Accès gratuit
Numéro
Biologie Aujourd’hui
Volume 216, Numéro 3-4, 2022
Page(s) 131 - 143
DOI https://doi.org/10.1051/jbio/2022017
Publié en ligne 6 février 2023
  • Al-Farsi, Y.M., Al-Sharbati, M.M., Waly, M.I., Al-Farsi, O.A., Al-Shafaee, M.A., Al-Khaduri, M.M., Trivedi, M.S., Deth, R.C. (2012). Effect of suboptimal breast-feeding on occurrence of autism: a case-control study. Nutrition, 28, e27-32. [CrossRef] [PubMed] [Google Scholar]
  • Alberts, J.R., Ronca, A.E. (2012). The experience of being born: a natural context for learning to suckle. Int J Pediatr, 2012, 129328. [PubMed] [Google Scholar]
  • Althammer, F., Grinevich, V. (2017). Diversity of oxytocin neurons: beyond magno- and parvocellular cell types? J Neuroendocrinol. https://doi.org/10.1111/jne.12549. [PubMed] [Google Scholar]
  • Althammer, F., Muscatelli, F., Grinevich, V., Schaaf, C.P. (2022). Oxytocin-based therapies for treatment of Prader-Willi and Schaaf-Yang syndromes: evidence, disappointments, and future research strategies. Transl Psychiatry, 12, 318. [CrossRef] [PubMed] [Google Scholar]
  • Bales, K.L., Carter, C.S. (2003a). Developmental exposure to oxytocin facilitates partner preferences in male prairie voles (Microtus ochrogaster). Behav Neurosci, 117, 854-859. [CrossRef] [PubMed] [Google Scholar]
  • Bales, K.L., Carter, C.S. (2003b). Sex differences and developmental effects of oxytocin on aggression and social behavior in prairie voles (Microtus ochrogaster). Horm Behav, 44, 178-184. [CrossRef] [PubMed] [Google Scholar]
  • Bales, K.L., Perkeybile, A.M. (2012). Developmental experiences and the oxytocin receptor system. Horm Behav, 61, 313-319. [CrossRef] [PubMed] [Google Scholar]
  • Bales, K.L., Plotsky, P.M., Young, L.J., Lim, M.M., Grotte, N., Ferrer, E., Carter, C.S. (2007). Neonatal oxytocin manipulations have long-lasting, sexually dimorphic effects on vasopressin receptors. Neuroscience, 144, 38-45. [CrossRef] [MathSciNet] [Google Scholar]
  • Barrett, C.E., Arambula, S.E., Young, L.J. (2015). The oxytocin system promotes resilience to the effects of neonatal isolation on adult social attachment in female prairie voles. Transl Psychiatry, 5, e606. [CrossRef] [PubMed] [Google Scholar]
  • Bertoni, A., Schaller, F., Tyzio, R., Gaillard, S., Santini, F., Xolin, M., Diabira, D., Vaidyanathan, R., Matarazzo, V., Medina, I., Hammock, E., Zhang, J., Chini, B., Gaiarsa, J.L., Muscatelli, F. (2021). Oxytocin administration in neonates shapes hippocampal circuitry and restores social behavior in a mouse model of autism. Mol Psychiatry, 12, 7582-7585. [CrossRef] [PubMed] [Google Scholar]
  • Bosch, O.J., Neumann, I.D. (2008). Brain vasopressin is an important regulator of maternal behavior independent of dams’ trait anxiety. Proc Natl Acad Sci USA, 105, 17139-17144. [CrossRef] [PubMed] [Google Scholar]
  • Brown, C.H., Ludwig, M., Tasker, J.G., Stern, J.E. (2020). Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. J Neuroendocrinol, 32, e12856. [CrossRef] [PubMed] [Google Scholar]
  • Busnelli, M., Chini, B. (2018). Molecular basis of oxytocin receptor signalling in the brain: What we know and what we need to know. Curr Top Behav Neurosci, 35, 3-29. [CrossRef] [PubMed] [Google Scholar]
