999) A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression. J Neurosci, 19, 2489–2499. [CrossRef] [PubMed] [Google Scholar]
- Calabresi P., Centonze D., Gubellini P., Marfia G.A., Pisani A., Sancesario, G, Bernardi G. (2000). Synaptic transmission in the striatum : from plasticity to neurodegeneration. Prog Neurobiol, 61, 231–265. [CrossRef] [PubMed] [Google Scholar]
- Calebiro D., Nikolaev V.O., Gagliani M.C., de Filippis T., Dees C., Tacchetti, C, Persani L., Lohse M.J. (2009) Persistent cAMP-Signals Triggered by Internalized G-Protein-Coupled Receptors. PLoS Biol, 7, e1000172. [CrossRef] [PubMed] [Google Scholar]
- Carlson H.J., Campbell R.E. (2009) Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging. Curr Opin Biotechnol, 20, 19–27. [Google Scholar]
- Castro L.R., Verde I., Cooper D.M., Fischmeister R. (2006) Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation, 113, 2221–2228. [CrossRef] [PubMed] [Google Scholar]
- Castro L.R., Gervasi N., Guiot E., Cavellini L., Nikolaev V.O., Paupardin-Tritsch D., Vincent P. (2010) Type 4 phosphodiesterase plays different integrating roles in different cellular domains in pyramidal cortical neurons. J Neurosci, 30, 6143–6151. [CrossRef] [PubMed] [Google Scholar]
- Castro L.R., Brito M., Guiot E., Polito M., Korn C.W., Hervé D., Girault J.A., Paupardin-Tritsch D., Vincent P. (2013) Striatal neurones have a specific ability to respond to phasic dopamine release. J Physiol, 591, 3197–3214. [CrossRef] [PubMed] [Google Scholar]
- Chang A., Li P.P., Warsh J.J. (2003) Altered cAMP-dependent protein kinase subunit immunolabeling in post-mortem brain from patients with bipolar affective disorder. J Neurochem, 84, 781–791. [CrossRef] [PubMed] [Google Scholar]
- Chappie T., Humphrey J., Menniti F., Schmidt C. (2009) PDE10A inhibitors : an assessment of the current CNS drug discovery landscape. Curr Opin Drug Discov Devel, 12, 458–467. [PubMed] [Google Scholar]
- Coskran T.M., Morton D., Menniti F.S., Adamowicz W.O., Kleiman R.J., Ryan A.M., Strick C.A., Schmidt C.J., Stephenson D.T. (2006) Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem, 54, 1205–1213. [CrossRef] [PubMed] [Google Scholar]
- Craven K.B., Zagotta W.N. (2006) CNG and HCN channels : two peas, one pod. Annu Rev Physiol, 68, 375–401. [PubMed] [Google Scholar]
- De Vente J., Asan E., Gambaryan S., Markerink-van Ittersum M., Axer H., Gallatz K., Lohmann S.M., Palkovits M. (2001) Localization of cGMP-dependent protein kinase type II in rat brain. Neuroscience,108, 27–49. [CrossRef] [PubMed] [Google Scholar]
- Deal watch : Intra-Cellular Therapies and Takeda to develop PDE1 inhibitors for schizophrenia. (2011). Nat Rev Drug Discov, 10, 329. [CrossRef] [PubMed] [Google Scholar]
- Depry C., Allen M.D., Zhang J. (2011) Visualization of PKA activity in plasma membrane microdomains. Mol Biosyst, 7, 52–58. [Google Scholar]
- Ding J.D., Burette A., Nedvetsky P.I., Schmidt H.H., Weinberg R.J. (2004) Distribution of soluble guanylyl cyclase in the rat brain. J Comp Neurol, 472, 437–448. [PubMed] [Google Scholar]
- Dulla C., Tani H., Okumoto S., Frommer W.B., Reimer R.J., Huguenard J.R. (2008) Imaging of glutamate in brain slices using FRET sensors. J Neurosci Methods, 168, 306–319. [CrossRef] [PubMed] [Google Scholar]
