Accès gratuit
Numéro
Biologie Aujourd’hui
Volume 214, Numéro 3-4, 2020
Page(s) 71 - 83
Section Connexines
DOI https://doi.org/10.1051/jbio/2020008
Publié en ligne 24 décembre 2020
  • Abudara V, Roux L, Dallerac G, Matias I, Dulong J, Mothet JP, Rouach N, Giaume C. (2015). Activated microglia impairs neuroglial interaction by opening Cx43 hemichannels in hippocampal astrocytes. Glia , 63, 795-811. [CrossRef] [PubMed] [Google Scholar]
  • Albert PR, Benkelfat C, Descarries L. (2012). The neurobiology of depression – revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos Trans R Soc Lond B Biol Sci , 367, 2378-2381. [CrossRef] [PubMed] [Google Scholar]
  • Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, Hellemann G Vinters HV. (2010). Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord , 12, 541-549. [CrossRef] [PubMed] [Google Scholar]
  • Angulo MC, Kozlov AS, Charpak S, Audinat E. (2004). Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci , 24, 6920-6927. [CrossRef] [PubMed] [Google Scholar]
  • Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A. (2014). Gliotransmitters travel in time and space. Neuron , 81, 728-739. [CrossRef] [PubMed] [Google Scholar]
  • Ardalan M, Rafati AH, Nyengaard JR, Wegener G. (2017). Rapid antidepressant effect of ketamine correlates with astroglial plasticity in the hippocampus. Br J Pharmacol , 174, 483-492. [CrossRef] [PubMed] [Google Scholar]
  • Ardalan M, Elfving B, Rafati AH, Mansouri M, Zarate CA, Jr., Mathe AA, Wegener G. (2020). Rapid effects of S-ketamine on the morphology of hippocampal astrocytes and BDNF serum levels in a sex-dependent manner. Eur Neuropsychopharmacol , 32, 94-103. [CrossRef] [PubMed] [Google Scholar]
  • Auer DP, Putz B, Kraft E, Lipinski B, Schill J, Holsboer F. (2000). Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry , 47, 305-313. [CrossRef] [PubMed] [Google Scholar]
  • Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G. (2010). Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry , 15, 501-511. [CrossRef] [PubMed] [Google Scholar]
  • Banasr M, Duman RS. (2008). Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry , 64, 863-870. [CrossRef] [PubMed] [Google Scholar]
  • Bao X, Chen Y, Reuss L, Altenberg GA. (2004). Functional expression in Xenopus oocytes of gap-junctional hemichannels formed by a cysteine-less connexin 43. J Biol Chem , 279, 9689-9692. [CrossRef] [PubMed] [Google Scholar]
  • Belzung C, Lemoine M. (2011). Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol Mood Anxiety Disord , 1, 9. [CrossRef] [PubMed] [Google Scholar]
  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH. (2000). Antidepressant effects of ketamine in depressed patients. Mol Psychiatry , 6, 634-646. [Google Scholar]
  • Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ. (2011). Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Biol Psychiatry , 47, 351-354. [Google Scholar]
  • Blier P. (2001). Pharmacology of rapid-onset antidepressant treatment strategies. J Clin Psychiatry , 62 Suppl 15, 12-17. [CrossRef] [PubMed] [Google Scholar]
  • Brites D, Fernandes A. (2015). Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci , 9, 476. [Google Scholar]
  • Brown ES, Varghese FP, McEwen BS. (2004). Association of depression with medical illness: does cortisol play a role? Biol Psychiatry , 55, 1-9. [CrossRef] [PubMed] [Google Scholar]
  • Chever O, Pannasch U, Ezan P, Rouach N. (2014). Astroglial connexin 43 sustains glutamatergic synaptic efficacy. Philos Trans R Soc Lond B Biol Sci , 369, 20130596. [CrossRef] [PubMed] [Google Scholar]