  • Caba, M., Rovirosa, M.J., Silver, R. (2003). Suckling and genital stroking induces Fos expression in hypothalamic oxytocinergic neurons of rabbit pups. Brain Res Dev Brain Res, 143, 119-128. [CrossRef] [PubMed] [Google Scholar]
  • Choleris, E., Clipperton-Allen, A.E., Phan, A., Kavaliers, M. (2009). Neuroendocrinology of social information processing in rats and mice. Front Neuroendocrinol, 30, 442-459. [CrossRef] [PubMed] [Google Scholar]
  • Cushing, B.S., Kramer, K.M. (2005). Mechanisms underlying epigenetic effects of early social experience: the role of neuropeptides and steroids. Neurosci Biobehav Rev, 29, 1089-1105. [Google Scholar]
  • Da Prato, L.C., Zayan, U., Abdallah, D., Point, V., Schaller, F., Pallesi-Pocachard, E., Montheil, A., Canaan, S., Gaiarsa, J.L., Muscatelli, F., Matarazzo, V. (2022). Early life oxytocin treatment improves thermo-sensory reactivity and maternal behavior in neonates lacking the autism-associated gene Magel2. Neuropsychopharmacology, 47, 1901-1912. [CrossRef] [PubMed] [Google Scholar]
  • Eaton, J.L., Roache, L., Nguyen, K.N., Cushing, B.S., Troyer, E., Papademetriou, E., Raghanti, M.A. (2012). Organizational effects of oxytocin on serotonin innervation. Dev Psychobiol, 54, 92-97. [CrossRef] [PubMed] [Google Scholar]
  • Ferguson, J.N., Aldag, J.M., Insel, T.R., Young, L.J. (2001). Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci, 21, 8278-8285. [CrossRef] [PubMed] [Google Scholar]
  • Fountain, M.D., Schaaf, C.P. (2016). Prader-Willi syndrome and Schaaf-Yang syndrome: Neurodevelopmental diseases intersecting at the MAGEL2 gene. Diseases, 4, 2. https://doi.org/10.3390/diseases4010002. [CrossRef] [PubMed] [Google Scholar]
  • Frasnelli, J., Schuster, B., Hummel, T. (2007). Interactions between olfaction and the trigeminal system: what can be learned from olfactory loss. Cereb Cortex, 17, 2268-2275. [CrossRef] [PubMed] [Google Scholar]
  • Gal, E., Hardal-Nasser, R., Engel-Yeger, B. (2011). The relationship between the severity of eating problems and intellectual developmental deficit level. Res Dev Disabil, 32, 1464-1469. [CrossRef] [PubMed] [Google Scholar]
  • Greenwood, M.A., Hammock, E.A. (2017). Oxytocin receptor binding sites in the periphery of the neonatal mouse. PLoS One, 12, e0172904. [PubMed] [Google Scholar]
  • Grinevich, V., Desarménien, M.G., Tauber, M., Muscatelli, F. (2016). Ontogenesis of oxytocin in the mammalian brain: late maturation and psychoscial disorders. Front Neuroanat, 8, 164. [Google Scholar]
  • Grimsley, J.M., Monaghan, J.J., Wenstrup, J.J. (2011). Development of social vocalizations in mice. PLoS One, 6, e17460. [CrossRef] [PubMed] [Google Scholar]
  • Hammock, E.A., Levitt, P. (2013). Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse. Front Behav Neurosci, 7, 195. [CrossRef] [PubMed] [Google Scholar]
  • Harony-Nicolas, H., Kay, M., du Hoffmann, J., Klein, M.E., Bozdagi-Gunal, O., Riad, M., Daskalakis, N.P., Sonar, S., Castillo, P.E., Hof, P.R., Shapiro, M.L., Baxter, M.G., Wagner, S., Buxbaum, J.D. (2017). Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat. Elife, 6, e18904. [CrossRef] [PubMed] [Google Scholar]
  • Heinrichs, M., von Dawans, B., Domes, G. (2009). Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol, 30, 548-557. [CrossRef] [PubMed] [Google Scholar]
