Accès gratuit
Biologie Aujourd'hui
Volume 210, Numéro 2, 2016
Page(s) 65 - 78
Section L’hypertension artérielle pulmonaire : avancées thérapeutiques
Publié en ligne 30 septembre 2016
  • Antigny, F., Hautefort, A., Meloche, J., Belacel-Ouari, M., Manoury, B., Rucker-Martin, C., Pechoux, C., Potus, F., Nadeau, V., Tremblay, E., Ruffenach, G., Bourgeois, A., Dorfmuller, P., Breuils-Bonnet, S., Fadel, E., Ranchoux, B., Jourdon, P., Girerd, B., Montani, D., Provencher, S., Bonnet, S., Simonneau, G., Humbert, M., and Perros, F. (2016). Potassium-Channel Subfamily K-Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension. Circulation,sous presse. [Google Scholar]
  • Arciniegas, E., Frid, M.G., Douglas, I.S., andStenmark, K.R. (2007). Perspectives on endothelial-to-mesenchymal transition : potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 293, L1-L8. [CrossRef] [PubMed] [Google Scholar]
  • Austin, E.D., Ma, L., LeDuc, C., Berman Rosenzweig, E., Borczuk, A., Phillips, J.A., 3rd, Palomero, T., Sumazin, P., Kim, H.R., Talati, M.H., West, J., Loyd, J.E., andChung, W.K. (2012). Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ Cardiovasc Genet, 5, 336-343. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Balabanian, K., Foussat, A., Dorfmuller, P., Durand-Gasselin, I., Capel, F., Bouchet-Delbos, L., Portier, A., Marfaing-Koka, A., Krzysiek, R., Rimaniol, A.C., Simonneau, G., Emilie, D., andHumbert, M. (2002). CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med, 165, 1419-1425. [CrossRef] [PubMed] [Google Scholar]
  • Bernhagen, J., Krohn, R., Lue, H., Gregory, J.L., Zernecke, A., Koenen, R. R., Dewor, M., Georgiev, I., Schober, A., Leng, L., Kooistra, T., Fingerle-Rowson, G., Ghezzi, P., Kleemann, R., McColl, S.R., Bucala, R., Hickey, M.J., andWeber, C. (2007). MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med, 13, 587-596. [CrossRef] [PubMed] [Google Scholar]
  • Bjornsson, J. andEdwards, W.D. (1985) Primary pulmonary hypertension : a histopathologic study of 80 cases. Mayo Clin Proc, 60, 16-25. [CrossRef] [PubMed] [Google Scholar]
  • Bonnet, S., Michelakis, E.D., Porter, C.J., Andrade-Navarro, M.A., Thebaud, B., Bonnet, S., Haromy, A., Harry, G., Moudgil, R., McMurtry, M. S., Weir, E.K., andArcher, S.L. (2006). An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats : similarities to human pulmonary arterial hypertension. Circulation, 113, 2630-2641. [CrossRef] [PubMed] [Google Scholar]
  • Botto, L., Beretta, E., Daffara, R., Miserocchi, and G.,Palestini, P. (2006). Biochemical and morphological changes in endothelial cells in response to hypoxic interstitial edema. Respir Res, 7, 7. [CrossRef] [PubMed] [Google Scholar]
  • Chaouat, A., Coulet, F., Favre, C., Simonneau, G., Weitzenblum, E., Soubrier, F., andHumbert, M. (2004). Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension. Thorax, 59, 446-448. [CrossRef] [PubMed] [Google Scholar]
  • Courboulin, A., Tremblay, V.L., Barrier, M., Meloche, J., Jacob, M.H., Chapolard, M., Bisserier, M., Paulin, R., Lambert, C., Provencher, S., andBonnet, S. (2011). Kruppel-like factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension. Respir Res, 12, 128. [CrossRef] [PubMed] [Google Scholar]
  • Cowan, K.N., Heilbut, A., Humpl, T., Lam, C., Ito, S., andRabinovitch, M. (2000). Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat Med, 6, 698-702. [CrossRef] [PubMed] [Google Scholar]