  • Chi Y, Zhang X, Zhang Z, Mitsui T, Kamiyama M, Takeda M, Yao J. (2016). Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status. Redox Biol , 9, 198-209. [CrossRef] [PubMed] [Google Scholar]
  • Cobb JA, O’Neill K, Milner J, Mahajan GJ, Lawrence TJ, May WL, Miguel-Hidalgo J, Rajkowska G, Stockmeier CA. (2016). Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience , 316, 209-220. [Google Scholar]
  • Czeh B, Fuchs E, Flugge G. (2013). Altered glial plasticity in animal models for mood disorders. Curr Drug Targets , 14, 1249-1261. [CrossRef] [PubMed] [Google Scholar]
  • Czeh B, Simon M, Schmelting B, Hiemke C, Fuchs E. (2006). Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology , 31, 1616-1626. [CrossRef] [PubMed] [Google Scholar]
  • David J, Gormley S, McIntosh AL, Kebede V, Thuery G, Varidaki A, Coffey ET, Harkin A. (2019). L-alpha-amino adipic acid provokes depression-like behaviour and a stress related increase in dendritic spine density in the pre-limbic cortex and hippocampus in rodents. Behav Brain Res , 362, 90-102. [CrossRef] [PubMed] [Google Scholar]
  • Ernst C, Nagy C, Kim S, Yang JP, Deng X, Hellstrom IC, Choi KH, Gershenfeld H, Meaney MJ, Turecki G. (2011). Dysfunction of astrocyte connexins 30 and 43 in dorsal lateral prefrontal cortex of suicide completers. Biol Psychiatry , 70, 312-319. [CrossRef] [PubMed] [Google Scholar]
  • Etievant A, Lambas-Senas L, Scarna H, Lucas G, Haddjeri N. (2013). Astrocytes and gliotransmitters: new players in the treatment of major depression? Curr Drug Targets , 14, 1295-1307. [CrossRef] [PubMed] [Google Scholar]
  • Fatemi SH, Folsom TD, Reutiman TJ, Pandian T, Braun NN, Haug K. (2008). Chronic psychotropic drug treatment causes differential expression of connexin 43 and GFAP in the frontal cortex of rats. Schizophr Res , 104, 127-134. [CrossRef] [PubMed] [Google Scholar]
  • Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G. (2004). Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron , 43, 729-743. [CrossRef] [PubMed] [Google Scholar]
  • Fuchs E, Flugge G, Ohl F, Lucassen P, Vollmann-Honsdorf GK, Michaelis T. (2001). Psychosocial stress, glucocorticoids, and structural alterations in the tree shrew hippocampus. Physiol Behav , 73, 285-291. [CrossRef] [PubMed] [Google Scholar]
  • Fullana MN, Covelo A, Bortolozzi A, Araque A, Artigas F. (2019a). In vivo knockdown of astroglial glutamate transporters GLT-1 and GLAST increases excitatory neurotransmission in mouse infralimbic cortex: Relevance for depressive-like phenotypes. Eur Neuropsychopharmacol , 29, 1288-1294. [CrossRef] [PubMed] [Google Scholar]
  • Fullana MN, Ruiz-Bronchal E, Ferres-Coy A, Juarez-Escoto E, Artigas F, Bortolozzi A. (2019b). Regionally selective knockdown of astroglial glutamate transporters in infralimbic cortex induces a depressive phenotype in mice. Glia , 67, 1122-1137. [CrossRef] [PubMed] [Google Scholar]
  • Giaume C, Leybaert L, Naus CC, Saez JC. (2013). Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol , 4, 88. [CrossRef] [PubMed] [Google Scholar]
  • Gillman PK. (2007). Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol , 151, 737-748. [CrossRef] [PubMed] [Google Scholar]
  • Gold PW, Wong ML, Goldstein DS, Gold HK, Ronsaville DS, Esler M, Alesci S, Masood A, Licinio J, Geracioti TD, Jr., Perini G, DeBellis MD, Holmes C, Vgontzas AN, Charney DS, Chrousos GP, McCann SM, Kling MA. (2005). Cardiac implications of increased arterial entry and reversible 24-h central and peripheral norepinephrine levels in melancholia. Proc Natl Acad Sci USA , 102, 8303-8308. [CrossRef] [Google Scholar]
