Accès gratuit
Biologie Aujourd'hui
Volume 210, Numéro 2, 2016
Page(s) 79 - 88
Section L’hypertension artérielle pulmonaire : avancées thérapeutiques
Publié en ligne 30 septembre 2016
  • Amireault, P., Hatia, S., Bayard, E., Bernex, F., Collet, C., Callebert, J., Launay, J.-M., Hermine, O., Schneider, E., Mallet, J., Dy, M., and Côté, F. (2011). Ineffective erythropoiesis with reduced red blood cell survival in serotonin-deficient mice. Proc Natl Acad Sci USA, 108, 13141-13146. [CrossRef] [Google Scholar]
  • Archer, S.L., Weir, E.K., and Wilkins, M.R. (2010). Basic Science of Pulmonary Arterial Hypertension for Clinicians : New Concepts and Experimental Therapies. Circulation, 121, 2045-2066. [CrossRef] [PubMed] [Google Scholar]
  • Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., and Isner, J.M. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964-967. [CrossRef] [PubMed] [Google Scholar]
  • Asosingh, K., Aldred, M.A., Vasanji, A., Drazba, J., Sharp, J., Farver, C., Comhair, S.A.A., Xu, W., Licina, L., Huang, L., Anand-Apte, B., Yoder, M. C., Tuder, R.M., and Erzurum, S.C. (2008). Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. Am J Pathol, 172, 615-627. [CrossRef] [PubMed] [Google Scholar]
  • Bailey, A.S., Willenbring, H., Jiang, S., Anderson, D.A., Schroeder, D. A., Wong, M.H., Grompe, M., and Fleming, W.H. (2006). Myeloid lineage progenitors give rise to vascular endothelium. Proc Natl Acad Sci USA, 103, 13156-13161. [CrossRef] [Google Scholar]
  • Battinelli, E., and Loscalzo, J. (2000). Nitric oxide induces apoptosis in megakaryocytic cell lines. Blood, 95, 3451-3459. [PubMed] [Google Scholar]
  • Chambers, C.D., Hernandez-Diaz, S., Van Marter, L.J., Werler, M.M., Louik, C., Jones, K.L., and Mitchell, A.A. (2006). Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N Engl J Med, 354, 579-587. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Chan, S.Y., and Loscalzo, J. (2008). Pathogenic mechanisms of pulmonary arterial hypertension. J Mol Cell Cardiol, 44, 14-30. [CrossRef] [PubMed] [Google Scholar]
  • Davie, N.J., Crossno, J.T., Frid, M.G., Hofmeister, S.E., Reeves, J.T., Hyde, D.M., Carpenter, T.C., Brunetti, J.A., McNiece, I.K., and Stenmark, K.R. (2004). Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization : contribution of progenitor cells. Am J Physiol Lung Cell Mol Physiol, 286, L668-678. [CrossRef] [PubMed] [Google Scholar]
  • De Clerck, F., Xhonneux, B., Leysen, J., and Janssen, P.A. (1984). Evidence for functional 5-HT2 receptor sites on human blood platelets. Biochem Pharmacol, 33, 2807-2811. [CrossRef] [PubMed] [Google Scholar]
  • Diller, G.-P., Thum, T., Wilkins, M.R., and Wharton, J. (2010). Endothelial progenitor cells in pulmonary arterial hypertension. Trends Cardiovasc Med, 20, 22-29. [CrossRef] [PubMed] [Google Scholar]
  • Dumitrascu, R., Kulcke, C., Königshoff, M., Kouri, F., Yang, X., Morrell, N., Ghofrani, H.A., Weissmann, N., Reiter, R., Seeger, W., Grimminger, F., Eickelberg, O., Schermuly, R.T., and Pullamsetti, S.S. (2011). Terguride ameliorates monocrotaline-induced pulmonary hypertension in rats. Eur Respir J, 37, 1104-1118. [CrossRef] [PubMed] [Google Scholar]
  • Farha, S., Asosingh, K., Xu, W., Sharp, J., George, D., Comhair, S., Park, M., Tang, W.H.W., Loyd, J.E., Theil, K., Tubbs, R., Hsi, E., Lichtin, A., and Erzurum, S.C. (2011). Hypoxia-inducible factors in human pulmonary arterial hypertension : a link to the intrinsic myeloid abnormalities. Blood, 117, 3485-3493. [CrossRef] [PubMed] [Google Scholar]
  • Frid, M.G., Brunetti, J.A., Burke, D.L., Carpenter, T.C., Davie, N.J., Reeves, J.T., Roedersheimer, M.T., van Rooijen, N., and Stenmark, K.R. (2006). Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol, 168, 659-669. [CrossRef] [PubMed] [Google Scholar]
  • Guillet-Deniau, I., Burnol, A.F., and Girard, J. (1997). Identification and localization of a skeletal muscle serotonin 5-HT2A receptor coupled to the Jak/STAT pathway. J Biol Chem, 272, 14825-14829. [CrossRef] [PubMed] [Google Scholar]
  • Hayashida, K., Fujita, J., Miyake, Y., Kawada, H., Ando, K., Ogawa, S., and Fukuda, K. (2005). Bone marrow-derived cells contribute to pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension. Chest, 127, 1793-1798. [CrossRef] [PubMed] [Google Scholar]
  • Hervé, P., Launay, J.M., Scrobohaci, M.L., Brenot, F., Simonneau, G., Petitpretz, P., