Accès gratuit
Numéro |
Biologie Aujourd’hui
Volume 216, Numéro 3-4, 2022
|
|
---|---|---|
Page(s) | 155 - 165 | |
DOI | https://doi.org/10.1051/jbio/2022022 | |
Publié en ligne | 6 février 2023 |
- Alanazi, M.M., Havranek, T., Bakos, J., Cubeddu, L.X., Castejon, A.M. (2020). Cell proliferation and anti-oxidant effects of oxytocin and oxytocin receptors: role of extracellular signal-regulating kinase in astrocyte-like cells. Endocr Regul, 54, 172-182. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Althammer, F., Eliava, M., Grinevich, V. (2021). Central and peripheral release of oxytocin: Relevance of neuroendocrine and neurotransmitter actions for physiology and behavior. Handb Clin Neurol, 180, 25-44. [CrossRef] [PubMed] [Google Scholar]
- Althammer, F., Krause, E.G., de Kloet, A.D., Smith, J., Grinevich, V., Charlet, A., Stern, J.E. (2022a). Identification and three-dimensional reconstruction of oxytocin receptor expressing astrocytes in the rat and mouse brain. STAR Protoc, 3, 101160. [CrossRef] [PubMed] [Google Scholar]
- Althammer, F., Roy, R.K., Lefevre, A., Najjar, R.S., Schoenig, K., Bartsch, D., Eliava, M., Feresin, R., Hammock, E.A.D., Murphy, A.Z., Charlet, A., Grinevich, V., Stern, J.E. (2022b). Altered PVN-to-CA2 hippocampal oxytocin pathway and reduced number of oxytocin-receptor expressing astrocytes in heart failure rats. J Neuroendocrinol, 34, e13166. [PubMed] [Google Scholar]
- Amato, S., Averna, M., Guidolin, D., Pedrazzi, M., Pelassa, S., Capraro, M., Passalacqua, M., Bozzo, M., Gatta, E., Anderlini, D., Maura, G., Agnati, L.F., Cervetto, C., Marcoli, M. (2022). Heterodimer of A2A and oxytocin receptors regulating glutamate release in adult striatal astrocytes. Int J Mol Sci, 23, 2326. [CrossRef] [PubMed] [Google Scholar]
- Anagnostou, E., Soorya, L., Brian, J., Dupuis, A., Mankad, D., Smile, S., Jacob, S. (2014). Intranasal oxytocin in the treatment of autism spectrum disorders: a review of literature and early safety and efficacy data in youth. Brain Res, 1580, 188-198. [CrossRef] [PubMed] [Google Scholar]
- Araque, A., Carmignoto, G., Haydon, P.G., Oliet, S.H., Robitaille, R., Volterra, A. (2014). Gliotransmitters travel in time and space. Neuron, 81, 728-739. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Augusto-Oliveira, M., Arrifano, G.P., Takeda, P.Y., Lopes-Araujo, A., Santos-Sacramento, L., Anthony, D.C., Verkhratsky, A., Crespo-Lopez, M.E. (2020). Astroglia-specific contributions to the regulation of synapses, cognition and behaviour. Neurosci Biobehav Rev, 118, 331-357. [CrossRef] [PubMed] [Google Scholar]
- Bakos, J., Srancikova, A., Havranek, T., Bacova, Z. (2018). Molecular mechanisms of oxytocin signaling at the synaptic connection. Neural Plast, 2018, 4864107. [CrossRef] [Google Scholar]
- Bazargani, N., Attwell, D. (2016). Astrocyte calcium signaling: the third wave. Nat Neurosci, 19, 182-189. [CrossRef] [PubMed] [Google Scholar]
- Brown, C.H., Bains, J.S., Ludwig, M., Stern, J.E. (2013). Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol, 25, 678-710. [CrossRef] [PubMed] [Google Scholar]
- Brown, C.H., Ludwig, M., Tasker, J.G., Stern, J.E. (2020). Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. J Neuroendocrinol, 32, e12856. [CrossRef] [PubMed] [Google Scholar]