  • Cracowski, J.L., Chabot, F., Labarere, J., Faure, P., Degano, B., Schwebel, C., Chaouat, A., Reynaud-Gaubert, M., Cracowski, C., Sitbon, O., Yaici, A., Simonneau, G., andHumbert, M. (2014). Proinflammatory cytokine levels are linked to death in pulmonary arterial hypertension. Eur Respir J, 43, 915-917. [CrossRef] [PubMed] [Google Scholar]
  • Davie, N.J., Crossno, J.T., Jr., Frid, M.G., Hofmeister, S.E., Reeves, J.T., Hyde, D.M., Carpenter, T.C., Brunetti, J.A., McNiece, I.K., andStenmark, K.R. (2004). Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization : contribution of progenitor cells. Am J Physiol Lung Cell Mol Physiol, 286, L668-78. [CrossRef] [PubMed] [Google Scholar]
  • de Man, F.S., Tu, L., Handoko, M.L., Rain, S., Ruiter, G., Francois, C., Schalij, I., Dorfmuller, P., Simonneau, G., Fadel, E., Perros, F., Boonstra, A., Postmus, P.E., van der Velden, J., Vonk-Noordegraaf, A., Humbert, M., Eddahibi, S., andGuignabert, C. (2012). Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med, 186, 780-789. [CrossRef] [PubMed] [Google Scholar]
  • Deng, Z., Morse, J.H., Slager, S.L., Cuervo, N., Moore, K.J., Venetos, G., Kalachikov, S., Cayanis, E., Fischer, S.G., Barst, R.J., Hodge, S.E., andKnowles, J.A. (2000). Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet, 67, 737-744. [CrossRef] [PubMed] [Google Scholar]
  • Dewachter, L., Adnot, S., Fadel, E., Humbert, M., Maitre, B., Barlier-Mur, A.M., Simonneau, G., Hamon, M., Naeije, R., andEddahibi, S. (2006). Angiopoietin/Tie2 pathway influences smooth muscle hyperplasia in idiopathic pulmonary hypertension. Am J Respir Crit Care Med, 174, 1025-1033. [CrossRef] [PubMed] [Google Scholar]
  • Dorfmuller, P., Zarka, V., Durand-Gasselin, I., Monti, G., Balabanian, K., Garcia, G., Capron, F., Coulomb-Lhermine, A., Marfaing-Koka, A., Simonneau, G., Emilie, D., andHumbert, M. (2002). Chemokine RANTES in severe pulmonary arterial hypertension. Am J Respir Crit Care Med, 165, 534-539. [CrossRef] [PubMed] [Google Scholar]
  • Drake, K.M., Dunmore, B.J., McNelly, L.N., Morrell, N.W., andAldred, M.A. (2013). Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am J Respir Cell Mol Biol, 49, 403-409. [CrossRef] [PubMed] [Google Scholar]
  • Duffy, M.J. (2002). Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer : from pilot to level 1 evidence studies. Clin Chem, 48, 1194-1197. [PubMed] [Google Scholar]
  • Dunmore, B.J., Drake, K.M., Upton, P.D., Toshner, M.R., Aldred, M.A., andMorrell, N.W. (2013). The lysosomal inhibitor, chloroquine, increases cell surface BMPR-II levels and restores BMP9 signalling in endothelial cells harbouring BMPR-II mutations. Hum Mol Genet, 22, 3667-3679. [CrossRef] [PubMed] [Google Scholar]
  • Eddahibi, S., Guignabert, C., Barlier-Mur, A.M., Dewachter, L., Fadel, E., Dartevelle, P., Humbert, M., Simonneau, G., Hanoun, N., Saurini, F., Hamon, M., andAdnot, S. (2006). Cross talk between endothelial and smooth muscle cells in pulmonary hypertension : critical role for serotonin-induced smooth muscle hyperplasia. Circulation, 113, 1857-1864. [CrossRef] [PubMed] [Google Scholar]
  • Evans, J.D., Girerd, B., Montani, D., Wang, X.J., Galiè, N., Austin, E. D., Elliott, G., Asano, K., Grunig, E., Yan, Y., Jing, Z.C., Manes, A., Palazzini, M., Wheeler, L.A., Nakayama, I., Satoh, T., Eichstaedt, C., Hinderhofer, K., Wolf, M., Rosenzweig, E.B., Chung, W.K., Soubrier, F., Simonneau, G., Sitbon, O., Graf, S., Kaptoge, S., Di Angelantonio, E., Humbert, M., andMorrell, N.W. (2016). BMPR2 mutations and survival in pulmonary arterial hypertension : an individual participant data meta-analysis. Lancet Respir Med, 4, 129-137. [CrossRef] [Google Scholar]
  • Eyries, M., Montani, D., Girerd, B., Perret, C., Leroy, A., Lonjou, C., Chelghoum, N., Coulet, F., Bonnet, D., Dorfmuller, P., Fadel, E., Sitbon, O., Simonneau, G., Tregouet, D.A., Humbert, M., andSoubrier, F. (2014). EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet, 46, 65-69. [CrossRef] [PubMed] [Google Scholar]
  • Fadel, E., Mercier, O., Mussot, S., Leroy-Ladurie, F., Cerrina, J., Chapelier, A., Simonneau, G., andDartevelle, P. (2010). Long-term outcome of double-lung and heart-lung transplantation for pulmonary hypertension : a comparative retrospective study of 219 patients. Eur J Cardiothorac Surg, 38, 277-284. [Google Scholar]
  • Freund-Michel, V., Cardoso Dos Santos, M., Guignabert, C., Montani, D., Phan, C., Coste, F., Tu, L., Dubois, M., Girerd, B., Courtois, A., Humbert, M., Savineau, J.P., Marthan, R., andMuller, B. (2015). Role of Nerve Growth Factor in Development and Persistence of Experimental Pulmonary Hypertension. Am J Respir Crit Care Med, 192, 342-355. [CrossRef] [PubMed] [Google Scholar]
  • Frid, M.G., Kale, V.A., andStenmark, K.R. (2002). Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation : in vitro analysis. Circ Res, 90, 1189-1196. [CrossRef] [PubMed] [Google Scholar]
  • Galiè, N., Humbert, M., Vachiery, J.L., Gibbs, S., Lang, I., Torbicki, A., Simonneau, G., Peacock, A., Vonk Noordegraaf, A., Beghetti, M., Ghofrani, A., Gomez Sanchez, M.A., Hansmann, G., Klepetko, W., Lancellotti, P., Matucci, M., McDonagh, T., Pierard, L.A., Trindade, P.T., Zompatori, M., andHoeper, M. (2015). 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension : The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS) : Endorsed by : Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J, 46, 903-975. [CrossRef] [PubMed] [Google Scholar]
  • George, J., Sun, and J., D’Armiento, J. (2012). Transgenic expression of human matrix metalloproteinase-1 attenuates pulmonary arterial hypertension in mice. Clin Sci (Lond), 122, 83-92. [CrossRef] [PubMed] [Google Scholar]
  • Good, R.B., Gilbane, A.J., Trinder, S.L., Denton, C.P., Coghlan, G., Abraham, D.J., andHolmes, A.M. (2015). Endothelial to Mesenchymal Transition Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am J Pathol, 185, 1850-1858. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Guignabert, C., Raffestin, B., Benferhat, R., Raoul, W., Zadigue, P., Rideau, D., Hamon, M., Adnot, S., andEddahibi, S. (2005). Serotonin transporter inhibition prevents and reverses monocrotaline-induced pulmonary hypertension in rats. Circulation, 111, 2812-2819. [CrossRef] [PubMed] [Google Scholar]
  • Guignabert, C., Tu, L., Izikki, M., Dewachter, L., Zadigue, P., Humbert, M., Adnot, S., Fadel, E., andEddahibi, S. (2009). Dichloroacetate treatment partially regresses established pulmonary hypertension in mice with SM22alpha-targeted overexpression of the serotonin transporter. FASEB J, 23, 4135-4147. [CrossRef] [PubMed] [Google Scholar]
  • Guignabert, C. andDorfmuller, P. (2013a). Pathology and pathobiology of pulmonary hypertension. Semin Respir Crit Care Med, 34, 551-559. [CrossRef] [PubMed] [Google Scholar]
  • Guignabert, C., Tu, L., Le Hiress, M., Ricard, N., Sattler, C., Seferian, A., Huertas, A., Humbert, M., andMontani, D. (2013b). Pathogenesis of pulmonary arterial hypertension : lessons from cancer. Eur Respir Rev, 22, 543-551. [CrossRef] [PubMed] [Google Scholar]
  • Guignabert, C., Tu, L., Girerd, B., Ricard, N., Huertas, A., Montani, D., andHumbert, M. (2015). New molecular targets of pulmonary vascular remodeling in pulmonary arterial hypertension : importance of endothelial communication. Chest, 147, 529-537. [CrossRef] [PubMed] [Google Scholar]
  • Huertas, A., Tu, L., Gambaryan, N., Girerd, B., Perros, F., Montani, D., Fabre, D., Fadel, E., Eddahibi, S., Cohen-Kaminsky, S., Guignabert, C., andHumbert, M. (2012). Leptin and regulatory T-lymphocytes in idiopathic pulmonary arterial hypertension. Eur Respir J, 40, 895-904. [CrossRef] [PubMed] [Google Scholar]
  • Huertas, A., Perros, F., Tu, L., Cohen-Kaminsky, S., Montani, D., Dorfmuller, P., Guignabert, C., andHumbert, M. (2014). Immune dysregulation and endothelial dysfunction in pulmonary arterial hypertension : a complex interplay. Circulation, 129, 1332-1340. [CrossRef] [PubMed] [Google Scholar]
  • Huertas, A., Tu, L., Thuillet, R., Le Hiress, M., Phan, C., Ricard, N., Nadaud, S., Fadel, E., Humbert, M., andGuignabert, C. (2015). Leptin signalling system as a target for pulmonary arterial hypertension therapy. Eur Respir J, 45, 1066-1080. [CrossRef] [PubMed] [Google Scholar]
  • Huertas, A., Phan, C., Bordenave, J., Tu, L., Thuillet, R., Le Hiress, M., Avouac, J., Tamura, Y., Allanore, Y., Jovan, R., Sitbon, O., Guignabert, C., and Humbert, M. (2016). Regulatory T cell dysfunction in idiopathic, heritable and connective tissue-associated pulmonary arterial hypertension. Chest. [Google Scholar]
  • Humbert, M., Monti, G., Brenot, F., Sitbon, O., Portier, A., Grangeot-Keros, L., Duroux, P., Galanaud, P., Simonneau, G., andEmilie, D. (1995). Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med, 151, 1628-1631. [CrossRef] [PubMed] [Google Scholar]
  • Humbert, M., Morrell, N.W., Archer, S.L., Stenmark, K.R., MacLean, M.R., Lang, I.M., Christman, B.W., Weir, E.K., Eickelberg, O., Voelkel, N.F., andRabinovitch, M. (2004). Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol, 43, 13S-24S. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Humbert, M., Sitbon, O., Chaouat, A., Bertocchi, M., Habib, G., Gressin, V., Yaici, A., Weitzenblum, E., Cordier, J.F., Chabot, F., Dromer, C., Pison, C., Reynaud-Gaubert, M., Haloun, A., Laurent, M., Hachulla, E., andSimonneau, G. (2006). Pulmonary arterial hypertension in France : results from a national registry. Am J Respir Crit Care Med, 173, 1023-1030. [CrossRef] [PubMed] [Google Scholar]
  • Humbert, M., Sitbon, O., Chaouat, A., Bertocchi, M., Habib, G., Gressin, V., Yaici, A., Weitzenblum, E., Cordier, J.F., Chabot, F., Dromer, C., Pison, C., Reynaud-Gaubert, M., Haloun, A., Laurent, M., Hachulla, E., Cottin, V., Degano, B., Jais, X., Montani, D., Souza, R., andSimonneau, G. (2010a). Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation, 122, 156-163. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Humbert, M., Sitbon, O., Yaici, A., Montani, D., O’Callaghan, D.S., Jais, X., Parent, F., Savale, L., Natali, D., Gunther, S., Chaouat, A., Chabot, F., Cordier, J.F., Habib, G., Gressin, V., Jing, Z.C., Souza, R., and Simonneau, G., French Pulmonary Arterial Hypertension Network (2010b). Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. Eur Respir J, 36, 549-555. [CrossRef] [PubMed] [Google Scholar]
  • International PPH consortium, Lane, K.B., Machado, R.D., Pauciulo, M.W., Thomson, J.R., Phillips, J.A., 3rd, Loyd, J.E., Nichols, W.C., andTrembath, R.C. (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet, 26, 81-4. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Izikki, M., Guignabert, C., Fadel, E., Humbert, M., Tu, L., Zadigue, P., Dartevelle, P., Simonneau, G., Adnot, S., Maitre, B., Raffestin, B., andEddahibi, S. (2009). Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents. J Clin Invest, 119, 512-523. [CrossRef] [PubMed] [Google Scholar]
  • Jones, P.L. andRabinovitch, M. (1996). Tenascin-C is induced with progressive pulmonary vascular disease in rats and is functionally related to increased smooth muscle cell proliferation. Circ Res, 79, 1131-1142. [CrossRef] [PubMed] [Google Scholar]
  • Jones, P.L., Cowan, K.N., andRabinovitch, M. (1997). Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease. Am J Pathol, 150, 1349-1360. [PubMed] [Google Scholar]
  • Kim, Y.M., Haghighat, L., Spiekerkoetter, E., Sawada, H., Alvira, C.M., Wang, L., Acharya, S., Rodriguez-Colon, G., Orton, A., Zhao, M., andRabinovitch, M. (2011). Neutrophil elastase is produced by pulmonary artery smooth muscle cells and is linked to neointimal lesions. Am J Pathol, 179, 1560-1572. [CrossRef] [PubMed] [Google Scholar]
  • Kwapiszewska, G., Markart, P., Dahal, B.K., Kojonazarov, B., Marsh, L.M., Schermuly, R.T., Taube, C., Meinhardt, A., Ghofrani, H.A., Steinhoff, M., Seeger, W., Preissner, K.T., Olschewski, A., Weissmann, N., andWygrecka, M. (2012). PAR-2 inhibition reverses experimental pulmonary hypertension. Circ Res, 110, 1179-1191. [CrossRef] [PubMed] [Google Scholar]
  • Larkin, E.K., Newman, J.H., Austin, E.D., Hemnes, A.R., Wheeler, L., Robbins, I.M., West, J.D., Phillips, J.A., 3rd, Hamid, R., andLoyd, J. E. (2012). Longitudinal analysis casts doubt on the presence of genetic anticipation in heritable pulmonary arterial hypertension. Am J Respir Crit Care Med, 186, 892-896. [CrossRef] [PubMed] [Google Scholar]
  • Le Hiress, M., Tu, L., Ricard, N., Phan, C., Thuillet, R., Fadel, E., Dorfmuller, P., Montani, D., de Man, F., Humbert, M., Huertas, A., andGuignabert, C. (2015). Proinflammatory Signature of the Dysfunctional Endothelium in Pulmonary Hypertension. Role of the Macrophage Migration Inhibitory Factor/CD74 Complex. Am J Respir Crit Care Med, 192, 9839-97. [CrossRef] [PubMed] [Google Scholar]
  • Lepetit, H., Eddahibi, S., Fadel, E., Frisdal, E., Munaut, C., Noel, A., Humbert, M., Adnot, S., D’Ortho, M.P., andLafuma, C. (2005). Smooth muscle cell matrix metalloproteinases in idiopathic pulmonary arterial hypertension. Eur Respir J, 25, 834-842. [CrossRef] [PubMed] [Google Scholar]
  • Long, L., Ormiston, M.L., Yang, X., Southwood, M., Graf, S., Machado, R. D., Mueller, M., Kinzel, B., Yung, L.M., Wilkinson, J.M., Moore, S.D., Drake, K.M., Aldred, M.A., Yu, P.B., Upton, P.D., andMorrell, N.W. (2015). Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med, 21, 777-785. [CrossRef] [PubMed] [Google Scholar]
  • Ma, L., Roman-Campos, D., Austin, E.D., Eyries, M., Sampson, K.S., Soubrier, F., Germain, M., Tregouet, D.A., Borczuk, A., Rosenzweig, E.B., Girerd, B., Montani, D., Humbert, M., Loyd, J.E., Kass, R.S., andChung, W.K. (2013). A novel channelopathy in pulmonary arterial hypertension. N Engl J Med, 369, 351-361. [CrossRef] [PubMed] [Google Scholar]
  • Mandegar, M., Fung, Y.C., Huang, W., Remillard, C.V., Rubin, L.J., andYuan, J.X. (2004). Cellular and molecular mechanisms of pulmonary vascular remodeling : role in the development of pulmonary hypertension. Microvasc Res, 68, 75-103. [CrossRef] [Google Scholar]
  • McMurtry, M.S., Bonnet, S., Wu, X., Dyck, J.R., Haromy, A., Hashimoto, K., andMichelakis, E.D. (2004). Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res, 95, 830-840. [CrossRef] [PubMed] [Google Scholar]
  • Meyrick, B. andReid, L. (1980). Ultrastructural findings in lung biopsy material from children with congenital heart defects. Am J Pathol, 101, 527-542. [PubMed] [Google Scholar]