  • Hoffiz, Y.C., Castillo-Ruiz, A., Hall, M.A.L., Hite, T.A., Gray, J.M., Cisternas, C.D., Cortes, L.R., Jacobs, A.J., Forger, N.G. (2021). Birth elicits a conserved neuroendocrine response with implications for perinatal osmoregulation and neuronal cell death. Sci Rep, 11, 2335. [CrossRef] [PubMed] [Google Scholar]
  • Hongo, T., Hakuba, A., Shiota, K., Naruse, I. (2000). Suckling dysfunction caused by defects in the olfactory system in genetic arhinencephaly mice. Biol Neonate, 78, 293-299. [CrossRef] [Google Scholar]
  • Hornberg, H., Perez-Garci, E., Schreiner, D., Hatstatt-Burkle, L., Magara, F., Baudouin, S., Matter, A., Nacro, K., Pecho-Vrieseling, E., Scheiffele, P. (2020). Rescue of oxytocin response and social behaviour in a mouse model of autism. Nature, 584, 252-256. [CrossRef] [PubMed] [Google Scholar]
  • Inoue, N., Nishizumi, H., Ooyama, R., Mogi, K., Nishimori, K., Kikusui, T., Sakano, H. (2021). The olfactory critical period is determined by activity-dependent Sema7A/PlxnC1 signaling within glomeruli. Elife, 10, e65078. https://doi.org/10.7554/eLife.65078. [PubMed] [Google Scholar]
  • Insel, T.R. (2010). The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron, 65, 768-779. [CrossRef] [PubMed] [Google Scholar]
  • Jin, D., Liu, H.X., Hirai, H., Torashima, T., Nagai, T., Lopatina, O., Shnayder, N.A., Yamada, K., Noda, M., Seike, T., Fujita, K., Takasawa, S., Yokoyama, S., Koizumi, K., Shiraishi, Y., Tanaka, S., Hashii, M., Yoshihara, T., Higashida, K., Islam, M.S., Yamada, N., Hayashi, K., Noguchi, N., Kato, I., Okamoto, H., Matsushima, A., Salmina, A., Munesue, T., Shimizu, N., Mochida, S., Asano, M., Higashida, H. (2007). CD38 is critical for social behaviour by regulating oxytocin secretion. Nature, 446, 41-45. [CrossRef] [PubMed] [Google Scholar]
  • Johnson, Z.V., Young, L.J. (2017). Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience. Neurosci Biobehav Rev, 76, 87-98. [CrossRef] [PubMed] [Google Scholar]
  • Jurek, B., Neumann, I.D. (2018). The oxytocin receptor: From intracellular signaling to behavior. Physiol Rev, 98, 1805-1908. [CrossRef] [PubMed] [Google Scholar]
  • Keen, D.V. (2008). Childhood autism, feeding problems and failure to thrive in early infancy. Seven case studies. Eur Child Adolesc Psychiatry, 17, 209-216. [CrossRef] [PubMed] [Google Scholar]
  • Kenkel, W.M., Perkeybile, A.M., Yee, J.R., Pournajafi-Nazarloo, H., Lillard, T.S., Ferguson, E.F., Wroblewski, K.L., Ferris, C.F., Carter, C.S., Connelly, J.J. (2019). Behavioral and epigenetic consequences of oxytocin treatment at birth. Sci Adv, 5, eaav2244. [CrossRef] [PubMed] [Google Scholar]
  • Klein, B.Y., Tamir, H., Ludwig, R.J., Glickstein, S.B., Welch, M.G. (2017). Colostrum oxytocin modulates cellular stress response, inflammation, and autophagy markers in newborn rat gut villi. Biochem Biophys Res Commun, 487, 47-53. [CrossRef] [PubMed] [Google Scholar]
  • Kodak, T., Piazza, C.C. (2008). Assessment and behavioral treatment of feeding and sleeping disorders in children with autism spectrum disorders. Child Adolesc Psychiatr Clin N Am, 17, 887-905. [CrossRef] [PubMed] [Google Scholar]
  • Kojima, S., Alberts, J.R. (2011a). Oxytocin mediates the acquisition of filial, odor-guided huddling for maternally-associated odor in preweanling rats. Horm Behav, 60, 549-558. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Kojima, S., Alberts, J.R. (2011b). Warmth from skin-to-skin contact with mother is essential for the acquisition of filial huddling preference in preweanling rats. Dev Psychobiol, 53, 813-827. [CrossRef] [PubMed] [Google Scholar]
  • Kojima, S., Stewart, R.A., Demas, G.E., Alberts, J.R. (2012). Maternal contact differentially modulates central and peripheral oxytocin in rat pups during a brief regime of mother-pup interaction that induces a filial huddling preference. J Neuroendocrinol, 24, 831-840. [Google Scholar]
  • Lapp, H.E., Bartlett, A.A., Zup, S.L., Hunter, R.G., Moore, C.L. (2020). Early experience alters developmental trajectory of central oxytocin systems involved in hypothalamic-pituitary-adrenal axis regulation in Long-Evans rats. Horm Behav, 126, 104822. [CrossRef] [PubMed] [Google Scholar]
  • Lefevre, A., Sirigu, A. (2016). The two fold role of oxytocin in social developmental disorders: A cause and a remedy? Neurosci Biobehav Rev, 63, 168-176. [CrossRef] [PubMed] [Google Scholar]
  • Lenz, K.M., Sengelaub, D.R. (2010). Maternal care effects on the development of a sexually dimorphic motor system: the role of spinal oxytocin. Horm Behav, 58, 575-581. [CrossRef] [PubMed] [Google Scholar]
  • Lesage, J., Bernet, F., Montel, V., Dupouy, J.P. (1996). Hypothalamic metabolism of neurotransmitters (serotonin, norepinephrine, dopamine) and NPY, and gonadal and adrenal activities, during the early postnatal period in the rat. Neurochem Res, 21, 87-96. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Lewis, E.M., Stein-O’Brien, G.L., Patino, A.V., Nardou, R., Grossman, C.D., Brown, M., Bangamwabo, B., Ndiaye, N., Giovinazzo, D., Dardani, I., Jiang, C., Goff, L.A., Dölen, G. (2020). Parallel cocial information processing circuits are differentially impacted in autism. Neuron, 108, 659-675. [CrossRef] [PubMed] [Google Scholar]
  • Liu, H.X., Lopatina, O., Higashida, C., Tsuji, T., Kato, I., Takasawa, S., Okamoto, H., Yokoyama, S., Higashida, H. (2008). Locomotor activity, ultrasonic vocalization and oxytocin levels in infant CD38 knockout mice. Neurosci Lett, 448, 67-70. [CrossRef] [PubMed] [Google Scholar]
  • Lopatina, O.L., Komleva, Y.K., Gorina, Y.V., Olovyannikova, R.Y., Trufanova, L.V., Hashimoto, T., Takahashi, T., Kikuchi, M., Minabe, Y., Higashida, H., Lopatina, O.L., Komleva, Y.K., Gorina, Y.V., Olovyannikova, R.Y., Trufanova, L.V., Hashimoto, T., Takahashi, T., Kikuchi, M., Minabe, Y., Higashida, H., Salmina, A.B. (2018). Oxytocin and excitation/inhibition balance in social recognition. Neuropeptides, 72, 1-11. [CrossRef] [PubMed] [Google Scholar]
  • Lucas, R.F., Cutler, A. (2015). Dysregulated breastfeeding behaviors in children later diagnosed with autism. J Perinat Educ, 24, 171-180. [CrossRef] [PubMed] [Google Scholar]
  • Lukas, M., Bredewold, R., Neumann, I.D., Veenema, A.H. (2010). Maternal separation interferes with developmental changes in brain vasopressin and oxytocin receptor binding in male rats. Neuropharmacology, 58, 78-87. [CrossRef] [PubMed] [Google Scholar]
  • Madrigal, M.P., Jurado, S. (2021). Specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain. Commun Biol, 4, 586. [CrossRef] [PubMed] [Google Scholar]
