Accès gratuit
Numéro |
Biologie Aujourd’hui
Volume 216, Numéro 3-4, 2022
|
|
---|---|---|
Page(s) | 145 - 153 | |
DOI | https://doi.org/10.1051/jbio/2022012 | |
Publié en ligne | 6 février 2023 |
- Als, H., Duffy, F.H., McAnulty, G., Butler, S.C., Lightbody, L., Kosta, S., Weisenfeld, N.I., Robertson, R., Parad, R.B., Ringer, S.A., Blickman, J.G., Zurakowski, D., Warfield, S.K. (2012). NIDCAP improves brain function and structure in preterm infants with severe intrauterine growth restriction. J Perinatol, 32, 797-803. [CrossRef] [PubMed] [Google Scholar]
- Alves, E., Fielder, A., Ghabriel, N., Sawyer, M., Buisman-Pijlman, F.T. (2015). Early social environment affects the endogenous oxytocin system: a review and future directions. Front Endocrinol (Lausanne), 6, 32. [CrossRef] [PubMed] [Google Scholar]
- Amini-Khoei, H., Mohammadi-Asl, A., Amiri, S., Hosseini, M.J., Momeny, M., Hassanipour, M., Rastegar, M., Haj-Mirzaian, A., Mirzaian, A.H., Sanjarimoghaddam, H., Mehr, S.E., Dehpour, A.R. (2017). Oxytocin mitigated the depressive-like behaviors of maternal separation stress through modulating mitochondrial function and neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry, 76, 169-178. [CrossRef] [PubMed] [Google Scholar]
- Ball, G., Aljabar, P., Nongena, P., Kennea, N., Gonzalez-Cinca, N., Falconer, S., Chew, A.T.M., Harper, N., Wurie, J., Rutherford, M.A., Counsell, S.J., Edwards, A.D. (2017). Multimodal image analysis of clinical influences on preterm brain development. Ann Neurol, 82, 233-246. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Barker, D.J., Gluckman, P.D., Godfrey, K.M., Harding, J.E., Owens, J.A., Robinson, J.S. (1993). Fetal nutrition and cardiovascular disease in adult life. Lancet, 341, 938-941. [CrossRef] [PubMed] [Google Scholar]
- Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P.M., Meaney, M.J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci USA, 95, 5335-5340. [CrossRef] [PubMed] [Google Scholar]
- Cardoso, C., Kingdon, D., Ellenbogen, M.A. (2014). A meta-analytic review of the impact of intranasal oxytocin administration on cortisol concentrations during laboratory tasks: moderation by method and mental health. Psychoneuroendocrinology, 49, 161-170. [CrossRef] [PubMed] [Google Scholar]
- Charpak, N., Tessier, R., Ruiz, J.G., Hernandez, J.T., Uriza, F., Villegas, J., Nadeau, L., Mercier, C., Maheu, F., Marin, J., Cortes, D., Gallego, J.M., Maldonado, D. (2017). Twenty-year follow-up of kangaroo mother care versus traditional care. Pediatrics, 139: e 20162063. [CrossRef] [Google Scholar]
- Chawanpaiboon, S., Vogel, J.P., Moller, A.B., Lumbiganon, P., Petzold, M., Hogan, D., Landoulsi, S., Jampathong, N., Kongwattanakul, K., Laopaiboon, M., Lewis, C., Rattanakanokchai, S., Teng, D.N., Thinkhamrop, J., Watananirun, K., Zhang, J., Zhou, W., Gulmezoglu, A.M. (2019). Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health, 7, e37-e46. [CrossRef] [PubMed] [Google Scholar]
- Chhor, V., Le Charpentier, T., Lebon, S., Ore, M.V., Celador, I.L., Josserand, J., Degos, V., Jacotot, E., Hagberg, H., Savman, K., Mallard, C., Gressens, P., Fleiss, B. (2013). Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun, 32, 70-85. [CrossRef] [PubMed] [Google Scholar]
- Chikahisa, S., Sei, H., Morishima, M., Sano, A., Kitaoka, K., Nakaya, Y., Morita, Y. (2006). Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults. Behav Brain Res, 169, 312-319. [CrossRef] [PubMed] [Google Scholar]