- Dunn T.A., Feller M.B. (2008) Imaging second messenger dynamics in developing neural circuits. Dev Neurobiol, 68, 835–844. [CrossRef] [PubMed] [Google Scholar]
- Dunn T.A., Wang C.T., Colicos M.A., Zaccolo M., DiPilato L.M., Zhang J., Tsien, RY, Feller M.B. (2006) Imaging of cAMP levels and protein kinase a activity reveals that retinal waves drive oscillations in second-messenger cascades. J Neurosci, 26, 12807–12815. [CrossRef] [PubMed] [Google Scholar]
- Dunn T.A., Storm D.R., Feller M.B. (2009) Calcium-dependent increases in protein kinase-A activity in mouse retinal ganglion cells are mediated by multiple adenylate cyclases. PLoS One, 4, e7877. [PubMed] [Google Scholar]
- Duvall L.B., Taghert P.H. (2012) The circadian neuropeptide PDF signals preferentially through a specific adenylate cyclase isoform AC3 in M pacemakers of Drosophila. PLoS Biol, 10, e1001337. [PubMed] [Google Scholar]
- El-Husseini A.E., Bladen C., Vincent S.R. (1995) Molecular characterization of a type II cyclic GMP-dependent protein kinase expressed in the rat brain. J Neurochem, 64, 2814–2817. [CrossRef] [PubMed] [Google Scholar]
- El-Husseini A.E., Williams J., Reiner P.B., Pelech S., Vincent S.R. (1999) Localization of the cGMP-dependent protein kinases in relation to nitric oxide synthase in the brain. J Chem Neuroanat, 17, 45–55. [PubMed] [Google Scholar]
- Erard M., Fredj A., Pasquier H., Beltolngar D.B., Bousmah Y., Derrien V., Vincent P., Merola F. (2013). Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging. Mol Biosyst, 9, 258–267. [CrossRef] [PubMed] [Google Scholar]
- Friedrich M.W., Aramuni G., Mank M., Mackinnon J.A., Griesbeck O. (2010) Imaging CREB activation in living cells. J Biol Chem, 285, 23285–23295. [CrossRef] [PubMed] [Google Scholar]
- Garthwaite J. (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci, 27, 2783–2802. [CrossRef] [PubMed] [Google Scholar]
- Gervasi N., Hepp R., Tricoire L., Zhang J., Lambolez B., Paupardin-Tritsch D., Vincent P. (2007) Dynamics of protein kinase A signaling at the membrane, in the cytosol, and in the nucleus of neurons in mouse brain slices. J Neurosci, 27, 2744–2750. [CrossRef] [PubMed] [Google Scholar]
- Gervasi N., Tchenio P., Preat T. (2010) PKA dynamics in a Drosophila learning center : coincidence detection by rutabaga adenylyl cyclase and spatial regulation by dunce phosphodiesterase. Neuron, 65, 516–529. [PubMed] [Google Scholar]
- Gloerich M., Bos J.L. (2010) Epac : defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol, 50, 355–375. [CrossRef] [PubMed] [Google Scholar]
- Gorbunova Y.V., Spitzer N.C. (2002) Dynamic interactions of cyclic AMP transients and spontaneous Ca2+ spikes. Nature, 418, 93–96. [CrossRef] [PubMed] [Google Scholar]
- Harbeck M.C., Chepurny O., Nikolaev V.O., Lohse M.J., Holz G.G., Roe M.W. (2006) Simultaneous optical measurements of cytosolic Ca2+ and cAMP in single cells. Sci STKE, 2006, pl6. [CrossRef] [PubMed] [Google Scholar]
- Heckman P.R., Wouters C., Prickaerts J. (2015) Phosphodiesterase inhibitors as a target for cognition enhancement in aging and Alzheimer’s disease : a translational overview. Curr Pharm Des, 21, 317–331. [CrossRef] [PubMed] [Google Scholar]