  • Golembiowska K, Dziubina A. (2000). Effect of acute and chronic administration of citalopram on glutamate and aspartate release in the rat prefrontal cortex. Pol J Pharmacol , 52(6), 441-448. [Google Scholar]
  • Golembiowska K, Zylewska A. (1999). Effect of antidepressant drugs on veratridine-evoked glutamate and aspartate release in rat prefrontal cortex. Pol J Pharmacol , 51, 63-70. [Google Scholar]
  • Gomez-Galan M, de Bundel D, Van Eeckhaut A, Smolders I, Lindskog M. (2013). Dysfunctional astrocytic regulation of glutamate transmission in a rat model of depression. Mol Psychiatry , 18, 582-594. [CrossRef] [PubMed] [Google Scholar]
  • Gordillo-Salas M, Anton RP, Ren J, Greer J, Adell A. (2020). Antidepressant-like effects of CX717, a positive allosteric modulator of AMPA receptors. Mol Neurobiol , 57, 3498-3507. [CrossRef] [PubMed] [Google Scholar]
  • Gosselin RD, Gibney S, O’Malley D, Dinan TG, Cryan JF. (2009). Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscience , 159, 915-925. [Google Scholar]
  • Gould E. (1999). Serotonin and hippocampal neurogenesis. Neuropsychopharmacology , 21, 46S-51S. [CrossRef] [PubMed] [Google Scholar]
  • Gould E, Tanapat P. (1999). Stress and hippocampal neurogenesis. Biol Psychiatry , 46, 1472-1479. [CrossRef] [PubMed] [Google Scholar]
  • Guiard BP, El Mansari M, Merali Z, Blier P. (2008). Functional interactions between dopamine, serotonin and norepinephrine neurons: an in vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol , 11, 625-639. [CrossRef] [PubMed] [Google Scholar]
  • Guiard BP, El Mansari M, Blier P. (2009). Prospect of a dopamine contribution in the next generation of antidepressant drugs: the triple reuptake inhibitors. Curr Drug Targets , 10, 1069-1084. [CrossRef] [PubMed] [Google Scholar]
  • Hashimoto K, Sawa A, Iyo M. (2007). Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry , 62, 1310-1316. [CrossRef] [PubMed] [Google Scholar]
  • Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC. (2007). Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry , 64, 193-200. [CrossRef] [PubMed] [Google Scholar]
  • Holsboer F. (2001). Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord , 62, 77-91. [CrossRef] [PubMed] [Google Scholar]
  • Huang D, Li C, Zhang W, Qin J, Jiang W, Hu C. (2019). Dysfunction of astrocytic connexins 30 and 43 in the medial prefrontal cortex and hippocampus mediates depressive-like behaviours. Behav Brain Res , 372, 111950. [CrossRef] [PubMed] [Google Scholar]
  • Jeanson T, Pondaven A, Ezan P, Mouthon F, Charveriat M, Giaume C. (2016). Antidepressants Impact Connexin 43 Channel Functions in Astrocytes. Front Cell Neurosci , 9, 495. [Google Scholar]
  • Kang S, Li J, Bekker A, Ye JH. (2018). Rescue of glutamate transport in the lateral habenula alleviates depression- and anxiety-like behaviors in ethanol-withdrawn rats. Neuropharmacology , 129, 47-56. [CrossRef] [PubMed] [Google Scholar]
  • Kielian T. (2008). Glial connexins and gap junctions in CNS inflammation and disease. J Neurochem , 106, 1000-1016. [CrossRef] [PubMed] [Google Scholar]
  • Krishnan V, Nestler EJ. (2008). The molecular neurobiology of depression. Nature , 455, 894-902. [CrossRef] [PubMed] [Google Scholar]
  • Kunze A, Congreso MR, Hartmann C, Wallraff-Beck A, Huttmann K, Bedner P, Requardt R, Seifert G, Redecker C, Willecke K, Hofmann A, Pfeifer A, Theis M, Steinhauser C. (2009). Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA , 106, 11336-11341. [CrossRef] [Google Scholar]