- Buijs, R.M. (1983). Vasopressin and oxytocin – Their role in neurotransmission. Pharmacol Ther, 22, 127-141. [CrossRef] [PubMed] [Google Scholar]
- Busnelli, M., Chini, B. (2018). Molecular basis of oxytocin receptor signalling in the brain: What we know and what we need to know. Curr Top Behav Neurosci, 35, 3-29. [CrossRef] [PubMed] [Google Scholar]
- Busnelli, M., Sauliere, A., Manning, M., Bouvier, M., Gales, C., Chini, B. (2012). Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. J Biol Chem, 287, 3617-3629. [CrossRef] [PubMed] [Google Scholar]
- Chatterjee, O., Patil, K., Sahu, A., Gopalakrishnan, L., Mol, P., Advani, J., Mukherjee, S., Christopher, R., Prasad, T.S. (2016). An overview of the oxytocin-oxytocin receptor signaling network. J Cell Commun Signal, 10, 355-360. [CrossRef] [PubMed] [Google Scholar]
- Coyle, J.T., Balu, D., Wolosker, H. (2020). D-Serine, the shape-shifting NMDA receptor co-agonist. Neurochem Res, 45, 1344-1353. [CrossRef] [PubMed] [Google Scholar]
- Dale, H.H. (1906). On some physiological actions of ergot. J Physiol, 34, 163-206. [CrossRef] [PubMed] [Google Scholar]
- Di Scala-Guénot, D., Strosser, M.T. (1992). Oxytocin receptors on cultured astroglial cells. Kinetic and pharmacological characterization of oxytocin-binding sites on intact hypothalamic and hippocampic cells from foetal rat brain. Biochem J, 284, 491-497. [CrossRef] [PubMed] [Google Scholar]
- Di Scala-Guénot, D., Mouginot, D., Strosser, M.T. (1994). Increase of intracellular calcium induced by oxytocin in hypothalamic cultured astrocytes. Glia, 11, 269-276. [CrossRef] [PubMed] [Google Scholar]
- Domes, G., Heinrichs, M., Kumbier, E., Grossmann, A., Hauenstein, K., Herpertz, S.C. (2013). Effects of intranasal oxytocin on the neural basis of face processing in autism spectrum disorder. Biol Psychiatry, 74, 164-171. [CrossRef] [PubMed] [Google Scholar]
- Eliava, M., Melchior, M., Knobloch-Bollmann, H.S., Wahis, J., da Silva Gouveia, M., Tang, Y., Ciobanu, A.C., Triana del Rio, R., Roth, L.C., Althammer, F., Chavant, V., Goumon, Y., Gruber, T., Petit-Demoulière, N., Busnelli, M., Chini, B., Tan, L.L., Mitre, M., Froemke, R.C., Chao, M.V., Giese, G., Sprengel, R., Kuner, R., Poisbeau, P., Seeburg, P.H., Stoop, R., Charlet, A., Grinevich, V. (2016). A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron, 89, 1291-1304. [CrossRef] [PubMed] [Google Scholar]
- Evrard, M.E., Strosser, M.T., Di Scala-Guénot, D. (1997). Pharmacological characterization of oxytocin-binding sites in rat spinal cord membranes: comparison with embryonic cultured spinal cord neurones and astrocytes. J Neuroendocrinol, 9, 553-560. [CrossRef] [PubMed] [Google Scholar]
- Fiacco, T.A., McCarthy, K.D. (2018). Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J Neurosci, 38, 3-13. [CrossRef] [PubMed] [Google Scholar]
- Foo, L.C., Allen, N.J., Bushong, E.A., Ventura, P.B., Chung, W.S., Zhou, L., Cahoy, J.D., Daneman, R., Zong, H., Ellisman, M.H., Barres, B.A. (2011). Development of a method for the purification and culture of rodent astrocytes. Neuron, 71, 799-811. [CrossRef] [PubMed] [Google Scholar]
- Ford, C.L., Young, L.J. (2022). Refining oxytocin therapy for autism: context is key. Nat Rev Neurol, 18, 67-68. [CrossRef] [PubMed] [Google Scholar]
- Frijling, J.L., (2017). Preventing PTSD with oxytocin: effects of oxytocin administration on fear neurocircuitry and PTSD symptom development in recently trauma-exposed individuals. Eur J Psychotraumatol, 8, 1302652. [CrossRef] [PubMed] [Google Scholar]
- Frijling, J.L., van Zuiden, M., Koch, S.B., Nawijn, L., Goslings, J.C., Luitse, J.S., Biesheuvel, T.H., Honig, A., Bakker, F.C., Denys, D., Veltman, D.J., Olff, M. (2014). Efficacy of oxytocin administration early after psychotrauma in preventing the development of PTSD: study protocol of a randomized controlled trial. BMC Psychiatry, 14, 92. [CrossRef] [PubMed] [Google Scholar]
- Froemke, R.C., Young, L.J. (2021). Oxytocin, neural plasticity, and social behavior. Annu Rev Neurosci, 44, 359-381. [CrossRef] [PubMed] [Google Scholar]
- Fuxe, K., Borroto-Escuela, D.O., Romero-Fernandez, W., Ciruela, F., Manger, P., Leo, G., Diaz-Cabiale, Z., Agnati, L.F. (2012). On the role of volume transmission and receptor-receptor interactions in social behaviour: focus on central catecholamine and oxytocin neurons. Brain Res, 1476, 119-131. [CrossRef] [PubMed] [Google Scholar]
- Gautvik, K.M., de Lecea, L., Gautvik, V.T., Danielson, P.E., Tranque, P., Dopazo, A., Bloom, F.E., Sutcliffe, J.G. (1996). Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction. Proc Natl Acad Sci USA, 93, 8733-8738. [CrossRef] [PubMed] [Google Scholar]
- Gimpl, G., Fahrenholz, F., (2001). The oxytocin receptor system: structure, function, and regulation. Physiol Rev, 81, 629-683. [CrossRef] [PubMed] [Google Scholar]
- Gordon, I., Vander Wyk, B.C., Bennett, R.H., Cordeaux, C., Lucas, M.V., Eilbott, J.A., Zagoory-Sharon, O., Leckman, J.F., Feldman, R., Pelphrey, K.A. (2013). Oxytocin enhances brain function in children with autism. Proc Natl Acad Sci USA, 110, 20953-20958. [CrossRef] [PubMed] [Google Scholar]
- Gould, B.R., Zingg, H.H. (2003). Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor-LacZ reporter mouse. Neuroscience, 122, 155-167. [CrossRef] [PubMed] [Google Scholar]
- Grandes, P., Kq, K.Q.D., Morino, P., Cuenod, M., Streit, P. (1991). Homocysteate, an excitatory transmitter candidate localized in glia. Eur J Neurosci, 3, 1370-1373. [CrossRef] [PubMed] [Google Scholar]
- Gravati, M., Busnelli, M., Bulgheroni, E., Reversi, A., Spaiardi, P., Parenti, M., Toselli, M., Chini, B. (2010). Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor. J Neurochem, 114, 1424-1435. [PubMed] [Google Scholar]
- Grinevich, V., Knobloch-Bollmann, H.S., Eliava, M., Busnelli, M., Chini, B. (2016). Assembling the puzzle: Pathways of oxytocin signaling in the brain. Biol Psychiatry, 79, 155-164. [CrossRef] [PubMed] [Google Scholar]
- Grinevich, V., Neumann, I.D. (2020). Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Mol Psychiatry, 26, 265-279. [Google Scholar]
- Guastella, A.J., Einfeld, S.L., Gray, K.M., Rinehart, N.J., Tonge, B.J., Lambert, T.J., Hickie, I.B., (2010). Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry, 67, 692-694. [CrossRef] [PubMed] [Google Scholar]
