Accès gratuit
Biologie Aujourd'hui
Volume 209, Numéro 3, 2015
Page(s) 195 - 210
Section Conférence
Publié en ligne 28 janvier 2016
  • Bell, J.K., Mullen, G.E., Leifer, C.A., Mazzoni, A., Davies, D.R., and Segal, D.M. (2003). Leucine rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol, 24, 528-533. [CrossRef] [PubMed] [Google Scholar]
  • Bert, P. (1865). Contribution à l’étude des venins (venins de scorpion). CR Soc Biol, 17, 136-137. [Google Scholar]
  • Bert, P. (1885). Venin du scorpion. CR Soc Biol, 27, 574-575. [Google Scholar]
  • Blanc, E., Hassani, O., Meunier, S., Mansuelle, P., Sampieri, F., Rochat, H., and Darbon, H. (1997). 1H-NMR-derived secondary structure and overall fold of a natural anatoxin from the venom from the scorpion, Androctonus australis hector. Eur J Biochem, 247, 1118-1126. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Bontems, F., Roumestand, C., Gilquin, B., Ménez, A., and Toma, F. (1991). Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science, 254, 1521-1523. [CrossRef] [PubMed] [Google Scholar]
  • Bosmans, F., and Tytgat, J. (2007). Sea anemone venom as a source of insecticidal peptides acting on voltage-gated Na+ channels. Toxicon, 49, 550-560. [CrossRef] [PubMed] [Google Scholar]
  • Buisine, E., Wieruszeski, J.M., Lippens, G., Wouters, D., Tartar, A., and Sautière, P. (1997). Characterization of a new family of toxin-like peptides from the venom of Leiurus quinquestriatus hebræus. 1H-NMR structure of leiuropeptide II. J Peptide Res, 49, 515-555. [Google Scholar]
  • Bulet, P., Stöcklin, R., and Menin, L. (2004). Anti-microbial peptides: from invertebrates to vertebrates. Immunolog Rev, 198, 169-184. [CrossRef] [Google Scholar]
  • Cao, Z., Yu, Y., Wu, Y., Hao, P., Di, Z., He, Y., Chen, Z., Yang, W., Shen, Z., He, X., Sheng, J., Xu, X., Pan, B., Feng, J., Yang, X., Hong, W., Zhao, W., Li, Z., Huang, K., Li, T., Kong, Y., Liu, H., Jiang, D., Zhang, B., Hu, J., Hu, Y., Wang, B., Dai, J., Yuan, B., Feng, Y., Huang, W., Xing, X., Zhao, G., Li, X., Li, Y., and Li, W. (2013). The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nat Communic, 4, 2602-2612. [Google Scholar]
  • Cestele, S., Sampieri, F., Rochat, H., and Gordon, D. (1996). Tetrodotoxin reverses brevetoxin allosteric inhibition of scorpion alpha-toxin binding on rat brain sodium channels. J Biol Chem, 270, 15153-15161. [CrossRef] [Google Scholar]
  • Choumet, V. (2010). Scorpionisme: épidémiologie et immunothérapie. In: Aspects cliniques et thérapeutiques des envenimations graves, Mion, G., Larréché, S., Goyffon, M. (Eds.), pp. 178-191. [Google Scholar]
  • Clot-Faybesse, O., Guieu, R., Rochat, H., and Devaux, C. (2000). Toxicity during early development of the mouse nervous system of a scorpion neurotoxin acting on sodium channels. Life Sci., 66, 185-192. [CrossRef] [PubMed] [Google Scholar]
  • Cociancich, S., Goyffon, M., Bontems, F., Bulet, P., Bouet, F., Menez, A., and Hoffmann, J. (1993). Purification and characterization of a scorpion defensin, a 4 kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins. Biochem Biophys Res Commun, 194, 17-22. [CrossRef] [PubMed] [Google Scholar]
  • Couraud, F., and Van Rietschoten, J. (1982). Les toxines de scorpions: un exemple d’utilisation des sécrétions venimeuses. Biochimie, 64, V-VIII. [Google Scholar]