- Heiman M., Schaefer A., Gong S., Peterson J.D., Day M., Ramsey K.E., Suarez-Farinas M., Schwarz C., Stephan D.A., Surmeier D.J., Greengard P., Heintz N. (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell, 135, 738–748. [CrossRef] [PubMed] [Google Scholar]
- Hepp R., Tricoire L., Hu E., Gervasi N., Paupardin-Tritsch D., Lambolez B., Vincent P. (2007) Phosphodiesterase type 2 and the homeostasis of cyclic GMP in living thalamic neurons. J Neurochem, 102, 1875–1886. [CrossRef] [PubMed] [Google Scholar]
- HervéD., Girault, J-A. (2005) Signal transduction of dopamine receptors. In : Dopamine, Dunnett S.B., Bentivoglio M., Björklund A. (Eds.), Elsevier, Vol. 21, pp. 109-151. [Google Scholar]
- Hires S.A., Zhu Y., Tsien R.Y. (2008) Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci USA, 105, 4411–4416. [CrossRef] [Google Scholar]
- Hu E., Demmou L., Cauli B., Gallopin T., Geoffroy H., Harris-Warrick R.M., Paupardin-Tritsch D., Lambolez B., Vincent P., Hepp R. (2011) VIP C.R.F, and PACAP Act at Distinct Receptors to Elicit Different cAMP/PKA Dynamics in the Neocortex. Cereb Cortex, 21, 708–718. [CrossRef] [PubMed] [Google Scholar]
- Jares-Erijman E.A., Jovin T.M. (2003) FRET imaging. Nat Biotechnol, 21, 1387–1395. [CrossRef] [PubMed] [Google Scholar]
- Kaupp U.B., Seifert R. (2001) Molecular Diversity of Pacemaker Ion Channels. Annu Rev Physiol, 63, 235–257. [PubMed] [Google Scholar]
- Kawaguchi Y. (1997) Neostriatal cell subtypes and their functional roles. Neurosci Res, 27, 1–8. [Google Scholar]
- Kehler J., Nielsen J. (2011) PDE10A inhibitors : novel therapeutic drugs for schizophrenia. Curr Pharm Des, 17, 137–150. [CrossRef] [PubMed] [Google Scholar]
- Kehler J., Ritzén A., Greve D.R.P.Q. (2007) The potential therapeutic use of phosphodiesterase 10 inhibitors. Expert Opin Ther Patents, 17, 147–158. [CrossRef] [Google Scholar]
- Kelly M.P., Adamowicz W., Bove S., Hartman A.J., Mariga A., Pathak G., Reinhart V., Romegialli A., Kleiman R.J. (2014) Select 3’,5’-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal, 26, 383-397. [CrossRef] [PubMed] [Google Scholar]
- Kerner B., Lambert C.G., Muthen B.O. (2011) Genome-wide association study in bipolar patients stratified by co-morbidity. PLoS One, 6, e28477. [PubMed] [Google Scholar]
- Klarenbeek J.B., Goedhart J., Hink M.A., Gadella T.W., Jalink K. (2011) A mTurquoise-Based cAMP Sensor for Both FLIM and Ratiometric Read-Out Has Improved Dynamic Range. PLoS One, 6, e19170. [CrossRef] [PubMed] [Google Scholar]
- Knopfel T. (2012) Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci, 13, 687–700. [PubMed] [Google Scholar]
- Lakics V., Karran E.H., Boess F.G. (2010) Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology, 59, 367–374. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lalonde S., Ehrhardt D.W., Frommer W.B. (2005) Shining light on signaling and metabolic networks by genetically encoded biosensors. Curr Opin Plant Biol, 8, 574–581. [PubMed] [Google Scholar]