- Cismaru, A.L., Gui, L., Vasung, L., Lejeune, F., Barisnikov, K., Truttmann, A., Borradori Tolsa, C., Huppi, P.S. (2016). Altered amygdala development and fear processing in prematurely born infants. Front Neuroanat, 10, 55. [CrossRef] [PubMed] [Google Scholar]
- Dammann, O., Leviton, A. (2004). Inflammatory brain damage in preterm newborns − dry numbers, wet lab, and causal inferences. Early Hum Dev, 79, 1-15. [CrossRef] [PubMed] [Google Scholar]
- Delobel-Ayoub, M., Arnaud, C., White-Koning, M., Casper, C., Pierrat, V., Garel, M., Burguet, A., Roze, J.C., Matis, J., Picaud, J.C., Kaminski, M., Larroque, B., EPIPAGE Study Group. (2009). Behavioral problems and cognitive performance at 5 years of age after very preterm birth: the EPIPAGE Study. Pediatrics, 123, 1485-1492. [CrossRef] [PubMed] [Google Scholar]
- Feldman, R., Gordon, I., Schneiderman, I., Weisman, O., Zagoory-Sharon, O. (2010). Natural variations in maternal and paternal care are associated with systematic changes in oxytocin following parent-infant contact. Psychoneuroendocrinology, 35, 1133-1141. [CrossRef] [PubMed] [Google Scholar]
- Feldman, R., Weller, A., Zagoory-Sharon, O., Levine, A. (2007). Evidence for a neuroendocrinological foundation of human affiliation: plasma oxytocin levels across pregnancy and the postpartum period predict mother-infant bonding. Psychol Sci, 18, 965-970. [CrossRef] [PubMed] [Google Scholar]
- Fischi-Gomez, E., Vasung, L., Meskaldji, D.E., Lazeyras, F., Borradori-Tolsa, C., Hagmann, P., Barisnikov, K., Thiran, J.P., Huppi, P.S. (2015). Structural brain connectivity in school-age preterm infants provides evidence for impaired networks relevant for higher order cognitive skills and social cognition. Cereb Cortex, 25, 2793-2805. [CrossRef] [PubMed] [Google Scholar]
- Fleiss, B., Gressens, P. (2019). Neuroprotection of the preterm brain. Handb Clin Neurol, 162, 315-328. [CrossRef] [PubMed] [Google Scholar]
- Francis, D.D., Champagne, F.C., Meaney, M.J. (2000). Variations in maternal behaviour are associated with differences in oxytocin receptor levels in the rat. J Neuroendocrinol, 12, 1145-1148. [Google Scholar]
- Fumagalli, M., Lombardi, M., Gressens, P., Verderio, C. (2018). How to reprogram microglia toward beneficial functions. Glia, 66, 2531-2549. [CrossRef] [PubMed] [Google Scholar]
- Gao, Y., Raine, A., Chan, F., Venables, P.H., Mednick, S.A. (2010). Early maternal and paternal bonding, childhood physical abuse and adult psychopathic personality. Psychol Med, 40, 1007-1016. [CrossRef] [PubMed] [Google Scholar]
- Gautier, E.L., Shay, T., Miller, J., Greter, M., Jakubzick, C., Ivanov, S., Helft, J., Chow, A., Elpek, K.G., Gordonov, S., Mazloom, A.R., Ma’ayan, A., Chua, W.J., Hansen, T.H., Turley, S.J., Merad, M., Randolph, G.J., Immunological Genome Consortium. (2012). Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol, 13, 1118-1128. [CrossRef] [PubMed] [Google Scholar]
- Gomez-Gonzalez, B., Escobar, A. (2010). Prenatal stress alters microglial development and distribution in postnatal rat brain. Acta Neuropathol, 119, 303-315. [CrossRef] [PubMed] [Google Scholar]
- Gui L, Loukas, S., Lazyeras F, Hüppi PS, Meskaldij D.E., Borradori-Tolsa C. (2019). Longitudinal study of neonatal brain tissue volumes in preterm infants and their ability to predict neurodevelopmental outcome. Neuroimage, 185, 728-741. [CrossRef] [PubMed] [Google Scholar]