  • Dauplais, M., Lecoq, A., Song, J., Cotton, J., Jamin, N., Gilquin, B., Roumestand, C., Vita, C., de Medeiros, C.L., Rowan, E.G., Harvey, A.L., and Ménez, A. (1997). On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structure. J Biol Chem, 272, 4302-4309. [CrossRef] [PubMed] [Google Scholar]
  • DeBin, J.A., and Strichartz, G.R. (1991). Chloride channel inhibition by the venom of the scorpion Leiurus quinquestriatus. Toxicon, 11, 1403-1408. [CrossRef] [Google Scholar]
  • DeBin, J.A., Maggio, J.E., and Strichartz, G.R., (1993). Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Amer J Physiol, 264, C361-C369. [Google Scholar]
  • Domont, G.B., Perales, J., and Moussatché, H. (1991). Natural anti-snake venom proteins. Toxicon, 29, 1183-1194. [CrossRef] [PubMed] [Google Scholar]
  • Dufton, M. (1992). Venomous mammals. Pharmacol. Ther., 53, 199-215. [CrossRef] [PubMed] [Google Scholar]
  • Du Plessis, L.H., Elgar, D., and Du Plessis, J.L. (2008). Southern African toxins: an overview. Toxicon, 51, 1-9. [CrossRef] [Google Scholar]
  • Ehret-Sabatier, L., Lœw, D., Goyffon, M., Fehlbaum, P., Hoffmann, J.A., van Dorsselaer, A., and Bulet, P. (1996). Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem, 47, 29537-29544. [CrossRef] [Google Scholar]
  • Eitan, M., Fowler, E., Herrmann, R., Duval, A., Pelhate, M., and Zlotkin, E. (1990). A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: purification, primary structure, and mode of action. Biochemistry, 29, 5941-5947. [CrossRef] [PubMed] [Google Scholar]
  • Faure, G. (1999). Les phospholipases A2 des venins de serpents. Bull Soc Zool Fr, 124, 149-168. [Google Scholar]
  • Faure, G. (2000). Natural inhibitors of toxic phospholipases A2. Biochimie, 82, 833-840. [CrossRef] [PubMed] [Google Scholar]
  • Faure, G., Villela, C., Perales, J., and Bon, C. (2000). Interaction of the neurotoxic and non-toxic secretory phospholipases A2 with the crotoxin inhibitor from Crotalus serum. Eur J Biochem, 267, 4799-4808. [CrossRef] [PubMed] [Google Scholar]
  • Faure, G., Copic, A., Le Porrier, S., Gubensek, F., Bon, C., and Krizaj, I. (2003). Crotoxin acceptor protein isolated from Torpedo electric organ: binding properties to crotoxin by surface plasmon resonance. Toxicon, 41, 509-517. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Faure, G., Gowda, V.T., and Maroun, R.C. (2007). Characterization of a human coagulation factor Xa-binding site on Viperidæ snake venom phospholipases A2 by affinity binding site studies and bioinformatics. BMC Stuctural Biol, 7, 82. [CrossRef] [Google Scholar]
  • Faure, G., and Goyffon, M. (2010). Inhibiteurs naturels de phospholipases A2 (PLI) du sang de serpent. Homologie structurale avec des protéines de la réponse immunitaire. In: Aspects cliniques des envenimations graves, Mion, G., Larréché, S., Goyffon, M. (Eds.), pp. 22-33. [Google Scholar]
  • Faure, G., Xu, H., and Saul, F. (2010). Anticoagulant phospholipases A2 which bind to the specific soluble receptor coagulation factor Xa. In: Toxins and hemostasis: from bench to bedside, Kini, R.M., Clemetson, K., Markland, F.S., Mc Lane, M.A., Morita, T. (Eds.), Chap 13, Springer Science and Business Media, pp. 201-217. [Google Scholar]