- Landa L.R.J, Harbeck M., Kaihara K., Chepurny O., Kitiphongspattana K., Graf, O, Nikolaev V.O., Lohse M.J., Holz G.G., Roe M.W. (2005) Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line. J Biol Chem, 280, 31294–31302. [CrossRef] [PubMed] [Google Scholar]
- Leroy J., Abi-Gerges A., Nikolaev V.O., Richter W., Lechêne P., Mazet J.L., Conti M., Fischmeister R., Vandecasteele G. (2008) Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes : role of phosphodiesterases. Circ Res, 102, 1091–1100. [Google Scholar]
- Li L., Gervasi N., Girault J.A. (2015) Dendritic geometry shapes neuronal cAMP signalling to the nucleus. Nat Commun, 6, 6319. [PubMed] [Google Scholar]
- Lin D.T., Fretier P., Jiang C., Vincent S.R. (2010) Nitric oxide signaling via cGMP-stimulated phosphodiesterase in striatal neurons. Synapse, 64, 460–466. [CrossRef] [PubMed] [Google Scholar]
- Looger L.L., Griesbeck O. (2012) Genetically encoded neural activity indicators. Curr Opin Neurobiol, 22, 18–23. [PubMed] [Google Scholar]
- Martinez S.E., Wu A.Y., Glavas N.A., Tang X.B., Turley S., Hol W.G., Beavo J.A. (2002) The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc Natl Acad Sci USA, 99, 13260–13265. [CrossRef] [Google Scholar]
- Martins T.J., Mumby M.C., Beavo J.A. (1982) Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem, 257, 1973–1979. [PubMed] [Google Scholar]
- Marvin J.S., Borghuis B.G., Tian L., Cichon J., Harnett M.T., Akerboom J., Gordus A., Renninger S.L., Chen T.W., Bargmann C.I., Orger M.B., Schreiter E.R., Demb J.B., Gan W.B., Hires S.A., Looger L.L. (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods, 10, 162–170. [CrossRef] [PubMed] [Google Scholar]
- Matsuoka I., Giuili G., Poyard M., Stengel D., Parma J., Guellaen G., Hanoune J. (1992) Localization of adenylyl and guanylyl cyclase in rat brain by in situ hybridization : comparison with calmodulin mRNA distribution. J Neurosci, 12, 3350–3360. [CrossRef] [PubMed] [Google Scholar]
- Maurice D.H. (2005) Cyclic nucleotide phosphodiesterase-mediated integration of cGMP and cAMP signaling in cells of the cardiovascular system. Front Biosci, 10, 1221–1228. [PubMed] [Google Scholar]
- McDonald M.L., MacMullen C., Liu D.J., Leal S.M., Davis R.L. (2012) Genetic association of cyclic AMP signaling genes with bipolar disorder. Transl Psychiatry, 2, e169. [CrossRef] [PubMed] [Google Scholar]
- Menniti F.S., Chappie T.A., Humphrey J.M., Schmidt C.J. (2007) Phosphodiesterase 10A inhibitors : a novel approach to the treatment of the symptoms of schizophrenia. Curr Opin Investig Drugs, 8, 54–59. [PubMed] [Google Scholar]
- Mironov S.L., Skorova E., Taschenberger G., Hartelt N., Nikolaev V.O., Lohse, MJ, Kugler S. (2009) Imaging cytoplasmic cAMP in mouse brainstem neurons. BMC Neurosci, 10, 29. [EDP Sciences] [PubMed] [Google Scholar]
- Miyawaki A. (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell, 4, 295–305. [CrossRef] [PubMed] [Google Scholar]
- Morris M.C. (2010) Fluorescent biosensors of intracellular targets from genetically encoded reporters to modular polypeptide probes. Cell Biochem Biophys, 56, 19–37. [CrossRef] [PubMed] [Google Scholar]
- Neves S.R., Tsokas P., Sarkar A., Grace E.A., Rangamani P., Taubenfeld S.M., Alberini C.M., Schaff J.C., Blitzer R.D., Moraru I.I., Iyengar R. (2008) Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell, 133, 666–680. [CrossRef] [PubMed] [Google Scholar]