- Hammock, E.A., Young, L.J. (2006). Oxytocin, vasopressin and pair bonding: implications for autism. Philos Trans R Soc Lond B Biol Sci, 361, 2187-2198. [CrossRef] [PubMed] [Google Scholar]
- Hartig, E.I., Zhu, S., King, B.L., Coffman, J.A. (2016). Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation. Biol Open, 5, 1134-1141. [CrossRef] [PubMed] [Google Scholar]
- Heim, C., Nemeroff, C.B. (1999). The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry, 46, 1509-1522. [CrossRef] [PubMed] [Google Scholar]
- Hellstrom Erkenstam, N., Smith, P.L., Fleiss, B., Nair, S., Svedin, P., Wang, W., Bostrom, M., Gressens, P., Hagberg, H., Brown, K.L., Savman, K., Mallard, C. (2016). Temporal characterization of microglia/macrophage phenotypes in a mouse model of neonatal hypoxic-ischemic brain injury. Front Cell Neurosci, 10, 286. [CrossRef] [PubMed] [Google Scholar]
- Hellwig, S., Heinrich, A., Biber, K. (2013). The brain’s best friend: microglial neurotoxicity revisited. Front Cell Neurosci, 7, 71. [CrossRef] [PubMed] [Google Scholar]
- Herd, M., Whittingham, K., Sanders, M., Colditz, P., Boyd, R.N. (2014). Efficacy of preventative parenting interventions for parents of preterm infants on later child behavior: a systematic review and meta-analysis. Infant Ment Health J, 35, 630-641. [CrossRef] [PubMed] [Google Scholar]
- Hoogland, I.C., Houbolt, C., van Westerloo, D.J., van Gool, W.A., van de Beek, D. (2015). Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation, 12, 114. [CrossRef] [PubMed] [Google Scholar]
- Jurek, B., Slattery, D.A., Hiraoka, Y., Liu, Y., Nishimori, K., Aguilera, G., Neumann, I.D., van den Burg, E.H. (2015). Oxytocin regulates stress-induced Crf gene transcription through CREB-regulated transcription coactivator 3.J Neurosci, 35, 12248-12260. [CrossRef] [PubMed] [Google Scholar]
- Juul, S.E., Comstock, B.A., Wadhawan, R., Mayock, D.E., Courtney, S.E., Robinson, T., Ahmad, K.A., Bendel-Stenzel, E., Baserga, M., LaGamma, E.F., Downey, L.C., Rao, R., Fahim, N., Lampland, A., Frantz Iii, I.D., Khan, J.Y., Weiss, M., Gilmore, M.M., Ohls, R.K., Srinivasan, N., Perez, J.E., McKay, V., Vu, P.T., Lowe, J., Kuban, K., O’Shea, T.M., Hartman, A.L., Heagerty, P.J., PENUT Trial Consortium. (2020). A randomized trial of erythropoietin for neuroprotection in preterm infants. N Engl J Med, 382, 233-243. [CrossRef] [PubMed] [Google Scholar]
- Kalpakidou, A.K., Allin, M.P., Walshe, M., Giampietro, V., McGuire, P.K., Rifkin, L., Murray, R.M., Nosarti, C. (2014). Functional neuroanatomy of executive function after neonatal brain injury in adults who were born very preterm. PLoS One, 9, e113975. [CrossRef] [PubMed] [Google Scholar]
- Karelina, K., Stuller, K.A., Jarrett, B., Zhang, N., Wells, J., Norman, G.J., DeVries, A.C. (2011). Oxytocin mediates social neuroprotection after cerebral ischemia. Stroke, 42, 3606-3611. [CrossRef] [PubMed] [Google Scholar]
- Keech, B., Crowe, S., Hocking, D.R. (2018). Intranasal oxytocin, social cognition and neurodevelopmental disorders: A meta-analysis. Psychoneuroendocrinology, 87, 9-19. [CrossRef] [PubMed] [Google Scholar]
- Langerock, N., van Hanswijck de Jonge, L., BickleGraz, M., Huppi, P.S., Borradori Tolsa, C., Barisnikov, K. (2013). Emotional reactivity at 12 months in very preterm infants born at <29 weeks of gestation. Infant Behav Dev, 36, 289-297. [CrossRef] [PubMed] [Google Scholar]