  • Maldonado, P.P., Nuno-Perez, A., Kirchner, J.H., Hammock, E., Gjorgjieva, J., Lohmann, C. (2021). Oxytocin shapes spontaneous activity patterns in the developing visual cortex by activating somatostatin interneurons. Curr Biol, 31, 322-333. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Meziane, H., Schaller, F., Bauer, S., Villard, C., Matarazzo, V., Riet, F., Guillon, G., Lafitte, D., Desarmenien, M.G., Tauber, M., Muscatelli, F. (2014). An early postnatal oxytocin treatment prevents social and learning deficits in adult mice deficient for Magel2, a gene involved in Prader-Willi syndrome and autism. Biol Psychiatry, 78, 85-94. [Google Scholar]
  • Miller, T.V., Caldwell, H.K. (2015). Oxytocin during development: Possible organizational effects on behavior. Front Endocrinol (Lausanne), 6, 76. [CrossRef] [PubMed] [Google Scholar]
  • Mitre, M., Marlin, B.J., Schiavo, J.K., Morina, E., Norden, S.E., Hackett, T.A., Aoki, C.J., Chao, M.V., Froemke, R.C. (2016). A distributed network for social cognition enriched for oxytocin receptors. J Neurosci, 36, 2517-2535. [CrossRef] [PubMed] [Google Scholar]
  • Muscatelli, F., Desarmenien, M.G., Matarazzo, V., Grinevich, V. (2018). Oxytocin signaling in the early life of mammals: link to neurodevelopmental disorders associated with ASD. Curr Top Behav Neurosci, 35, 239-268. [CrossRef] [PubMed] [Google Scholar]
  • Nagasawa, M., Okabe, S., Mogi, K., Kikusui, T. (2012). Oxytocin and mutual communication in mother-infant bonding. Front Hum Neurosci, 6, 31. [CrossRef] [PubMed] [Google Scholar]
  • Nelson, E., Alberts, J.R. (1997). Oxytocin-induced paw sucking in infant rats. Ann N Y Acad Sci, 807, 543-545. [CrossRef] [PubMed] [Google Scholar]
  • Newmaster, K.T., Nolan, Z.T., Chon, U., Vanselow, D.J., Weit, A.R., Tabbaa, M., Hidema, S., Nishimori, K., Hammock, E.A.D., Kim, Y. (2020). Quantitative cellular-resolution map of the oxytocin receptor in postnatally developing mouse brains. Nat Commun, 11, 1885. [CrossRef] [PubMed] [Google Scholar]
  • Nowak, R., Porter, R.H., Levy, F., Orgeur, P., Schaal, B. (2000). Role of mother-young interactions in the survival of offspring in domestic mammals. Rev Reprod, 5, 153-163. [CrossRef] [PubMed] [Google Scholar]
  • Oettl, L.L., Kelsch, W. (2018). Oxytocin and olfaction. Curr Top Behav Neurosci, 35, 55-75. [CrossRef] [PubMed] [Google Scholar]
  • Oettl, L.L., Ravi, N., Schneider, M., Scheller, M.F., Schneider, P., Mitre, M., da Silva Gouveia, M., Froemke, R.C., Chao, M.V., Young, W.S., Meyer-Lindenberg, A., Grinevich, V., Shusterman, R., Kelsch, W. (2016). Oxytocin enhances social recognition by modulating cortical control of early olfactory processing. Neuron, 90, 609-621. [CrossRef] [PubMed] [Google Scholar]
  • Okabe, S., Nagasawa, M., Mogi, K., Kikusui, T. (2012). Importance of mother-infant communication for social bond formation in mammals. Anim Sci J, 83, 446-452. [CrossRef] [PubMed] [Google Scholar]
  • Onaka, T., Takayanagi, Y. (2021). The oxytocin system and early-life experience-dependent plastic changes. J Neuroendocrinol, 33, e13049. [CrossRef] [Google Scholar]
  • Pedersen, P.E., Williams, C.L., Blass, E.M. (1982). Activation and odor conditioning of suckling behavior in 3-day-old albino rats. J Exp Psychol Anim Behav Process, 8, 329-341. [CrossRef] [PubMed] [Google Scholar]