- Gwee, P.C., Tay, B.H., Brenner, S., Venkatesh, B. (2009). Characterization of the neurohypophysial hormone gene loci in elephant shark and the Japanese lamprey: Origin of the vertebrate neurohypophysial hormone genes. BMC Evol Biol, 9, 47. [CrossRef] [PubMed] [Google Scholar]
- Hasan, M.T., Althammer, F., Silva da Gouveia, M., Goyon, S., Eliava, M., Lefevre, A., Kerspern, D., Schimmer, J., Raftogianni, A., Wahis, J., Knobloch-Bollmann, H.S., Tang, Y., Liu, X., Jain, A., Chavant, V., Goumon, Y., Weislogel, J.M., Hurlemann, R., Herpertz, S.C., Pitzer, C., Darbon, P., Dogbevia, G.K., Bertocchi, I., Larkum, M.E., Sprengel, R., Bading, H., Charlet, A., Grinevich, V. (2019). A fear memory engram and its plasticity in the hypothalamic oxytocin system. Neuron, 103, 133-146. [CrossRef] [PubMed] [Google Scholar]
- Hatton, G.I., Perlmutter, L.S., Salm, A.K., Tweedle, C.D. (1984). Dynamic neuronal-glial interactions in hypothalamus and pituitary: implications for control of hormone synthesis and release. Peptides, 5(Suppl 1), 121-138. [CrossRef] [PubMed] [Google Scholar]
- Havranek, T., Lestanova, Z., Mravec, B., Strbak, V., Bakos, J., Bacova, Z. (2017). Oxytocin modulates expression of neuron and glial markers in the rat hippocampus. Folia Biol (Praha), 63, 91-97. [PubMed] [Google Scholar]
- Henneberger, C., Bard, L., Panatier, A., Reynolds, J.P., Kopach, O., Medvedev, N.I., Minge, D., Herde, M.K., Anders, S., Kraev, I., Heller, J.P., Rama, S., Zheng, K., Jensen, T.P., Sanchez-Romero, I., Jackson, C.J., Janovjak, H., Ottersen, O.P., Nagelhus, E.A., Oliet, S.H.R., Stewart, M.G., Nagerl, U.V., Rusakov, D.A. (2020). LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia. Neuron, 108, 919-936. [CrossRef] [PubMed] [Google Scholar]
- Hoare, S., Copland, J.A., Strakova, Z., Ives, K., Jeng, Y.J., Hellmich, M.R., Soloff, M.S. (1999). The proximal portion of the COOH terminus of the oxytocin receptor is required for coupling to G(q), but not G(i). Independent mechanisms for elevating intracellular calcium concentrations from intracellular stores. J Biol Chem, 274, 28682-28689. [CrossRef] [PubMed] [Google Scholar]
- Hu, N.Y., Chen, Y.T., Wang, Q., Jie, W., Liu, Y.S., You, Q.L., Li, Z.L., Li, X.W., Reibel, S., Pfrieger, F.W., Yang, J.M., Gao, T.M. (2020). Expression patterns of inducible Cre recombinase driven by differential astrocyte-specific promoters in transgenic mouse lines. Neurosci Bull, 36, 530-544. [CrossRef] [PubMed] [Google Scholar]
- Inoue, T., Yamakage, H., Tanaka, M., Kusakabe, T., Shimatsu, A., Satoh-Asahara, N. (2019). Oxytocin suppresses inflammatory responses induced by lipopolysaccharide through inhibition of the eIF-2-ATF4 pathway in mouse microglia. Cells, 8, 527. [CrossRef] [PubMed] [Google Scholar]
- Insel, T.R., Young, L.J., 2001. The neurobiology of attachment. Nat Rev Neurosci, 2, 129-136. [CrossRef] [PubMed] [Google Scholar]
- Ivanov, A.D., Mothet, J.P. (2019). The plastic D-serine signaling pathway: Sliding from neurons to glia and vice-versa. Neurosci Lett, 689, 21-25. [CrossRef] [PubMed] [Google Scholar]
- Jurek, B., Neumann, I.D. (2018). The oxytocin receptor: From intracellular signaling to behavior. Physiol Rev, 98, 1805-1908. [CrossRef] [PubMed] [Google Scholar]