- Lee, A.S., Azmitia, E.C., Whitaker-Azmitia, P.M. (2017). Developmental microglial priming in postmortem autism spectrum disorder temporal cortex. Brain Behav Immun, 62, 193-202. [CrossRef] [PubMed] [Google Scholar]
- Lejeune, F., Reveillon, M., Monnier, M., Huppi, P.S., Borradori Tolsa, C., Barisnikov, K. (2016). Social reasoning abilities in preterm and full-term children aged 5- 7 years. Early Hum Dev, 103, 49-54. [CrossRef] [PubMed] [Google Scholar]
- Liu, D., Diorio, J., Day, J.C., Francis, D.D., Meaney, M.J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci, 3, 799-806. [CrossRef] [PubMed] [Google Scholar]
- Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P.M., Meaney, M.J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659-1662. [CrossRef] [PubMed] [Google Scholar]
- Loewy, J., Stewart, K., Dassler, A.M., Telsey, A., Homel, P. (2013). The effects of music therapy on vital signs, feeding, and sleep in premature infants. Pediatrics, 131, 902-918. [CrossRef] [PubMed] [Google Scholar]
- Lordier, L., Loukas, S., Grouiller, F., Vollenweider, A., Vasung, L., Meskaldij, D.E., Lejeune, F., Pittet, M.P., Borradori-Tolsa, C., Lazeyras, F., Grandjean, D., Van De Ville, D., Huppi, P.S. (2019a). Music processing in preterm and full-term newborns: A psychophysiological interaction (PPI) approach in neonatal fMRI. Neuroimage, 185, 857-864. [CrossRef] [PubMed] [Google Scholar]
- Lordier, L., Meskaldji, D.E., Grouiller, F., Pittet, M.P., Vollenweider, A., Vasung, L., Borradori-Tolsa, C., Lazeyras, F., Grandjean, D., Van De Ville, D., Huppi, P.S. (2019b). Music in premature infants enhances high-level cognitive brain networks. Proc Natl Acad Sci USA, 116, 12103-12108. [CrossRef] [PubMed] [Google Scholar]
- Mairesse, J., Gatta, E., Reynaert, M.L., Marrocco, J., Morley-Fletcher, S., Soichot, M., Deruyter, L., Camp, G.V., Bouwalerh, H., Fagioli, F., Pittaluga, A., Allorge, D., Nicoletti, F., Maccari, S. (2015). Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats. Psychoneuroendocrinology, 62, 36-46. [CrossRef] [PubMed] [Google Scholar]
- Mairesse, J., Zinni, M., Pansiot, J., Hassan-Abdi, R., Demene, C., Colella, M., Charriaut-Marlangue, C., Rideau Batista Novais, A., Tanter, M., Maccari, S., Gressens, P., Vaiman, D., Soussi-Yanicostas, N., Baud, O. (2019). Oxytocin receptor agonist reduces perinatal brain damage by targeting microglia. Glia, 67, 345-359. [CrossRef] [PubMed] [Google Scholar]
- Mallard, C., Hagberg, H. (2007). Inflammation-induced preconditioning in the immature brain. Semin Fetal Neonatal Med, 12, 280-286. [CrossRef] [PubMed] [Google Scholar]
- Meagher, M.W., Sieve, A.N., Johnson, R.R., Satterlee, D., Belyavskyi, M., Mi, W., Prentice, T.W., Welsh, T.H., Jr., Welsh, C.J. (2010). Neonatal maternal separation alters immune, endocrine, and behavioral responses to acute Theiler’s virus infection in adult mice. Behav Genet, 40, 233-249. [CrossRef] [PubMed] [Google Scholar]
- Miron, V.E., Boyd, A., Zhao, J.W., Yuen, T.J., Ruckh, J.M., Shadrach, J.L., van Wijngaarden, P., Wagers, A.J., Williams, A., Franklin, R.J.M., Ffrench-Constant, C. (2013). M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci, 16, 1211-1218. [CrossRef] [PubMed] [Google Scholar]