  • Lan MJ, McLoughlin GA, Griffin JL, Tsang TM, Huang JT, Yuan P, Manji H, Holmes E, Bahn S. (2009). Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol Psychiatry , 14, 269-279. [CrossRef] [PubMed] [Google Scholar]
  • Liebmann M, Stahr A, Guenther M, Witte OW, Frahm C. (2013). Astrocytic Cx43 and Cx30 differentially modulate adult neurogenesis in mice. Neurosci Lett , 545: 40-45. [CrossRef] [PubMed] [Google Scholar]
  • Liu Q, Li B, Zhu HY, Wang YQ, Yu J, Wu GC. (2009). Clomipramine treatment reversed the glial pathology in a chronic unpredictable stress-induced rat model of depression. Eur Neuropsychopharmacol , 19, 796-805. [CrossRef] [PubMed] [Google Scholar]
  • Liu WX, Wang J, Xie ZM, Xu N, Zhang GF, Jia M, Zhou ZQ, Hashimoto K, Yang JJ. (2016). Regulation of glutamate transporter 1 via BDNF-TrkB signaling plays a role in the anti-apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression. Psychopharmacology (Berl) , 233, 405-415. [CrossRef] [PubMed] [Google Scholar]
  • MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C, Young LT. (2003). Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA , 100, 1387-1392. [CrossRef] [Google Scholar]
  • Mahmoud S, Gharagozloo M, Simard C, Gris D. (2019). Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells , 8, 184. [Google Scholar]
  • Malberg JE, Duman RS. (2003). Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology , 28, 1562-1571. [CrossRef] [PubMed] [Google Scholar]
  • Medina A, Watson SJ, Bunney W, Jr., Myers RM, Schatzberg A, Barchas J, Akil H, Thompson RC. (2016). Evidence for alterations of the glial syncytial function in major depressive disorder. J Psychiatr Res , 72, 15-21. [Google Scholar]
  • Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B. (2003). Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol Med , 33, 1277-1284. [CrossRef] [PubMed] [Google Scholar]
  • Miguel-Hidalgo JJ, Wilson BA, Hussein S, Meshram A, Rajkowska G, Stockmeier CA. (2014). Reduced Connexin 43 immunolabeling in the orbitofrontal cortex in alcohol dependence and depression. J Psychiatr Res , 55, 101-109. [Google Scholar]
  • Miguel-Hidalgo JJ, Moulana M, Deloach PH, Rajkowska G. (2018). Chronic unpredictable stress reduces immunostaining for connexins 43 and 30 and myelin basic protein in the rat prelimbic and orbitofrontal cortices. Chronic Stress (Thousand Oaks) , 2, 1-21. [Google Scholar]
  • Miguel-Hidalgo JJ, Carter K, Deloach PH, Sanders L, Pang Y. (2019). Glucocorticoid-induced reductions of myelination and connexin 43 in mixed central nervous system cell cultures are prevented by mifepristone. Neuroscience , 411, 255-269. [Google Scholar]
  • Milanovic SM, Erjavec K, Poljicanin T, Vrabec B, Brecic P. (2015). Prevalence of depression symptoms and associated socio-demographic factors in primary health care patients. Psychiatr Danub , 27, 31-37. [Google Scholar]
  • Mineur YS, Picciotto MR, Sanacora G. (2007). Antidepressant-like effects of ceftriaxone in male C57BL/6J mice. Biol Psychiatry , 61, 250-252. [CrossRef] [PubMed] [Google Scholar]
  • Moghaddam B, Adams B, Verma A, Daly D. (1997). Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci , 17, 2921-2927. [CrossRef] [PubMed] [Google Scholar]
  • Morioka N, Suekama K, Zhang FF, Kajitani N, Hisaoka-Nakashima K, Takebayashi M, Nakata Y. (2014). Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway. Br J Pharmacol , 171, 2854-2867. [CrossRef] [PubMed] [Google Scholar]