  • Perkeybile, A.M., Carter, C.S., Wroblewski, K.L., Puglia, M.H., Kenkel, W.M., Lillard, T.S., Karaoli, T., Gregory, S.G., Mohammadi, N., Epstein, L., Bales, K.L., Connelly, J.J. (2019). Early nurture epigenetically tunes the oxytocin receptor. Psychoneuroendocrinology, 99, 128-136. [CrossRef] [PubMed] [Google Scholar]
  • Poisbeau, P., Grinevich, V., Charlet, A. (2018). Oxytocin signaling in pain: Cellular, circuit, system, and behavioral levels. Curr Top Behav Neurosci, 35, 193-211. [CrossRef] [PubMed] [Google Scholar]
  • Quintana, D.S., Guastella, A.J. (2020). An allostatic theory of oxytocin. Trends Cogn Sci, 24, 515-528. [CrossRef] [PubMed] [Google Scholar]
  • Ravi, S., Chandrasekaran, V., Kattimani, S., Subramanian, M. (2016). Maternal and birth risk factors for children screening positive for autism spectrum disorders on M-CHAT-R. Asian J Psychiatr, 22, 17-21. [CrossRef] [PubMed] [Google Scholar]
  • Reichova, A., Schaller, F., Bukatova, S., Bacova, Z., Muscatelli, F., Bakos, J. (2021). The impact of oxytocin on neurite outgrowth and synaptic proteins in Magel2-deficient mice. Dev Neurobiol, 81, 366-388. [CrossRef] [PubMed] [Google Scholar]
  • Rokicki, J., Quintana, D.S., Westlye, L.T. (2022). Linking central gene expression patterns and mental states using transcriptomics and large-scale meta-analysis of fMRI data: A tutorial and example using the oxytocin signaling pathway. Methods Mol Biol, 2384, 127-137. [CrossRef] [PubMed] [Google Scholar]
  • Sala, M., Braida, D., Donzelli, A., Martucci, R., Busnelli, M., Bulgheroni, E., Rubino, T., Parolaro, D., Nishimori, K., Chini, B. (2013). Mice heterozygous for the oxytocin receptor gene (Oxtr(+/−)) show impaired social behaviour but not increased aggression or cognitive inflexibility: evidence of a selective haploinsufficiency gene effect. J Neuroendocrinol, 25, 107-118. [CrossRef] [PubMed] [Google Scholar]
  • Sala, M., Braida, D., Lentini, D., Busnelli, M., Bulgheroni, E., Capurro, V., Finardi, A., Donzelli, A., Pattini, L., Rubino, T., Parolaro, D., Nishimori, K., Parenti, M., Chini, B. (2011). Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry, 69, 875-882. [CrossRef] [PubMed] [Google Scholar]
  • Schaal, B., Coureaud, G., Doucet, S., Delaunay-El Allam, M., Moncomble, A.S., Montigny, D., Patris, B., Holley, A. (2009). Mammary olfactory signalisation in females and odor processing in neonates: ways evolved by rabbits and humans. Behav Brain Res, 200, 346-358. [CrossRef] [PubMed] [Google Scholar]
  • Schaller, F., Watrin, F., Sturny, R., Massacrier, A., Szepetowski, P., Muscatelli, F. (2010). A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum Mol Genet, 19, 4895-4905. [CrossRef] [PubMed] [Google Scholar]
  • Schiavo, J.K., Valtcheva, S., Bair-Marshall, C.J., Song, S.C., Martin, K.A., Froemke, R.C. (2020). Innate and plastic mechanisms for maternal behaviour in auditory cortex. Nature, 587, 426-431. [CrossRef] [PubMed] [Google Scholar]
  • Simpson, E.A., Sclafani, V., Paukner, A., Hamel, A.F., Novak, M.A., Meyer, J.S., Suomi, S.J., Ferrari, P.F. (2014). Inhaled oxytocin increases positive social behaviors in newborn macaques. Proc Natl Acad Sci U S A, 111, 6922-6927. [CrossRef] [PubMed] [Google Scholar]
  • Smearman, E.L., Almli, L.M., Conneely, K.N., Brody, G.H., Sales, J.M., Bradley, B., Ressler, K.J., Smith, A.K. (2016). Oxytocin receptor genetic and epigenetic variations: Association with child abuse and adult psychiatric symptoms. Child Dev, 87, 122-134. [CrossRef] [PubMed] [Google Scholar]