- Modi, M.E., Young, L.J. (2012). The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies. Horm Behav, 61, 340-350. [CrossRef] [PubMed] [Google Scholar]
- Moriceau, S., Shionoya, K., Jakubs, K., Sullivan, R.M. (2009). Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine. J Neurosci, 29, 15745-15755. [CrossRef] [PubMed] [Google Scholar]
- Munoz-Moreno, E., Fischi-Gomez, E., Batalle, D., Borradori-Tolsa, C., Eixarch, E., Thiran, J.P., Gratacos, E., Huppi, P.S. (2016). Structural brain network reorganization and social cognition related to adverse perinatal condition from infancy to early adolescence. Front Neurosci, 10, 560. [CrossRef] [PubMed] [Google Scholar]
- Natalucci, G., Latal, B., Koller, B., Ruegger, C., Sick, B., Held, L., Bucher, H.U., Fauchere, J.C., Swiss EPO Neuroprotection Trial Group. (2016). Effect of early prophylactic high-dose recombinant human erythropoietin in very preterm infants on neurodevelopmental outcome at 2 years: A randomized clinical trial. JAMA, 315, 2079-2085. [CrossRef] [PubMed] [Google Scholar]
- Neumann, I.D., Wigger, A., Torner, L., Holsboer, F., Landgraf, R. (2000). Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: partial action within the paraventricular nucleus. J Neuroendocrinol, 12, 235-243. [Google Scholar]
- Ooishi, Y., Mukai, H., Watanabe, K., Kawato, S., Kashino, M. (2017). Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music. PLoS One, 12, e 0189075. [Google Scholar]
- Pansiot, J., Pham, H., Dalous, J., Chevenne, D., Colella, M., Schwendimann, L., Fafouri, A., Mairesse, J., Moretti, R., Schang, A.L., Charriaut-Marlangue, C., Gressens, P., Baud, O. (2016). Glial response to 17beta-estradiol in neonatal rats with excitotoxic brain injury. Exp Neurol, 282, 56-65. [CrossRef] [PubMed] [Google Scholar]
- Pedersen, C.A., Ascher, J.A., Monroe, Y.L., Prange, A.J., Jr. (1982). Oxytocin induces maternal behavior in virgin female rats. Science, 216, 648-650. [CrossRef] [PubMed] [Google Scholar]
- Penagarikano, O., Lazaro, M.T., Lu, X.H., Gordon, A., Dong, H., Lam, H.A., Peles, E., Maidment, N.T., Murphy, N.P., Yang, X.W., Golshani, P., Geschwind, D.H. (2015). Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci Transl Med, 7, 271-278. [CrossRef] [Google Scholar]
- Pineda, R., Wallendorf, M., Smith, J. (2020). A pilot study demonstrating the impact of the supporting and enhancing NICU sensory experiences (SENSE) program on the mother and infant. Early Hum Dev, 144, 105000. [CrossRef] [PubMed] [Google Scholar]
- Pocock, J.M., Kettenmann, H. (2007). Neurotransmitter receptors on microglia. Trends Neurosci, 30, 527-535. [CrossRef] [PubMed] [Google Scholar]
- Pont-Lezica, L., Bechade, C., Belarif-Cantaut, Y., Pascual, O., Bessis, A. (2011). Physiological roles of microglia during development. J Neurochem, 119, 901-908. [CrossRef] [PubMed] [Google Scholar]
- Rajamani, K.T., Wagner, S., Grinevich, V., Harony-Nicolas, H. (2018). Oxytocin as a modulator of synaptic plasticity: implications for neurodevelopmental disorders. Front Synaptic Neurosci, 10, 17. [CrossRef] [PubMed] [Google Scholar]
- Reveillon, M., Borradori Tolsa, C., Monnier, M., Huppi, P.S., Barisnikov, K. (2016). Response inhibition difficulties in preterm children aged 9-12 years: Relations with emotion and behavior. Child Neuropsychol, 22, 420-442. [CrossRef] [PubMed] [Google Scholar]