  • Mostafavi H, Khaksarian M, Joghataei MT, Hassanzadeh G, Soleimani M, Eftekhari S, Mousavizadeh K, Hadjighassem MR. (2014). Fluoxetin upregulates connexin 43 expression in astrocyte. Basic Clin Neurosci , 5, 74-79. [PubMed] [Google Scholar]
  • Murray CJ, Lopez AD. (1997). Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet , 349, 1436-1442. [CrossRef] [PubMed] [Google Scholar]
  • Nagy C, Suderman M, Yang J, Szyf M, Mechawar N, Ernst C, Turecki G. (2015). Astrocytic abnormalities and global DNA methylation patterns in depression and suicide. Mol Psychiatry , 20, 320-328. [CrossRef] [PubMed] [Google Scholar]
  • Nagy C, Torres-Platas SG, Mechawar N, Turecki G. (2017). Repression of astrocytic connexins in cortical and subcortical brain regions and prefrontal enrichment of H3K9me3 in depression and suicide. Int J Neuropsychopharmacol , 20, 50-57. [PubMed] [Google Scholar]
  • Ni M, He JG, Zhou HY, Lu XJ, Hu YL, Mao L, Wang F, Chen JG, Hu ZL. (2018). Pannexin-1 channel dysfunction in the medial prefrontal cortex mediates depressive-like behaviors induced by chronic social defeat stress and administration of mefloquine in mice. Neuropharmacology , 137, 256-267. [CrossRef] [PubMed] [Google Scholar]
  • Niwa M, Jaaro-Peled H, Tankou S, Seshadri S, Hikida T, Matsumoto Y, Cascella NG, Kano S, Ozaki N, Nabeshima T, Sawa A. (2013). Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science , 339, 335-339. [Google Scholar]
  • Odaka H, Adachi N, Numakawa T. (2017). Impact of glucocorticoid on neurogenesis. Neural Regen Res , 12, 1028-1035. [Google Scholar]
  • Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Saez PJ, Jiang JX, Naus CC, Saez JC, Giaume C. (2011). Amyloid beta-induced death in neurons involves glial and neuronal hemichannels. J Neurosci , 31, 4962-4977. [CrossRef] [PubMed] [Google Scholar]
  • Orellana JA, Moraga-Amaro R, Diaz-Galarce R, Rojas S, Maturana CJ, Stehberg J, Saez JC. (2015). Restraint stress increases hemichannel activity in hippocampal glial cells and neurons. Front Cell Neurosci , 9, 102. [PubMed] [Google Scholar]
  • Pannasch U, Freche D, Dallerac G, Ghezali G, Escartin C, Ezan P, Cohen-Salmon M, Benchenane K, Abudara V, Dufour A, Lubke JH, Deglon N, Knott G, Holcman D, Rouach N. (2014). Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci , 17, 549-558. [CrossRef] [PubMed] [Google Scholar]
  • Park M, Niciu MJ, Zarate Jr CA. (2015). Novel glutamatergic treatments for severe mood disorders. Curr Behav Neurosci Rep , 2, 198-208. [Google Scholar]
  • Perera TD, Coplan JD, Lisanby SH, Lipira CM, Arif M, Carpio C, Spitzer G, Santarelli L, Scharf B, Hen R, Rosoklija G, Sackeim HA, Dwork AJ. (2007). Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci , 27, 4894-4901. [CrossRef] [PubMed] [Google Scholar]
  • Pfleiderer B, Michael N, Erfurth A, Ohrmann P, Hohmann U, Wolgast M, Fiebich M, Arolt V, Heindel W. (2003). Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res , 122, 185-192. [CrossRef] [PubMed] [Google Scholar]
  • Pham TH, Gardier AM. (2019). Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther , 199, 58-90. [CrossRef] [PubMed] [Google Scholar]
  • Portal B, Delcourte S, Rovera R, Lejards C, Bullich S, Malnou CE, Haddjeri N, Deglon N, Guiard BP. (2020). Genetic and pharmacological inactivation of astroglial connexin 43 differentially influences the acute response of antidepressant and anxiolytic drugs. Acta Physiol. (Oxf) , 229, e13440. [CrossRef] [PubMed] [Google Scholar]