- Knobloch, H.S., Charlet, A., Hoffmann, L.C., Eliava, M., Khrulev, S., Cetin, A.H., Osten, P., Schwarz, M.K., Seeburg, P.H., Stoop, R., Grinevich, V. (2012). Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron, 73, 553-566. [CrossRef] [PubMed] [Google Scholar]
- Kuo, J., Hariri, O.R., Micevych, P. (2009). An interaction of oxytocin receptors with metabotropic glutamate receptors in hypothalamic astrocytes. J Neuroendocrinol, 21, 1001-1006. [CrossRef] [PubMed] [Google Scholar]
- Landgraf, R., Neumann, I.D. (2004). Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol, 25, 150-176. [CrossRef] [PubMed] [Google Scholar]
- Langle, S.L., Poulain, D.A., Theodosis, D.T. (2003). Induction of rapid, activity-dependent neuronal-glial remodelling in the adult rat hypothalamus in vitro. Eur J Neurosci, 18, 206-214. [CrossRef] [PubMed] [Google Scholar]
- Lee, H.J., Macbeth, A.H., Pagani, J.H., Young, W.S., 3rd. (2009). Oxytocin: the great facilitator of life. Prog Neurobiol, 88, 127-151. [PubMed] [Google Scholar]
- Leng, G., Ludwig, M. (2008). Neurotransmitters and peptides: whispered secrets and public announcements. J Physiol, 586, 5625-5632. [Google Scholar]
- Ludwig, M., Leng, G. (2006). Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci, 7, 126-136. [CrossRef] [PubMed] [Google Scholar]
- Ludwig, M., Stern, J. (2015). Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philos Trans R Soc Lond B Biol Sci, 370(1762), 20140182. [CrossRef] [PubMed] [Google Scholar]
- Maicas-Royo, J., Leng, G., MacGregor, D.J. (2018). A predictive, quantitative model of spiking activity and stimulus-secretion coupling in oxytocin neurons. Endocrinology, 159, 1433-1452. [CrossRef] [PubMed] [Google Scholar]
- Mairesse, J., Zinni, M., Pansiot, J., Hassan-Abdi, R., Demene, C., Colella, M., Charriaut-Marlangue, C., Rideau Batista Novais, A., Tanter, M., Maccari, S., Gressens, P., Vaiman, D., Soussi-Yanicostas, N., Baud, O. (2019). Oxytocin receptor agonist reduces perinatal brain damage by targeting microglia. Glia, 67, 345-359. [CrossRef] [PubMed] [Google Scholar]
- McKay, E.C., Beck, J.S., Khoo, S.K., Dykema, K.J., Cottingham, S.L., Winn, M.E., Paulson, H.L., Lieberman, A.P., Counts, S.E. (2019). Peri-infarct upregulation of the oxytocin receptor in vascular dementia. J Neuropathol Exp Neurol, 78, 436-452. [CrossRef] [PubMed] [Google Scholar]
- Meyer-Lindenberg, A., Domes, G., Kirsch, P., Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci, 12, 524-538. [CrossRef] [PubMed] [Google Scholar]
- Mitre, M., Marlin, B.J., Schiavo, J.K., Morina, E., Norden, S.E., Hackett, T.A., Aoki, C.J., Chao, M.V., Froemke, R.C. (2016). A distributed network for social cognition enriched for oxytocin receptors. J Neurosci, 36, 2517-2535. [CrossRef] [PubMed] [Google Scholar]
- Mitre, M., Minder, J., Morina, E.X., Chao, M.V., Froemke, R.C. (2018). Oxytocin modulation of neural circuits. Curr Top Behav Neurosci, 35, 31-53. [CrossRef] [PubMed] [Google Scholar]
- Newmaster, K.T., Nolan, Z.T., Chon, U., Vanselow, D.J., Weit, A.R., Tabbaa, M., Hidema, S., Nishimori, K., Hammock, E.A.D., Kim, Y., (2020). Quantitative cellular-resolution map of the oxytocin receptor in postnatally developing mouse brains. Nat Commun, 11, 1885. [CrossRef] [PubMed] [Google Scholar]