  • Michelakis, E.D., McMurtry, M.S., Wu, X.C., Dyck, J.R., Moudgil, R., Hopkins, T.A., Lopaschuk, G.D., Puttagunta, L., Waite, R., andArcher, S. L. (2002). Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats : role of increased expression and activity of voltage-gated potassium channels. Circulation, 105, 244-250. [CrossRef] [PubMed] [Google Scholar]
  • Montani, D., Humbert, M., andSouza, R. (2011). Letter by Montani et al. regarding article, “Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension”. Circulation, 123, e614, author reply e615. [CrossRef] [PubMed] [Google Scholar]
  • Morrell, N.W., Adnot, S., Archer, S.L., Dupuis, J., Jones, P.L., MacLean, M.R., McMurtry, I.F., Stenmark, K.R., Thistlethwaite, P.A., Weissmann, N., Yuan, J.X., andWeir, E.K. (2009). Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol, 54, S20-31. [CrossRef] [PubMed] [Google Scholar]
  • Morrell, N.W., Bloch, D.B., Ten Dijke, P., Goumans, M.J., Hata, A., Smith, J., Yu, P.B., andBloch, K.D. (2016). Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol, 13, 106-120. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • O’Callaghan, D.S., Savale, L., Montani, D., Jais, X., Sitbon, O., Simonneau, G., andHumbert, M. (2011). Treatment of pulmonary arterial hypertension with targeted therapies. Nat Rev Cardiol, 8, 526-538. [CrossRef] [PubMed] [Google Scholar]
  • Ormiston, M.L., Chang, C., Long, L.L., Soon, E., Jones, D., Machado, R., Treacy, C., Toshner, M.R., Campbell, K., Riding, A., Southwood, M., Pepke-Zaba, J., Exley, A., Trembath, R.C., Colucci, F., Wills, M., Trowsdale, J., andMorrell, N.W. (2012). Impaired natural killer cell phenotype and function in idiopathic and heritable pulmonary arterial hypertension. Circulation, 126, 1099-1109. [CrossRef] [PubMed] [Google Scholar]
  • Patel, A.J., Honore, E., Lesage, F., Fink, M., Romey, G., andLazdunski, M. (1999). Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci, 2, 422-426. [CrossRef] [PubMed] [Google Scholar]
  • Perros, F., Cohen-Kaminsky, S., Gambaryan, N., Girerd, B., Raymond, N., Klingelschmitt, I., Huertas, A., Mercier, O., Fadel, E., Simonneau, G., Humbert, M., Dorfmuller, P., andMontani, D. (2013). Cytotoxic cells and granulysin in pulmonary arterial hypertension and pulmonary veno-occlusive disease. Am J Respir Crit Care Med, 187, 189-196. [CrossRef] [PubMed] [Google Scholar]
  • Qiao, L., Nishimura, T., Shi, L., Sessions, D., Thrasher, A., Trudell, J. R., Berry, G.J., Pearl, R.G., Kao, P.N. (2014). Endothelial fate mapping in mice with pulmonary hypertension. Circulation, 129, 692-703. [CrossRef] [PubMed] [Google Scholar]
  • Rabinovitch, M. (2001). Pathobiology of pulmonary hypertension. Extracellular matrix. Clin Chest Med, 22, 433-49, viii. [CrossRef] [PubMed] [Google Scholar]
  • Rabinovitch, M. (2005). Cellular and molecular pathobiology of pulmonary hypertension conference summary. Chest, 128, 642S-646S. [CrossRef] [PubMed] [Google Scholar]
  • Rabinovitch, M. (2008). Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest, 118, 2372-2379. [CrossRef] [PubMed] [Google Scholar]
  • Rabinovitch, M., Guignabert, C., Humbert, M., andNicolls, M.R. (2014). Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res, 115, 165-175. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Ranchoux, B., Antigny, F., Rucker-Martin, C., Hautefort, A., Pechoux, C., Bogaard, H.J., Dorfmuller, P., Remy, S., Lecerf, F., Plante, S., Chat, S., Fadel, E., Houssaini, A., Anegon, I., Adnot, S., Simonneau, G., Humbert, M., Cohen-Kaminsky, S., andPerros, F. (2015). Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation, 131, 1006-1018. [CrossRef] [PubMed] [Google Scholar]