  • Faure, G., and Saul, F. (2011). Structural and functional characterization of anticoagulant FXa-binding Viperidæ snake venom phospholipases A2. Acta Chim Slov, 58, 671-677. [PubMed] [Google Scholar]
  • Faure, G., Bakouh, N., Saul, F., Xu, H., Planelles, G., Ollero, M., and Edelman, A. (2012). CFTR as a new target for crotoxin: potential application for cystic fibrosis. Toxicon, 60, 105-106. [CrossRef] [Google Scholar]
  • Faure, G., and Saul, F. (2012). Crystallographic characterization of functional sites of crotoxin and ammodytoxin, potent β-neurotoxins from Viperidæ venoms. Toxicon, 60, 531-538. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Fleming, T.J., O’hUigin, C., and Malek, T.R. (1993). Characterization of two novel Ly-6 genes. Protein sequence and potential similarity to alpha-bungarotoxin and other neurotoxins. J Immunol, 150, 5379-5390. [PubMed] [Google Scholar]
  • Fortes-Dias, C.L., Lin, Y., Ewell, J., Diniz, C.R., and Liu, T.Y. (1994). A phospholipase A2 inhibitor from the plasma of the South American rattlesnake (Crotalus durissus terrificus). J Biol Chem, 269, 15646-15651. [PubMed] [Google Scholar]
  • Fry, B.G. (2005). From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res, 15, 403-420. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Fry B.G., Scheib, H., van der Weerd, L., Young, B., McNaughtan, J., Ramjan, S.F., Vidal, N., Poelmann, R.E., and Norman, J.A. (2008). Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Cænophidia). Mol Cell Proteomics, 7, 215-246. [CrossRef] [PubMed] [Google Scholar]
  • Goyffon, M. (1983). Panchronisme et résistance aux agressions de l’environnement chez le scorpion. Bull Soc Zool Fr, 108, 585-592. [Google Scholar]
  • Goyffon, M., and Billiald, P. (2002). Apport de l’immunochimie structurale et immunochimique de l’hémocyanine à la systématique des Buthidæ (Scorpiones). Mém Soc Entomol Fr, 6, 65-72. [Google Scholar]
  • Goyffon, M., and Landon, C. (1998). Toxines et défensines de scorpions. Scorpion toxins and defensins. CR Soc Biol, 192, 445-462. [Google Scholar]
  • Goyffon, M., and Roman, V. (2001). Radioresistance of scorpions. In: Scorpion Biology and Research, Brownell, P., Polis, G. (Eds.), Vol. 1, Oxford University Press, Oxford, UK, pp. 393-405. [Google Scholar]
  • Goyffon, M., and Tournier, J.N. (2014). Scorpions: a presentation. Toxins, 6, 2137-2148. [CrossRef] [PubMed] [Google Scholar]
  • Harvey, A. (2014). Toxins and drug discovery. Toxicon, 92, 193-200. [CrossRef] [PubMed] [Google Scholar]
  • Heinriksone, R.L., Krueger, E.T., Keim, P.S. (1977). Amino-acid sequence of phospholipase A2 –alpha from the venom of Crotalus adamanteus. A new classification of phospholipases A2 based upon structural determinants. J Biol Chem, 252, 4913-4921. [PubMed] [Google Scholar]
  • Higashino, K., Yokota, Y., Ono, T., Kamitani, S., Arita, H., and Hanasaki, K. (2002). Identification of a soluble form phospholipase A2 receptor as a circulating endogenous inhibitor for secretory phospholipase A2. J Biol Chem, 277, 13583-13588. [CrossRef] [PubMed] [Google Scholar]
  • Inceoglu, B., Lango, J., Jing, J., Chen, L., Doymaz, F., Pessah, I.N., and Hammock, B.D. (2003). One scorpion, two venoms: prevenom of Parabuthus transvaalicus acts as an alternative type of venom with distinct mechanism of action. Proc Natl Acad Sci USA, 100, 922-927. [CrossRef] [Google Scholar]
  • Jan, L.Y., and Jan, Y.N. (1997). Cloned potassium channels from eukaryotes and prokaryotes. Ann Rev Neurosci, 20, 91-123. [CrossRef] [Google Scholar]
  • Jeram, A.J.J. (1989). The micropalæontology of paleozoic scorpions. PhD, Univ. Manchester, 1 vol., 398 p. [Google Scholar]
  • Kaplan, N., Morpurgo, N., and Linial, M. (2007). Novel families of toxin-like peptides in insects and mammals: a computational approach. J Mol Biol, 369, 553-566. [CrossRef] [PubMed] [Google Scholar]
  • Kaser, H., Winklmayr, M., Lepperdinger, G., and Kreil, G. (2003). The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functions. EMBO Rep, 4, 469-473. [CrossRef] [PubMed] [Google Scholar]
  • Kihara, H. (1976). Studies on phospholipase A in Trimeresurus flavoviridis venom. III Purification and some properties of phospholipase A inhibitor in Habu serum. J Biochem, 80, 341-349. [PubMed] [Google Scholar]
  • Kini, R.M., and Evans, H.J. (1989). A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon, 27, 613-635. [CrossRef] [PubMed] [Google Scholar]
  • Kinkawa, K., Shirai, R., Watanabe, S., Toriba, M., Hayashi, K., Ikeda, K., and Inoue, S. (2010). Up-regulation of the expressions of phospholipase A2 inhibitors in the liver of a venomous snake by its own venom phospholipase A2. Bioch Biophys Res Communic, 395, 377-381. [CrossRef] [Google Scholar]
  • Kobayashi, Y., Takashima, H., Tamaoki, H., Kyogoku, Y., Lambert, P., Kuroda, H., Chino, N., Watanabe, T.X., Kimura, T., Sakakibara, S., and Luis, M. (1991). The cystine-stabilized α-helix: a common structural motif of ion-channel blocking neurotoxic peptides. Biopolymers, 31, 1213-1220. [CrossRef] [PubMed] [Google Scholar]
  • Kopeyan, C., Mansuelle, P., Martin-Eauclaire, M.F., Rochat, H., and Miranda, F. (1993). Characterization of toxin III of the scorpion Leiurus quinquestriatus quinquestriatus: a new type of alpha toxin highly toxic both to mammals and insects. Nat Toxins, 1, 308-312. [CrossRef] [PubMed] [Google Scholar]
  • Landon, C. (1997). Détermination de la structure tridimensionnelle d’une toxine de scorpion et d’une protéine de défense d’insectes par résonance magnétique nucléaire et modélisation moléculaire. Ph.D., Univ. Orléans, Vol. 1, 314 p. [Google Scholar]
  • Landon, C., Barbault, F., Legrain, M., Guenneugues, M., and Vovelle, F. (2008). Rational design of peptides active against the Gram positive bacteria Staphylococcus aureus. Proteins, 72, 229-239. [CrossRef] [PubMed] [Google Scholar]
  • Legros, C., and Goyffon, M. (2010). Aspects moléculaires des interactions entre les toxines de venin de scorpions et les canaux ioniques. In: Aspects cliniques et thérapeutiques des envenimations graves (G. Mion, S. Larréché, M. Goyffon, Eds.), Urgence Pratique, Ganges (France), pp. 3-21. [Google Scholar]
  • Leulier, F., and Lemaître, B. (2002). Les récepteurs de la famille Toll et l’activation de la réponse immunitaire. Bull. AAEIP, 171, 79-84. [Google Scholar]
  • Little, M.J., Wilson, H., Zappia, C., Cestèle, S., Tyler, M.I., Martin-Eauclaire, M.F., Gordon, D., and Nicholson, G.M. (1998) α-Atracotoxins from Australian funnel-web spiders compete with scorpion α-toxin binding on both rat brain and insect sodium channels. FEBS Lett, 439, 246-252. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Ménez, A. (2003). The subtle beast. Snakes, from myth to medicine. 1 Vol., Taylor & Francis, London, UK, 163 p. [Google Scholar]
  • Mion, G., Larréché, S., and Goyffon, M. (2010). Aspects cliniques et thérapeutiques des envenimations graves. Urgence Pratique, Ganges (France), 255 p. [Google Scholar]
  • Miranda, F., and Lissitzky, S. (1958). Purification de la toxine du venin de scorpion (Androctonus australis L) Bioch Biophys Acta, 30, S217-S218. [CrossRef] [Google Scholar]
  • Miranda, F., Rochat, H., and Lissitzky, S. (1960). Sur la neurotoxine du venin de scorpion. 2. Purification à partir de deux espèces de scorpion. Bull Soc Chim Biol, 42, 379-391. [Google Scholar]
  • Miranda, F., Kopeyan, C., Rochat, H., Rochat, C., and Lissitzky, S. (1970). Purification of animal neurotoxins. Isolation and characterisation of eleven neurotoxins from the venom of the scorpion Androctonus australis hector and Leiurus quinquestriatus quinquestriatus. Eur J Biochem, 16, 514-523. [CrossRef] [PubMed] [Google Scholar]
  • Moreira-Ferreira, A.M.B., Kalapothakis, E., Diniz, C.R., and Chávez-Olórtegui, C. (1998). In vivo protection against Tityus serrulatus scorpion toxins by immunization of mice with a non-toxic protein. Toxicon, 1998, 36, 333-339. [Google Scholar]
  • Nicolas, J.P., Lambeau, G., and Lazdunski, M. (1995). Identification of the binding domain for secretory phospholipases A2 on their M-type 180 kDa receptor. J Biol Chem, 270, 28869-28873. [CrossRef] [PubMed] [Google Scholar]
  • Noël, L.S., Champion, B.R., Holley, C.L., Simmons, C.J., Morris, D.C., Payne, J.A., Lean, J.M., Chambers, T.J., Zaman, G., Lanyon, L.E., Suva, L.J., and Miller, L.R. (1998). RoBo-1, a novel member of the urokinase plasminogen activator receptor/CD59/Ly-6/snake toxin family selectively expressed in rat bone and growth plate cartilage. J Biol Chem, 237, 3878-3883. [CrossRef] [Google Scholar]
  • Oguiura, N., Boni-Mitake, M., and Rádis-Baptista, G. (2005). New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon, 46, 363-370. [CrossRef] [PubMed] [Google Scholar]
  • Ohana, B., Fraenkel, Y., Navon, G., and Gershoni, J.M. (1991). Molecular dissection of cholinergic binding sites: how do snakes escape the effect of their own toxins? Biochem Biophys Res Commun, 179, 648-654. [CrossRef] [PubMed] [Google Scholar]
  • Ohkura, N., Inoue, S., Ikeda, K., and Hayashi, K. (1994). The two subunits of the phospholipase inhibitor from the plasma of Thailand cobra having structural similarity to urokinase-type plasminogen activator receptor and Ly-6 related proteins. Biochem Biophys Res Communic, 204, 1212-1218. [CrossRef] [Google Scholar]
  • Ohkura, N., Okuhara, H., Inoue, S., Ikeda, K., and Hayashi, K. (1997). Purification and characterization of three distinct types of phospholipase A2 inhibitors from the blood plasma of the Chinese mamushi, Agkistrodon blomhoffii siniticus. Biochem J, 325, 527-531. [CrossRef] [PubMed] [Google Scholar]
  • Okumura, K., Inoue, S., Ikeda, K., and Hayashi, K. (2003). Identification and characterization of serum protein homologous to alpha-type phospholipases A2 inhibitor (PLI alpha) from a non venomous snake Elaphe quadrivirgata. IUBMB Life, 55, 539-545. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Okumura, K., Ohno, A., Nishida, M., Hayashi, K., Ikeda, K., and Inoue, S. (2005). Mapping the region of the alpha-type phospholipase A2 inhibitor responsible for its inhibitory activity. J Biol Chem, 280, 37651-37659. [CrossRef] [PubMed] [Google Scholar]
  • Olamendi-Portugal, T., Gómez-Lagunas, F., Gurrola, G.B., and Possani, L.D. (1998). Two similar peptides from the venom of the scorpion Pandinus imperator, one highly effective blocker and the other inactive on K+ channels. Toxicon, 36, 759-770. [CrossRef] [PubMed] [Google Scholar]
  • Perales, J., Villela, C., Domont, G.B., Choumet, V., Saliou, B., Moussatché, H., Bon, C., and Faure, G. (1995). Molecular structure and mechanism of action of the crotoxin inhibitor from Crotalus durissus terrificus serum. Eur J Biochem, 227, 19-26. [CrossRef] [PubMed] [Google Scholar]
  • Perales, J., and Domont, G.B. (2002). Are inhibitors of metalloproteinases, phospholipases A2 and myotoxins members of the innate immunity system? In: Perspectives in molecular toxicology, Ménez, A. (Ed.), Vol. 1, John Wiley and Sons, Chichester, UK, pp. 435-456. [Google Scholar]
  • Possani, L.D., Martin, B.M., and Swensden, I. (1982). The primary structure of noxiustoxin: a K+ channel blocking peptide purified from the venom of the scorpion Centruroides noxius Hoffmann. Carlsberg Res Commun, 47, 285-289. [CrossRef] [Google Scholar]
  • Possani, L.D., Becerril, B., Delepierre, M., and Tytgat, J. (1999). Scorpion toxins specific for Na+ channels. Eur J Biochem, 264, 287-300. [CrossRef] [PubMed] [Google Scholar]
  • Prendini, L., and Wheeler, W.C. (2005). Scorpion higher phylogeny and classification, taxonomic anarchy, and standards for peer review in online publishing. Cladistics, 21, 446-494. [CrossRef] [Google Scholar]
  • Rigoni, M., Paoli, M., Milanesi, Caccin, P., Rasola, A., Bernardi, P., and Montecucco, C. (2008). Snake phospholipase A2 neurotoxins enter neurons, bind specifically to mitochondria, and open their transition pores. J Biol Chem, 283, 34013-34020. [CrossRef] [PubMed] [Google Scholar]
  • Rochat, H., Bernard, P., and Couraud, F. (1979). Scorpion toxins: chemistry and mode of action. Adv Cytopharmacol, 3, 325-334. [PubMed] [Google Scholar]
  • Rosso, J.P., Bougis, P.E., and Martin-Eauclaire, M.F. (2009). Le point sur les chlorotoxines des venins de scorpion. In: Toxines et signalisation, Benoit, E., Goudey-Perriere, F., Marchot, P., Servent, D. (Eds.), Vol. 1, SFET Editions, Paris, pp. 155-158. [Google Scholar]
  • Shirai, R., Gotou, R., Hirano, F., Ikeda, K., and Inoue, S. (2010). Autologous extracellular cytochrome c is an endogenous ligand for leucine-rich alpha2-glycoprotein and beta-type phospholipase A2 inhibitor. J Biol Chem, 285, 21607-21614. [CrossRef] [PubMed] [Google Scholar]
  • Sitges, M., Possani, L.D., and Bayón, A. (1986). Noxiustoxin, a short-chain toxin from the Mexican scorpion Centruroides noxius, induces transmitter release by blocking K+ permeability. J Neurosci, 6, 1570-1574. [PubMed] [Google Scholar]
  • Sribar, J., Kovacic, L., Draskovic, P., Faure, G., and Krizaj, I. (2007). The first phospholipase inhibitor from the serum of Vipera ammodytes ammodytes. FEBS J., 274, 6055-6064. [CrossRef] [PubMed] [Google Scholar]