- Olff, M., Langeland, W., Witteveen, A., Denys, D. (2010). A psychobiological rationale for oxytocin in the treatment of posttraumatic stress disorder. CNS Spectr, 15, 522-530. [CrossRef] [PubMed] [Google Scholar]
- Oliet, S.H., Panatier, A., Piet, R., Mothet, J.P., Poulain, D.A., Theodosis, D.T. (2008). Neuron-glia interactions in the rat supraoptic nucleus. Prog Brain Res, 170, 109-117. [CrossRef] [PubMed] [Google Scholar]
- Owen, S.F., Tuncdemir, S.N., Bader, P.L., Tirko, N.N., Fishell, G., Tsien, R.W. (2013). Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature, 500, 458-462. [CrossRef] [PubMed] [Google Scholar]
- Palanisamy, A., Kannappan, R., Xu, Z., Martino, A., Friese, M.B., Boyd, J.D., Crosby, G., Culley, D.J. (2018). Oxytocin alters cell fate selection of rat neural progenitor cells in vitro. PLoS One, 13, e0191160. [CrossRef] [PubMed] [Google Scholar]
- Panaro, M.A., Benameur, T., Porro, C. (2020). Hypothalamic neuropeptide brain protection: Focus on oxytocin. J Clin Med, 9, 1534. [CrossRef] [PubMed] [Google Scholar]
- Panatier, A., Gentles, S.J., Bourque, C.W., Oliet, S.H. 2006. Activity-dependent synaptic plasticity in the supraoptic nucleus of the rat hypothalamus. J Physiol, 573, 711-721. [CrossRef] [PubMed] [Google Scholar]
- Papouin, T., Henneberger, C., Rusakov, D.A., Oliet, S.H.R. (2017). Astroglial versus neuronal D-serine: Fact checking. Trends Neurosci, 40, 517-520. [CrossRef] [PubMed] [Google Scholar]
- Parent, A.S., Rasier, G., Matagne, V., Lomniczi, A., Lebrethon, M.C., Gerard, A., Ojeda, S.R., Bourguignon, J.P. (2008). Oxytocin facilitates female sexual maturation through a glia-to-neuron signaling pathway. Endocrinology, 149, 1358-1365. [CrossRef] [PubMed] [Google Scholar]
- Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S., Haydon, P.G. (1994). Glutamate-mediated astrocyte-neuron signalling. Nature, 369, 744-747. [CrossRef] [PubMed] [Google Scholar]
- Phaneuf, S., Europe-Finner, G.N., Varney, M., MacKenzie, I.Z., Watson, S.P., Lopez Bernal, A. (1993). Oxytocin-stimulated phosphoinositide hydrolysis in human myometrial cells: involvement of pertussis toxin-sensitive and -insensitive G-proteins. J Endocrinol, 136, 497-509. [CrossRef] [PubMed] [Google Scholar]
- Rimoldi, V., Reversi, A., Taverna, E., Rosa, P., Francolini, M., Cassoni, P., Parenti, M., Chini, B. (2003). Oxytocin receptor elicits different EGFR/MAPK activation patterns depending on its localization in caveolin-1 enriched domains. Oncogene, 22, 6054-6060. [CrossRef] [PubMed] [Google Scholar]
- Rosso, L., Peteri-Brunback, B., Vouret-Craviari, V., Deroanne, C., Van Obberghen-Schilling, E., Mienville, J.M. (2002). Vasopressin and oxytocin reverse adenosine-induced pituicyte stellation via calcium-dependent activation of Cdc42. Eur J Neurosci, 16, 2324-2332. [CrossRef] [PubMed] [Google Scholar]
- Salm, A.K., Smithson, K.G., Hatton, G.I. (1985). Lactation-associated redistribution of the glial fibrillary acidic protein within the supraoptic nucleus. An immunocytochemical study. Cell Tissue Res, 242, 9-15. [CrossRef] [PubMed] [Google Scholar]
- Savtchouk, I., Volterra, A. (2018). Gliotransmission: Beyond black-and-white. J Neurosci, 38, 14-25. [CrossRef] [PubMed] [Google Scholar]