- Rideau Batista Novais, A., Pham, H., Van de Looij, Y., Bernal, M., Mairesse, J., Zana-Taieb, E., Colella, M., Jarreau, P.H., Pansiot, J., Dumont, F., Sizonenko, S., Gressens, P., Charriaut-Marlangue, C., Tanter, M., Demene, C., Vaiman, D., Baud, O. (2016). Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction. Glia, 64, 2306-2320. [CrossRef] [PubMed] [Google Scholar]
- Rivest, S. (2009). Regulation of innate immune responses in the brain. Nat Rev Immunol, 9, 429-439. [CrossRef] [PubMed] [Google Scholar]
- Robertson, N.J., Faulkner, S., Fleiss, B., Bainbridge, A., Andorka, C., Price, D., Powell, E., Lecky-Thompson, L., Thei, L., Chandrasekaran, M., Hristova, M., Cady, E.B., Gressens, P., Golay, X., Raivich, G. (2013). Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain, 136, 90-105. [CrossRef] [PubMed] [Google Scholar]
- Ropars, S., Tessier, R., Charpak, N., Uriza, L.F. (2018). The long-term effects of the Kangaroo Mother Care intervention on cognitive functioning: Results from a longitudinal study. Dev Neuropsychol, 43, 82-91. [CrossRef] [PubMed] [Google Scholar]
- Roque, A., Ochoa-Zarzosa, A., Torner, L. (2016). Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain Behav Immun, 55, 39-48. [CrossRef] [PubMed] [Google Scholar]
- Ruegger, C.M., Davis, P.G., Cheong, J.L. (2018). Xenon as an adjuvant to therapeutic hypothermia in near-term and term newborns with hypoxic-ischaemic encephalopathy. Cochrane Database Syst Rev, 8, CD012753. [PubMed] [Google Scholar]
- Salter, M.W., Stevens, B. (2017). Microglia emerge as central players in brain disease. Nat Med, 23, 1018-1027. [CrossRef] [PubMed] [Google Scholar]
- Seckl, J.R. (1998). Physiologic programming of the fetus. Clin Perinatol, 25, 939-962. [CrossRef] [PubMed] [Google Scholar]
- Shepherd, E., Salam, R.A., Middleton, P., Makrides, M., McIntyre, S., Badawi, N., Crowther, C.A. (2017). Antenatal and intrapartum interventions for preventing cerebral palsy: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev, 8, CD012077. [PubMed] [Google Scholar]
- Slusarczyk, J., Trojan, E., Glombik, K., Budziszewska, B., Kubera, M., Lason, W., Popiolek-Barczyk, K., Mika, J., Wedzony, K., Basta-Kaim, A. (2015). Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci, 9, 82. [CrossRef] [PubMed] [Google Scholar]
- Sorrells, S.F., Sapolsky, R.M. (2007). An inflammatory review of glucocorticoid actions in the CNS. Brain Behav Immun, 21, 259-272. [CrossRef] [PubMed] [Google Scholar]
- Sylva, K., Stein, A., Leach, P., Barnes, J., Malmberg, L.E., the FCCC-team. (2011). Effects of early child-care on cognition, language, and task-related behaviours at 18 months: an English study. Br J Dev Psychol, 29, 18-45. [CrossRef] [PubMed] [Google Scholar]
- Theofanopoulou, C., Boeckx, C., Jarvis, E.D. (2017). A hypothesis on a role of oxytocin in the social mechanisms of speech and vocal learning. Proc R Soc Biol B, 284, 20170988. [CrossRef] [PubMed] [Google Scholar]
- Tops, M. (2010). Oxytocin: envy or engagement in others? Biol Psychiatry, 67, e5-e6. [CrossRef] [PubMed] [Google Scholar]
- Twilhaar, E.S., Wade, R.M., de Kieviet, J.F., van Goudoever, J.B., van Elburg, R.M., Oosterlaan, J. (2018). Cognitive outcomes of children born extremely or very preterm since the 1990s and associated risk factors: A meta-analysis and meta-regression. JAMA Pediatr, 172, 361-367. [CrossRef] [PubMed] [Google Scholar]