  • Sribar, J., and Krizaj, I. (2011). Secreted phospholipases A2 – not just enzymes. Acta Chim Slov, 58, 678-688. [PubMed] [Google Scholar]
  • Stockmann, R., and Ythier, E. (2010). Scorpions du monde. NAP Editions, Verrières-le-Buisson, France, 565 p. [Google Scholar]
  • Torres, A.M., and Kuchel, P.W. (2004). The β-defensin-fold family of polypeptides. Toxicon, 44, 581-588. [CrossRef] [PubMed] [Google Scholar]
  • Tytgat, J., Chandy, K.G., Garcia, M.L., Gutman, G.A., Martin-Eauclaire, M.F., van der Walt, J.J., and Possani, L.D. (1999). A unified nomenclature for short-chain peptides isolated from scorpion venoms: alpha-K-Tx molecular subfamilies. Trends Pharmacol Sci, 20, 444-447. [CrossRef] [PubMed] [Google Scholar]
  • Vachon, M. (1973). Etude des caractères utilisés pour classer les familles et les genres de Scorpions (Arachnides). I. La trichobothriotaxie en Arachnologie. Sigles trichobothriaux et types de trichobothries chez les scorpions. Bull Mus Natl Hist Nat, Paris (3), 140, Zool 104, 857-958. [Google Scholar]
  • Vachon, M. (1975). Sur l’utilisation de la trichobothriotaxie du bras des pédipalpes des Scorpions (Arachnides) dans le classement des genres de la famille des Buthidæ Simon. CR Acad Sci Paris, 281, 1597–1599. [Google Scholar]
  • Vidal, N., and Hedges, S.B. (2009). The molecular evolutionary tree of lizards, snakes and amphisbænians. C.R. Biologies, 332, 129-139. [CrossRef] [Google Scholar]
  • Wang, X., Venable, J., LaPointe, P., Hutt, D.M., Koulov, A.V., Coppinger, J., Gurkan, C., Kellner, W., Matteson, J., Plutner, H., Riordan, J.R., Kelly, J.W., Yates, J.R. 3rd, and Balch, W.E. (2006). Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell, 127, 803-815. [CrossRef] [PubMed] [Google Scholar]
  • Whittington, C.M., Papenfuss, A.T., Bansal, P., Torres, A.M., Wong, E.S., Deakin, J.E., Graves, T., Alsop, A., Schatzkamer, K., Kremitzki, C., Ponting, C.P., Temple-Smith, P., Warren, W.C., Kuchel, P.W., and Belov, K. (2008). Defensins and the convergent evolution of platypus and reptile venom genes. Genome Res, 18, 986-994. [CrossRef] [PubMed] [Google Scholar]
  • Whittington, C.M., Koh, J.M., Warren, W.C., Papenfuss, A.T., Torres, A.M., Kuchel, P.W., and Belov, K. (2009). Understanding and utilising mamalian venoms via a platypus venom transcriptome. J Proteom, 72, 155-164. [CrossRef] [Google Scholar]
  • Whittington, C.M., and Belov, K. (2014). Tracing monotreme venom evolution in the genomics era. Toxins, 6, 1260-1273. [CrossRef] [PubMed] [Google Scholar]
  • Zhu, S., Gao, B., and Tyutgat, J. (2012). Evolution of a neurotoxin from a defensin. Toxicon, 60, 120 (abstr). [CrossRef] [Google Scholar]
  • Zhu, S., Peigneur, S., Gao, B., Umetsu, Y., Ohki, S., and Tytgat, J. (2014). Experimental conversion of a defensin into a neurotoxin: implications for origin of toxin function. Mol Biol Evol, 31, 546-559. [CrossRef] [PubMed] [Google Scholar]
  • Zimmermann, G.R., Legault, P., Selsted, M.E., and Pardi, A. (1995). Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the beta-defensins is identical to that of the classical defensins. Biochemistry, 34, 13663-13671. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.