- Shigetomi, E., Kracun, S., Khakh, B.S. (2010a). Monitoring astrocyte calcium microdomains with improved membrane targeted GCaMP reporters. Neuron Glia Biol, 6, 183-191. [CrossRef] [PubMed] [Google Scholar]
- Shigetomi, E., Kracun, S., Sofroniew, M.V., Khakh, B.S. (2010b). A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat Neurosci, 13, 759-766. [CrossRef] [PubMed] [Google Scholar]
- Sloan, S.A., Barres, B.A. (2014). Looks can be deceiving: reconsidering the evidence for gliotransmission. Neuron, 84, 1112-1115. [CrossRef] [PubMed] [Google Scholar]
- Stifter, S.A., Greter, M. (2020). STOP floxing around: Specificity and leakiness of inducible Cre/loxP systems. Eur J Immunol, 50, 338-341. [CrossRef] [PubMed] [Google Scholar]
- Stoop, R. (2012). Neuromodulation by oxytocin and vasopressin. Neuron, 76, 142-159. [CrossRef] [PubMed] [Google Scholar]
- Strakova, Z., Copland, J.A., Lolait, S.J., Soloff, M.S. (1998). ERK2 mediates oxytocin-stimulated PGE2 synthesis. Am J Physiol, 274, E634-641. [PubMed] [Google Scholar]
- Swaab, D.F. (1997). Prader-Willi syndrome and the hypothalamus. Acta Paediatr Suppl, 423, 50-54. [CrossRef] [Google Scholar]
- Swaab, D.F., Purba, J.S., Hofman, M.A. (1995). Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: a study of five cases. J Clin Endocrinol Metab, 80, 573-579. [PubMed] [Google Scholar]
- Tasker, J.G., Oliet, S.H., Bains, J.S., Brown, C.H., Stern, J.E. (2012). Glial regulation of neuronal function: from synapse to systems physiology. J Neuroendocrinol, 24, 566-576. [CrossRef] [PubMed] [Google Scholar]
- Tauber, M., Boulanouar, K., Diene, G., Cabal-Berthoumieu, S., Ehlinger, V., Fichaux-Bourin, P., Molinas, C., Faye, S., Valette, M., Pourrinet, J., Cessans, C., Viaux-Sauvelon, S., Bascoul, C., Guedeney, A., Delhanty, P., Geenen, V., Martens, H., Muscatelli, F., Cohen, D., Consoli, A., Payoux, P., Arnaud, C., Salles, J.P. (2017). The use of oxytocin to improve feeding and social skills in infants with Prader-Willi syndrome. Pediatrics, 139, e20162976. [CrossRef] [PubMed] [Google Scholar]
- Tauber, M., Mantoulan, C., Copet, P., Jauregui, J., Demeer, G., Diene, G., Roge, B., Laurier, V., Ehlinger, V., Arnaud, C., Molinas, C., Thuilleaux, D. (2011). Oxytocin may be useful to increase trust in others and decrease disruptive behaviours in patients with Prader-Willi syndrome: a randomised placebo-controlled trial in 24 patients. Orphanet J Rare Dis, 6, 47. [Google Scholar]
- Theodosis, D.T., Chapman, D.B., Montagnese, C., Poulain, D.A., Morris, J.F. (1986a). Structural plasticity in the hypothalamic supraoptic nucleus at lactation affects oxytocin-, but not vasopressin-secreting neurones. Neuroscience, 17, 661-678. [CrossRef] [PubMed] [Google Scholar]
- Theodosis, D.T., Montagnese, C., Rodriguez, F., Vincent, J.D., Poulain, D.A. (1986b). Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system. Nature, 322, 738-740. [CrossRef] [PubMed] [Google Scholar]
- Theofanopoulou, C., Gedman, G., Cahill, J.A., Boeckx, C., Jarvis, E.D. (2021). Universal nomenclature for oxytocin-vasotocin ligand and receptor families. Nature, 592, 747-755. [CrossRef] [PubMed] [Google Scholar]