- Nicol X., Hong K.P., Spitzer N.C. (2011) Spatial and temporal second messenger codes for growth cone turning. Proc Natl Acad Sci USA, 108, 13776–13781. [CrossRef] [Google Scholar]
- Nikolaev V.O., Bunemann M., Hein L., Hannawacker A., Lohse M.J. (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem, 279, 37215–37218. [CrossRef] [PubMed] [Google Scholar]
- Nikolaev V.O., Gambaryan S., Engelhardt S., Walter U., Lohse M.J. (2005) Real-time monitoring of the PDE2 activity of live cells : hormone-stimulated cAMP hydrolysis is faster than hormone-stimulated cAMP synthesis. J Biol Chem, 280, 1716–1719. [CrossRef] [PubMed] [Google Scholar]
- Nomura S., Bouhadana M., Morel C., Faure P., Cauli B., Lambolez B., Hepp R. (2014) Noradrenalin and dopamine receptors both control cAMP-PKA signaling throughout the cerebral cortex. Front Cell Neurosci, 8, 247. [CrossRef] [PubMed] [Google Scholar]
- O’Donnell J.M., Zhang H.T. (2004) Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci, 25, 158–163. [CrossRef] [PubMed] [Google Scholar]
- Okumoto S., Looger L.L., Micheva K.D., Reimer R.J., Smith S.J., Frommer W.B. (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci USA, 102, 8740–8745. [CrossRef] [Google Scholar]
- Polito M., Klarenbeek J., Jalink K., Paupardin-Tritsch D., Vincent P., Castro L.R. (2013) The NO/cGMP pathway inhibits transient cAMP signals through the activation of PDE2 in striatal neurons. Front Cell Neurosci, 7, 211. [CrossRef] [PubMed] [Google Scholar]
- Polito M., Guiot E., Gangarossa G., Longueville S., Doulazmi M., Valjent E., Hervé D., Girault J.A., Paupardin-Tritsch D., Castro L.R., Vincent P. (2015) Selective Effects of PDE10A Inhibitors on Striatopallidal Neurons Require Phosphatase Inhibition by DARPP-32. eNeuro, 2, 1–15. [Google Scholar]
- Renau T.E. (2004) The potential of phosphodiesterase 4 inhibitors for the treatment of depression : opportunities and challenges. Curr Opin Investig Drugs, 5, 34–39. [PubMed] [Google Scholar]
- Repaske D.R., Corbin J.G., Conti M., Goy M.F. (1993) A cyclic GMP-stimulated cyclic nucleotide phosphodiesterase gene is highly expressed in the limbic system of the rat brain. Neuroscience, 56, 673–686. [CrossRef] [PubMed] [Google Scholar]
- Rich T.C., Fagan K.A., Tse T.E., Schaack J., Cooper D.M., Karpen J.W. (2001a) A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci USA, 98, 13049–13054. [CrossRef] [Google Scholar]
- Rich T.C., Tse T.E., Rohan J.G., Schaack J., Karpen J.W. (2001b) In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J Gen Physiol, 118, 63–78. [CrossRef] [PubMed] [Google Scholar]
- Rushlow W., Flumerfelt B.A., Naus C.C. (1995) Colocalization of somatostatin, neuropeptide Y, and NADPH-diaphorase in the caudate-putamen of the rat. J Comp Neurol, 351, 499–508. [PubMed] [Google Scholar]
- Schmidt C.J., Chapin D.S., Cianfrogna J., Corman M.L., Hajos M., Harms J.F., Hoffman W.E., Lebel L.A., McCarthy S.A., Nelson F.R., Proulx-LaFrance C., Majchrzak M.J., Ramirez A.D., Schmidt K., Seymour P.A., Siuciak J.A., Tingley F.D., Williams R.D., Verhoest P.R., Menniti F.S. (2008) Preclinical characterization of selective phosphodiesterase 10A inhibitors : a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther, 325, 681–690. [CrossRef] [PubMed] [Google Scholar]