  • Ricard, N., Tu, L., Le Hiress, M., Huertas, A., Phan, C., Thuillet, R., Sattler, C., Fadel, E., Seferian, A., Montani, D., Dorfmuller, P., Humbert, M., andGuignabert, C. (2014). Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation, 129, 1586-1597. [CrossRef] [PubMed] [Google Scholar]
  • Rubin, L.J. (1999). Cellular and molecular mechanisms responsible for the pathogenesis of primary pulmonary hypertension. Pediatr Pulmonol Suppl, 18, 194-197. [CrossRef] [PubMed] [Google Scholar]
  • Sanchez, O., Marcos, E., Perros, F., Fadel, E., Tu, L., Humbert, M., Dartevelle, P., Simonneau, G., Adnot, S., andEddahibi, S. (2007). Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med, 176, 1041-1047. [CrossRef] [PubMed] [Google Scholar]
  • Savale, L., Tu, L., Rideau, D., Izziki, M., Maitre, B., Adnot, S., and Eddahibi, S. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. (2009). Respir Res, 10, 6. [Google Scholar]
  • Sawada, H., Saito, T., Nickel, N.P., Alastalo, T.P., Glotzbach, J.P., Chan, R., Haghighat, L., Fuchs, G., Januszyk, M., Cao, A., Lai, Y.J., Perez Vde, J., Kim, Y.M., Wang, L., Chen, P.I., Spiekerkoetter, E., Mitani, Y., Gurtner, G.C., Sarnow, P., andRabinovitch, M. (2014). Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension. J Exp Med, 211, 263-280. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Schober, A., Bernhagen, J., andWeber, C. (2008). Chemokine-like functions of MIF in atherosclerosis. J Mol Med (Berl), 86, 761-770. [CrossRef] [PubMed] [Google Scholar]
  • Seferian, A., Chaumais, M.C., Savale, L., Gunther, S., Tubert-Bitter, P., Humbert, and M.,Montani, D. (2013). Drugs induced pulmonary arterial hypertension. Presse Med, 42, e303-10. [CrossRef] [PubMed] [Google Scholar]
  • Sheikh, A.Q., Misra, A., Rosas, I.O., Adams, R.H., andGreif, D.M. (2015). Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension. Sci Transl Med, 7, 308ra159. [CrossRef] [Google Scholar]
  • Simonneau, G., Gatzoulis, M.A., Adatia, I., Celermajer, D., Denton, C., Ghofrani, A., Gomez Sanchez, M.A., Krishna Kumar, R., Landzberg, M., Machado, R.F., Olschewski, H., Robbins, I.M., andSouza, R. (2013). Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol, 62, D34-41. [CrossRef] [PubMed] [Google Scholar]
  • Sobolewski, A., Rudarakanchana, N., Upton, P.D., Yang, J., Crilley, T.K., Trembath, R.C., andMorrell, N.W. (2008). Failure of bone morphogenetic protein receptor trafficking in pulmonary arterial hypertension : potential for rescue. Hum Mol Genet, 17, 3180-3190. [CrossRef] [PubMed] [Google Scholar]
  • Soon, E., Holmes, A.M., Treacy, C.M., Doughty, N.J., Southgate, L., Machado, R.D., Trembath, R.C., Jennings, S., Barker, L., Nicklin, P., Walker, C., Budd, D.C., Pepke-Zaba, J., andMorrell, N.W. (2010). Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation, 122, 920-927. [CrossRef] [PubMed] [Google Scholar]
  • Spiekerkoetter, E., Tian, X., Cai, J., Hopper, R.K., Sudheendra, D., Li, C. G., El-Bizri, N., Sawada, H., Haghighat, R., Chan, R., Haghighat, L., de Jesus Perez, V., Wang, L., Reddy, S., Zhao, M., Bernstein, D., Solow-Cordero, D.E., Beachy, P.A., Wandless, T.J., Ten Dijke, P., and Rabinovitch, M. (2013). FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest, 123, 3600-3613. [CrossRef] [PubMed] [Google Scholar]
  • Stacher, E., Graham, B.B., Hunt, J.M., Gandjeva, A., Groshong, S.D., McLaughlin, V.V., Jessup, M., Grizzle, W.E., Aldred, M.A., Cool, C.D., andTuder, R.M. (2012). Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med, 186, 261-272. [CrossRef] [PubMed] [Google Scholar]