- Tyzio, R., Cossart, R., Khalilov, I., Minlebaev, M., Hubner, C.A., Represa, A., Ben-Ari, Y., Khazipov, R. (2006). Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science, 314, 1788-1792. [CrossRef] [PubMed] [Google Scholar]
- Tyzio, R., Nardou, R., Ferrari, D.C., Tsintsadze, T., Shahrokhi, A., Eftekhari, S., Khalilov, I., Tsintsadze, V., Brouchoud, C., Chazal, G., Lemonnier, E., Lozovaya, N., Burnashev, N., Ben-Ari, Y. (2014). Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science, 343, 675-679. [CrossRef] [PubMed] [Google Scholar]
- Urben, S., Van Hanswijck De Jonge, L., Barisnikov, K., Pizzo, R., Monnier, M., Lazeyras, F., Borradori Tolsa, C., Huppi, P.S. (2017). Gestational age and gender influence on executive control and its related neural structures in preterm-born children at 6 years of age. Child Neuropsychol, 23, 188-207. [CrossRef] [PubMed] [Google Scholar]
- Volpe, J.J. (2008). Postnatal sepsis, necrotizing entercolitis, and the critical role of systemic inflammation in white matter injury in premature infants. J Pediatr, 153, 160-163. [CrossRef] [PubMed] [Google Scholar]
- Volpe, J.J. (2011). Systemic inflammation, oligodendroglial maturation, and the encephalopathy of prematurity. Ann Neurol, 70, 525-529. [CrossRef] [PubMed] [Google Scholar]
- Windle, R.J., Kershaw, Y.M., Shanks, N., Wood, S.A., Lightman, S.L., Ingram, C.D. (2004). Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. J Neurosci, 24, 2974-2982. [CrossRef] [PubMed] [Google Scholar]
- Windle, R.J., Shanks, N., Lightman, S.L., Ingram, C.D. (1997). Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology, 138, 2829-2834. [CrossRef] [PubMed] [Google Scholar]
- Witt, A., Theurel, A., Tolsa, C.B., Lejeune, F., Fernandes, L., de Jonge, L., Monnier, M., Bickle Graz, M., Barisnikov, K., Gentaz, E., Huppi, P.S. (2014). Emotional and effortful control abilities in 42-month-old very preterm and full-term children. Early Hum Dev, 90, 565-569. [CrossRef] [PubMed] [Google Scholar]
- Wu, H.C., Shen, C.M., Wu, Y.Y., Yuh, Y.S., Kua, K.E. (2009). Subclinical histologic chorioamnionitis and related clinical and laboratory parameters in preterm deliveries. Pediatr Neonatol, 50, 217-221. [CrossRef] [PubMed] [Google Scholar]
- Young, L.J., Barrett, C.E. (2015). Neuroscience. Can oxytocin treat autism? Science, 347, 825-826. [CrossRef] [PubMed] [Google Scholar]
- Yuan, L., Liu, S., Bai, X., Gao, Y., Liu, G., Wang, X., Liu, D., Li, T., Hao, A., Wang, Z. (2016). Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J Neuroinflammation, 13, 77. [CrossRef] [PubMed] [Google Scholar]
- Zeitlin, J., Mohangoo, A.D., Delnord, M., Cuttini, M., EURO-PERISTAT Scientific Committee. (2013). The second European Perinatal Health Report: documenting changes over 6 years in the health of mothers and babies in Europe. J Epidemiol Community Health, 67, 983-985. [CrossRef] [PubMed] [Google Scholar]
- Zhang, T.Y., Labonte, B., Wen, X.L., Turecki, G., Meaney, M.J. (2013). Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology, 38, 111-123. [CrossRef] [PubMed] [Google Scholar]
- Zhu, Y., Wang, Y., Yao, R., Hao, T., Cao, J., Huang, H., Wang, L., Wu, Y. (2017). Enhanced neuroinflammation mediated by DNA methylation of the glucocorticoid receptor triggers cognitive dysfunction after sevoflurane anesthesia in adult rats subjected to maternal separation during the neonatal period. J Neuroinflammation, 14, 6. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.