  • Soumier, A., Habart, M., Lio, G., Demily, C., Sirigu, A. (2022). Differential fate between oxytocin and vasopressin cells in the developing mouse brain. iScience, 25, 103655. [CrossRef] [PubMed] [Google Scholar]
  • Sullivan, R.M. (2003). Developing a sense of safety: the neurobiology of neonatal attachment. Ann N Y Acad Sci, 1008, 122-131. [CrossRef] [PubMed] [Google Scholar]
  • Sur, M., Rubenstein, J.L. (2005). Patterning and plasticity of the cerebral cortex. Science, 310, 805-810. [CrossRef] [PubMed] [Google Scholar]
  • Takayanagi, Y., Yoshida, M., Bielsky, I.F., Ross, H.E., Kawamata, M., Onaka, T., Yanagisawa, T., Kimura, T., Matzuk, M.M., Young, L.J., Nishimori, K. (2005). Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci USA, 102, 16096-16101. [CrossRef] [PubMed] [Google Scholar]
  • Takehara, K., Kawahara, S., Munemoto, Y., Kuriyama, H., Mori, H., Mishina, M., Kirino, Y. (2004). The N-methyl-D-aspartate (NMDA)-type glutamate receptor GluRepsilon2 is important for delay and trace eyeblink conditioning in mice. Neurosci Lett, 364, 43-47. [CrossRef] [PubMed] [Google Scholar]
  • Tamborski, S., Mintz, E.M., Caldwell, H.K. (2016). Sex differences in the embryonic development of the central oxytocin system in mice. J Neuroendocrinol, 28. https://doi.org/10.1111/jne.12364. [CrossRef] [PubMed] [Google Scholar]
  • Tang, Y., Benusiglio, D., Lefevre, A., Hilfiger, L., Althammer, F., Bludau, A., Hagiwara, D., Baudon, A., Darbon, P., Schimmer, J., Kirchner, M.K., Roy, R.K., Wang, S., Eliava, M., Wagner, S., Oberhuber, M., Conzelmann, K.K., Schwarz, M., Stern, J.E., Leng, G., Neumann, I.D., Charlet, A., Grinevich, V. (2020). Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nat Neurosci, 23, 1125-1137. [CrossRef] [PubMed] [Google Scholar]
  • Tauber, M., Boulanouar, K., Diene, G., Cabal-Berthoumieu, S., Ehlinger, V., Fichaux-Bourin, P., Molinas, C., Faye, S., Valette, M., Pourrinet, J., Cessans, C., Viaux-Sauvelon S., Bascoul C., Guedeney A., Delhanty P., Geenen V., Martens H., Muscatelli F., Cohen D., Consoli, A., Payoux, P., Arnaud, C., Salles, J.P. (2017). The use of oxytocin to improve feeding and social skills in infants with Prader-Willi syndrome. Pediatrics, e20162976. [PubMed] [Google Scholar]
  • Tribollet, E., Charpak, S., Schmidt, A., Dubois-Dauphin, M., Dreifuss, J.J. (1989). Appearance and transient expression of oxytocin receptors in fetal, infant, and peripubertal rat brain studied by autoradiography and electrophysiology. J Neurosci, 9, 1764-1773. [CrossRef] [PubMed] [Google Scholar]
  • Tribollet, E., Goumaz, M., Raggenbass, M., Dubois-Dauphin, M., Dreifuss, J.J. (1991). Early appearance and transient expression of vasopressin receptors in the brain of rat fetus and infant. An autoradiographical and electrophysiological study. Brain Res Dev Brain Res, 58, 13-24. [CrossRef] [PubMed] [Google Scholar]
  • Tyzio, R., Nardou, R., Ferrari, D.C., Tsintsadze, T., Shahrokhi, A., Eftekhari, S., Khalilov, I., Tsintsadze, V., Brouchoud, C., Chazal, G., Lemonnier, E., Lozovaya, N., Burnashev, N., Ben-Ari, Y. (2014). Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science, 343, 675-679. [CrossRef] [PubMed] [Google Scholar]