- Scott J.D., Dessauer C.W., Tasken K. (2013) Creating order from chaos : cellular regulation by kinase anchoring. Annu Rev Pharmacol Toxicol, 53, 187–210. [CrossRef] [PubMed] [Google Scholar]
- Seeger T.F., Bartlett B., Coskran T.M., Culp J.S., James L.C., Krull D.L., Lanfear J., Ryan A.M., Schmidt C.J., Strick C.A., Varghese A.H., Williams R.D., Wylie P.G., Menniti F.S. (2003) Immunohistochemical localization of PDE10A in the rat brain. Brain Res, 985, 113–126. [PubMed] [Google Scholar]
- Shafer O.T., Kim D.J., Dunbar-Yaffe R., Nikolaev V.O., Lohse M.J., Taghert P.H. (2008) Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron, 58, 223–237. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Shelly M., Lim B.K., Cancedda L., Heilshorn S.C., Gao H., Poo M.M. (2010) Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science, 327, 547–552. [CrossRef] [PubMed] [Google Scholar]
- Sipieter F., Vandame P., Spriet C., Leray A., Vincent P., Trinel D., Bodart, JF, Riquet F.B., Heliot, L. (2013) From FRET imaging to practical methodology for kinase activity sensing in living cells. In : Fluorescence-Based Biosensors — From Concepts to Applications, Morris M. (Ed.), Academic Press, Elsevier, Vol. 113, pp. 145-216. [Google Scholar]
- Stangherlin A., Gesellchen F., Zoccarato A., Terrin A., Fields L.A., Berrera M., Surdo N.C., Craig M.A., Smith G., Hamilton G., Zaccolo M. (2011) cGMP signals modulate cAMP levels in a compartment-specific manner to regulate catecholamine-dependent signaling in cardiac myocytes. Circ Res, 108, 929–939. [Google Scholar]
- Talkowski M.E., Rosenfeld J.A., Blumenthal I., Pillalamarri V., Chiang C., Heilbut A., Ernst C., Hanscom C., Rossin E., Lindgren A.M., Pereira S., Ruderfer D., Kirby A., Ripke S., Harris D.J., Lee J.H., Ha K., Kim H.G., Solomon B.D., Gropman A.L., Lucente D., Sims K., Ohsumi T.K., Borowsky M.L., Loranger S., Quade B., Lage K., Miles J., Wu B.L., Shen Y., Neale B., Shaffer L.G., Daly M.J., Morton C.C., Gusella J.F. (2012) Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell, 149, 525–537. [PubMed] [Google Scholar]
- Tam G.W., van de Lagemaat L.N., Redon R., Strathdee K.E., Croning M.D., Malloy M.P., Muir W.J., Pickard B.S., Deary I.J., Blackwood D.H., Carter N.P., Grant S.G. (2010) Confirmed rare copy number variants implicate novel genes in schizophrenia. Biochem Soc Trans, 38, 445–451. [PubMed] [Google Scholar]
- Tasken K., Aandahl E.M. (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev, 84, 137–167. [CrossRef] [PubMed] [Google Scholar]
- Taylor S.S., Buechler J.A., Yonemoto W. (1990) cAMP-dependent protein kinase : framework for a diverse family of regulatory enzymes. Annu Rev Biochem, 59, 971–1005. [CrossRef] [PubMed] [Google Scholar]
- Taylor S.S., Ilouz R., Zhang P., Kornev A.P. (2012) Assembly of allosteric macromolecular switches : lessons from PKA. Nat Rev Mol Cell Biol, 13, 646–658. [CrossRef] [PubMed] [Google Scholar]