  • Quesseveur G, Gardier AM, Guiard BP. (2013). The monoaminergic tripartite synapse: a putative target for currently available antidepressant drugs. Curr Drug Targets , 14, 1277-1294. [CrossRef] [PubMed] [Google Scholar]
  • Quesseveur G, Portal B, Basile JA, Ezan P, Mathou A, Halley H, Leloup C, Fioramonti X, Deglon N, Giaume C, Rampon C, Guiard BP. (2015). Attenuated Levels of hippocampal connexin 43 and its phosphorylation correlate with antidepressant- and anxiolytic-like activities in mice. Front Cell Neurosci , 9, 490. [Google Scholar]
  • Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA. (1999). Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry , 45, 1085-1098. [CrossRef] [PubMed] [Google Scholar]
  • Rajkowska G, Stockmeier CA. (2013). Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets , 14, 1225-1236. [CrossRef] [PubMed] [Google Scholar]
  • Rasmussen KG, Lineberry TW, Galardy CW, Kung S, Lapid MI, Palmer BA, Ritter MJ, Schak KM, Sola CL, Hanson AJ, Frye MA. (2013). Serial infusions of low-dose ketamine for major depression. J Psychopharmacol , 27(5):444-450. [CrossRef] [PubMed] [Google Scholar]
  • Ren Q, Wang ZZ, Chu SF, Xia CY, Chen NH. (2018). Gap junction channels as potential targets for the treatment of major depressive disorder. Psychopharmacology (Berl) , 235, 1-12. [CrossRef] [PubMed] [Google Scholar]
  • Rial D, Lemos C, Pinheiro H, Duarte JM, Goncalves FQ, Real JI, Prediger RD, Goncalves N, Gomes CA, Canas PM, Agostinho P, Cunha RA. (2015). Depression as a glial-based synaptic dysfunction. Front Cell Neurosci , 9, 521. [Google Scholar]
  • Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C. (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. Science , 322, 1551-1555. [Google Scholar]
  • Rubio-Casillas A, Fernandez-Guasti A. (2016). The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression. Rev Neurosci , 27, 599-622. [CrossRef] [PubMed] [Google Scholar]
  • Rush AJ, Bernstein IH, Trivedi MH, Carmody TJ, Wisniewski S, Mundt JC, Shores-Wilson K, Biggs MM, Woo A, Nierenberg AA, Fava M. (2006). An evaluation of the quick inventory of depressive symptomatology and the hamilton rating scale for depression: a sequenced treatment alternatives to relieve depression trial report. Biol Psychiatry , 59, 493-501. [CrossRef] [PubMed] [Google Scholar]
  • Sachs BD, Ni JR, Caron MG. (2015). Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress. Proc Natl Acad Sci USA , 112, 2557-2562. [CrossRef] [Google Scholar]
  • Sahay A, Hen R. (2007). Adult hippocampal neurogenesis in depression. Nat Neurosci , 10, 1110-1115. [CrossRef] [PubMed] [Google Scholar]
  • Sanacora G. (2017). Ketamine for the Treatment of Depression-Reply. JAMA Psychiatry , 74, 971-972. [CrossRef] [PubMed] [Google Scholar]
  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science , 301, 805-809. [Google Scholar]
  • Schmidt HD, Duman RS. (2007). The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol , 18, 391-418. [CrossRef] [PubMed] [Google Scholar]
  • Schoenfeld TJ, Kloth AD, Hsueh B, Runkle MB, Kane GA, Wang SS, Gould E. (2014). Gap junctions in the ventral hippocampal-medial prefrontal pathway are involved in anxiety regulation. J Neurosci , 34, 15679-15688. [CrossRef] [PubMed] [Google Scholar]
  • Sobocki P, Jonsson B, Angst J, Rehnberg C. (2006). Cost of depression in Europe. J Ment Health Policy Econ , 9, 87-98. [PubMed] [Google Scholar]
  • Steckler T, Holsboer F, Reul JM. (1999). Glucocorticoids and depression. Baillieres Best Pract Res Clin Endocrinol Metab , 13, 597-614. [CrossRef] [PubMed] [Google Scholar]