  • Thenappan, T., Goel, A., Marsboom, G., Fang, Y.H., Toth, P.T., Zhang, H. J., Kajimoto, H., Hong, Z., Paul, J., Wietholt, C., Pogoriler, J., Piao, L., Rehman, J., andArcher, S.L. (2011). A central role for CD68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion. Am J Respir Crit Care Med, 183, 1080-1091. [CrossRef] [PubMed] [Google Scholar]
  • Tian, W., Jiang, X., Tamosiuniene, R., Sung, Y.K., Qian, J., Dhillon, G., Gera, L., Farkas, L., Rabinovitch, M., Zamanian, R.T., Inayathullah, M., Fridlib, M., Rajadas, J., Peters-Golden, M., Voelkel, N.F., andNicolls, M. R. (2013). Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med, 5, 200ra117. [CrossRef] [Google Scholar]
  • Tu, L., Dewachter, L., Gore, B., Fadel, E., Dartevelle, P., Simonneau, G., Humbert, M., Eddahibi, S., andGuignabert, C. (2011). Autocrine fibroblast growth factor-2 signaling contributes to altered endothelial phenotype in pulmonary hypertension. Am J Respir Cell Mol Biol, 45, 311-322. [CrossRef] [PubMed] [Google Scholar]
  • Tu, L., De Man, F.S., Girerd, B., Huertas, A., Chaumais, M.C., Lecerf, F., François, C., Perros, F., Dorfmuller, P., Fadel, E., Montani, D., Eddahibi, S., Humbert, and M., Guignabert, C. (2012). A critical role for p130Cas in the progression of pulmonary hypertension in humans and rodents. Am J Respir Crit Care Med, 186, 666-76. [CrossRef] [PubMed] [Google Scholar]
  • Tu, L. and Guignabert, C. Emerging Molecular Targets for Anti-proliferative Strategies in Pulmonary Arterial Hypertension. (2013). Handb Exp Pharmacol, 218, 409-436. [CrossRef] [PubMed] [Google Scholar]
  • Vieillard-Baron, A., Frisdal, E., Raffestin, B., Baker, A.H., Eddahibi, S., Adnot, S., and D’Ortho, M.P. (2003). Inhibition of matrix metalloproteinases by lung TIMP-1 gene transfer limits monocrotaline-induced pulmonary vascular remodeling in rats. Hum Gene Ther, 14, 861-869. [CrossRef] [PubMed] [Google Scholar]
  • Voelkel, N.F. andTuder, R.M. (1995). Cellular and molecular mechanisms in the pathogenesis of severe pulmonary hypertension. Eur Respir J, 8, 2129-2138. [CrossRef] [PubMed] [Google Scholar]
  • Voelkel, N.F. andTuder, R.M. (1997). Cellular and molecular biology of vascular smooth muscle cells in pulmonary hypertension. Pulm Pharmacol Ther, 10, 231-241. [CrossRef] [PubMed] [Google Scholar]
  • Wei, L., Warburton, R.R., Preston, I.R., Roberts, K.E., Comhair, S.A., Erzurum, S.C., Hill, N.S., andFanburg, B.L. (2012). Serotonylated fibronectin is elevated in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 302, L1273-L1279. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, B., Shen, M., Xu, M., Liu, L.L., Luo, Y., Xu, D.Q., Wang, Y.X., Liu, M.L., Liu, Y., Dong, H.Y., Zhao, P.T., and Li, Z.C. (2012a). Role of macrophage migration inhibitory factor in the proliferation of smooth muscle cell in pulmonary hypertension. Mediators Inflamm, 840737. [Google Scholar]
  • Zhang, B., Luo, Y., Liu, M.L., Wang, J., Xu, D.Q., Dong, M.Q., Liu, Y., Xu, M., Dong, H.Y., Zhao, P.T., Gao, Y.Q., andLi, Z.C. (2012b). Macrophage migration inhibitory factor contributes to hypoxic pulmonary vasoconstriction in rats. Microvasc Res, 83, 205-212. [CrossRef] [Google Scholar]
  • Zhang, Y., Talwar, A., Tsang, D., Bruchfeld, A., Sadoughi, A., Hu, M., Omonuwa, K., Cheng, K.F., Al-Abed, Y., andMiller, E.J. (2012). Macrophage migration inhibitory factor mediates hypoxia-induced pulmonary hypertension. Mol Med, 18, 215-223. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.