- Tomchik S.M., Davis R.L. (2009) Dynamics of learning-related cAMP signaling and stimulus integration in the Drosophila olfactory pathway. Neuron, 64, 510–521. [PubMed] [Google Scholar]
- Van Staveren W.C., Steinbusch H.W., Markerink-Van Ittersum M., Repaske D.R., Goy M.F., Kotera J., Omori K., Beavo J.A., De Vente J. (2003) mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain. J Comp Neurol, 467, 566–580. [PubMed] [Google Scholar]
- Van Engelenburg S.B., Palmer A.E. (2008) Fluorescent biosensors of protein function. Curr Opin Chem Biol, 12, 60–65. [PubMed] [Google Scholar]
- Vincent S.R. (2000) Histochemistry of nitric oxide synthase in the central nervous system. In : Functional Neuroanatomy of the Nitric Oxide System, Steinbusch H.W.M, De Vente J., Vincent S.R. (Eds.), Elsevier, Vol. 17, pp. 19-49. [Google Scholar]
- Vincent S.R., Kimura H. (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience, 46, 755–784. [CrossRef] [PubMed] [Google Scholar]
- Violin J.D., Dipilato L.M., Yildirim N., Elston T.C., Zhang J., Lefkowitz R.J. (2008) β2-Adrenergic Receptor Signaling and Desensitization Elucidated by Quantitative Modeling of Real Time cAMP Dynamics. J Biol Chem, 283, 2949–2961. [CrossRef] [PubMed] [Google Scholar]
- Wachten S., Masada N., Ayling L.J., Ciruela A., Nikolaev V.O., Lohse M.J., Cooper D.M. (2010) Distinct pools of cAMP centre on different isoforms of adenylyl cyclase in pituitary-derived GH3B6 cells. J Cell Sci, 123, 95–106. [CrossRef] [PubMed] [Google Scholar]
- West A.R., Galloway M.P., Grace A.A. (2002) Regulation of striatal dopamine neurotransmission by nitric oxide : effector pathways and signaling mechanisms. Synapse, 44, 227–245. [CrossRef] [PubMed] [Google Scholar]
- West A.R., Grace A.A. (2004) The nitric oxide-guanylyl cyclase signaling pathway modulates membrane activity states and electrophysiological properties of striatal medium spiny neurons recorded in vivo. J Neurosci, 24, 1924–1935. [CrossRef] [PubMed] [Google Scholar]
- West A.R., Tseng K.Y. (2011) Nitric Oxide-Soluble Guanylyl Cyclase-Cyclic GMP Signaling in the Striatum : New Targets for the Treatment of Parkinson’s Disease? Front Syst Neurosci, 5, 55. [PubMed] [Google Scholar]
- Willoughby D., Cooper D.M. (2006) Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP. J Cell Sci, 119, 828–836. [CrossRef] [PubMed] [Google Scholar]
- Wouters F.S., Verveer P.J., Bastiaens P.I. (2001) Imaging biochemistry inside cells. Trends Cell Biol, 11, 203–11. [CrossRef] [PubMed] [Google Scholar]
- Wykes V., Bellamy T.C., Garthwaite J. (2002) Kinetics of nitric oxide-cyclic GMP signalling in CNS cells and its possible regulation by cyclic GMP. J Neurochem, 83, 37–47. [CrossRef] [PubMed] [Google Scholar]
- Zhang J., Ma Y., Taylor S.S., Tsien R.Y. (2001) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci USA, 98, 14997–15002. [CrossRef] [Google Scholar]
- Zhang J., Campbell R.E., Ting A.Y., Tsien R.Y. (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol, 3, 906–918. [CrossRef] [PubMed] [Google Scholar]
- Zhang J., Hupfeld C.J., Taylor S.S., Olefsky J.M., Tsien R.Y. (2005) Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature, 437, 569–573. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.