  • Stehberg J, Moraga-Amaro R, Salazar C, Becerra A, Echeverria C, Orellana JA, Bultynck G, Ponsaerts R, Leybaert L, Simon F, Saez JC, Retamal MA. (2012). Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J , 26, 3649-3657. [CrossRef] [PubMed] [Google Scholar]
  • Stout C, Charles A. (2003). Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium. Glia , 43, 265-273. [CrossRef] [PubMed] [Google Scholar]
  • Sun JD, Liu Y, Yuan YH, Li J, Chen NH. (2012). Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology , 37, 1305-1320. [CrossRef] [PubMed] [Google Scholar]
  • Swigar ME, Kolakowska T, Quinlan DM. (1979). Plasma cortisol levels in depression and other psychiatric disorders: a study of newly admitted psychiatric patients. Psychol Med , 9, 449-455. [CrossRef] [PubMed] [Google Scholar]
  • Theis M, Giaume C. (2012). Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res , 1487, 88-98. [CrossRef] [PubMed] [Google Scholar]
  • Torres-Platas SG, Hercher C, Davoli MA, Maussion G, Labonte B, Turecki G, Mechawar N. (2011). Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. Neuropsychopharmacology , 36, 2650-2658. [CrossRef] [PubMed] [Google Scholar]
  • Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Vinken M, Rogiers V, Bukauskas FF, Bultynck G, Leybaert L. (2013). Paracrine signaling through plasma membrane hemichannels. Biochim Biophys Acta , 1828, 35-50. [CrossRef] [PubMed] [Google Scholar]
  • Wang Y, Xie L, Gao C, Zhai L, Zhang N, Guo L. (2018). Astrocytes activation contributes to the antidepressant-like effect of ketamine but not scopolamine. Pharmacol Biochem Behav , 170, 1-8. [CrossRef] [PubMed] [Google Scholar]
  • Xia CY, Chu SF, Zhang S, Gao Y, Ren Q, Lou YX, Luo P, Tian MT, Wang ZQ, Du GH, Tomioka Y, Yamakuni T, Zhang Y, Wang ZZ, Chen NH. (2017). Ginsenoside Rg1 alleviates corticosterone-induced dysfunction of gap junctions in astrocytes. J Ethnopharmacol , 208, 207-213. [Google Scholar]
  • Xia CY, Wang ZZ, Zhang Z, Chen J, Wang YY, Lou YX, Gao Y, Luo P, Ren Q, Du GH, Chen NH. (2018a). Corticosterone impairs gap junctions in the prefrontal cortical and hippocampal astrocytes via different mechanisms. Neuropharmacology , 131, 20-30. [CrossRef] [PubMed] [Google Scholar]
  • Xia CY, Wang ZZ, Yamakuni T, Chen NH. (2018b). A novel mechanism of depression: role for connexins. Eur Neuropsychopharmacol , 28, 483-498. [CrossRef] [PubMed] [Google Scholar]
  • Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR. (2003). Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci , 23, 3588-3596. [CrossRef] [PubMed] [Google Scholar]
  • Zhang J, Griemsmann S, Wu Z, Dobrowolski R, Willecke K, Theis M, Steinhauser C, Bedner P. (2018). Connexin43, but not connexin30, contributes to adult neurogenesis in the dentate gyrus. Brain Res Bull , 136, 91-100. [CrossRef] [PubMed] [Google Scholar]
  • Zhang XM, Wang LZ, He B, Xiang YK, Fan LX, Wang Q, Tao L. (2019). The gap junction inhibitor INI-0602 attenuates mechanical allodynia and depression-like behaviors induced by spared nerve injury in rats. Neuroreport , 30, 369-377. [CrossRef] [PubMed] [Google Scholar]
  • Zhu X, Ye G, Wang Z, Luo J, Hao X. (2017). Sub-anesthetic doses of ketamine exerts antidepressant-like effects and upregulate the expression of glutamate transporters in the hippocampus of rats. Neuroscience Letters , 639, 132-137. [CrossRef] [PubMed] [Google Scholar]
  • Zink M, Vollmayr B, Gebicke-Haerter PJ, Henn FA. (2010). Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology , 58, 465-473. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.