  • Unternaehrer, E., Meyer, A.H., Burkhardt, S.C., Dempster, E., Staehli, S., Theill, N., Lieb, R., Meinlschmidt, G. (2015). Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women. Stress, 18, 451-461. [CrossRef] [PubMed] [Google Scholar]
  • Vaidyanathan, R., Hammock, E.A. (2017). Oxytocin receptor dynamics in the brain across development and species. Dev Neurobiol, 77, 143-157. [CrossRef] [PubMed] [Google Scholar]
  • Veenema, A.H. (2012). Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors. Horm Behav, 61, 304-312. [CrossRef] [PubMed] [Google Scholar]
  • Veenema, A.H., Blume, A., Niederle, D., Buwalda, B., Neumann, I.D. (2006). Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. Eur J Neurosci, 24, 1711-1720. [CrossRef] [PubMed] [Google Scholar]
  • Veenema, A.H., Neumann, I.D. (2009). Maternal separation enhances offensive play-fighting, basal corticosterone and hypothalamic vasopressin mRNA expression in juvenile male rats. Psychoneuroendocrinology, 34, 463-467. [CrossRef] [PubMed] [Google Scholar]
  • Wagner, S., Harony-Nicolas, H. (2018). Oxytocin and animal models for autism spectrum disorder. Curr Top Behav Neurosci, 35, 213-237. [CrossRef] [PubMed] [Google Scholar]
  • Wainai, T., Takeuchi, T., Seo, N., Mishina, M. (2001). Regulation of acute nociceptive responses by the NMDA receptor GluRepsilon2 subunit. Neuroreport, 12, 3169-3172. [CrossRef] [PubMed] [Google Scholar]
  • Walker, S.C., Trotter, P.D., Swaney, W.T., Marshall, A., McGlone, F.P. (2017). C-tactile afferents: cutaneous mediators of oxytocin release during affiliative tactile interactions? Neuropeptides, 64, 27-38. [CrossRef] [PubMed] [Google Scholar]
  • Winslow, J.T., Hearn, E.F., Ferguson, J., Young, L.J., Matzuk, M.M., Insel, T.R. (2000). Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Horm Behav, 37, 145-155. [Google Scholar]
  • Wrobel, L.J., Reymond-Marron, I., Dupré, A., Raggenbass, M. (2010). Oxytocin and vasopressin enhance synaptic transmission in the hypoglossal motor nucleus of young rats by acting on distinct receptor types. Neuroscience, 165, 723-735. [CrossRef] [PubMed] [Google Scholar]
  • Yoshimura, R., Kimura, T., Watanabe, D., Kiyama, H. (1996). Differential expression of oxytocin receptor mRNA in the developing rat brain. Neurosci Res, 24, 291-304. [CrossRef] [PubMed] [Google Scholar]
  • Yu, H., Miao, W., Ji, E., Huang, S., Jin, S., Zhu, X., Liu, M.Z., Sun, Y.G., Xu, F., Yu, X. (2022). Social touch-like tactile stimulation activates a tachykinin 1-oxytocin pathway to promote social interactions. Neuron, 110, 1051-1067. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, J., Li, S.J., Miao, W., Zhang, X., Zheng, J.J., Wang, C., Yu, X. (2021). Oxytocin regulates synaptic transmission in the sensory cortices in a developmentally dynamic manner. Front Cell Neurosci, 15, 673439. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, J.B., Chen, L., Lv, Z.M., Niu, X.Y., Shao, C.C., Zhang, C., Pruski, M., Huang, Y., Qi, C.C., Song, N.N., Lang, B., Ding, Y.Q. (2016). Oxytocin is implicated in social memory deficits induced by early sensory deprivation in mice. Mol Brain, 9, 98. [CrossRef] [PubMed] [Google Scholar]
  • Zheng, J.J., Li, S.J., Zhang, X.D., Miao, W.Y., Zhang, D., Yao, H., Yu, X. (2014). Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices. Nat Neurosci, 17, 391-399. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.