- Tirko, N.N., Eyring, K.W., Carcea, I., Mitre, M., Chao, M.V., Froemke, R.C., Tsien, R.W. (2018). Oxytocin transforms firing mode of CA2 hippocampal neurons. Neuron, 100, 593-608. [CrossRef] [PubMed] [Google Scholar]
- Tobin, V., Leng, G., Ludwig, M. (2012). The involvement of actin, calcium channels and exocytosis proteins in somato-dendritic oxytocin and vasopressin release. Front Physiol, 3, 261. [CrossRef] [PubMed] [Google Scholar]
- Verkhratsky, A., Nedergaard, M. (2018). Physiology of astroglia. Physiol Rev, 98, 239-389. [CrossRef] [PubMed] [Google Scholar]
- von Bartheld, C.S., Bahney, J., Herculano-Houzel, S., (2016). The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol, 524, 3865-3895. [CrossRef] [PubMed] [Google Scholar]
- Wahis, J., Baudon, A., Althammer, F., Kerspern, D., Goyon, S., Hagiwara, D., Lefevre, A., Barteczko, L., Boury-Jamot, B., Bellanger, B., Abatis, M., Da Silva Gouveia, M., Benusiglio, D., Eliava, M., Rozov, A., Weinsanto, I., Knobloch-Bollmann, H.S., Kirchner, M.K., Roy, R.K., Wang, H., Pertin, M., Inquimbert, P., Pitzer, C., Siemens, J., Goumon, Y., Boutrel, B., Lamy, C.M., Decosterd, I., Chatton, J.Y., Rouach, N., Young, W.S., Stern, J.E., Poisbeau, P., Stoop, R., Darbon, P., Grinevich, V., Charlet, A. (2021). Astrocytes mediate the effect of oxytocin in the central amygdala on neuronal activity and affective states in rodents. Nat Neurosci, 24, 529-541. [CrossRef] [PubMed] [Google Scholar]
- Wang, P., Qin, D., Wang, Y.F. (2017). Oxytocin rapidly changes astrocytic GFAP plasticity by differentially modulating the expressions of pERK 1/2 and protein kinase A. Front Mol Neurosci, 10, 262. [CrossRef] [PubMed] [Google Scholar]
- Wang, Y.F., Hatton, G.I. (2006). Mechanisms underlying oxytocin-induced excitation of supraoptic neurons: prostaglandin mediation of actin polymerization. J Neurophysiol, 95, 3933-3947. [CrossRef] [PubMed] [Google Scholar]
- Wang, Y.F., Hatton, G.I. (2007). Interaction of extracellular signal-regulated protein kinase 1/2 with actin cytoskeleton in supraoptic oxytocin neurons and astrocytes: role in burst firing. J Neurosci, 27, 13822-13834. [CrossRef] [PubMed] [Google Scholar]
- Wang, Y.F., Hatton, G.I. (2009). Astrocytic plasticity and patterned oxytocin neuronal activity: dynamic interactions. J Neurosci, 29, 1743-1754. [CrossRef] [PubMed] [Google Scholar]
- Young, L.J., Wang, Z. (2004). The neurobiology of pair bonding. Nat Neurosci, 7, 1048-1054. [CrossRef] [PubMed] [Google Scholar]
- Young, W.S., Song, J. (2020). Characterization of oxytocin receptor expression within various neuronal populations of the mouse dorsal hippocampus. Front Mol Neurosci, 13, 40. [CrossRef] [PubMed] [Google Scholar]
- Zatkova, M., Bacova, Z., Puerta, F., Lestanova, Z., Alanazi, M., Kiss, A., Reichova, A., Castejon, A.M., Ostatnikova, D., Bakos, J. (2018). Projection length stimulated by oxytocin is modulated by the inhibition of calcium signaling in U-87MG cells. J Neural Transm, 125, 1847-1856. [CrossRef] [PubMed] [Google Scholar]
- Zhang, J.M., Wang, H.K., Ye, C.Q., Ge, W., Chen, Y., Jiang, Z.L., Wu, C.P., Poo, M.M., Duan, S. (2003). ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron, 40, 971-982. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.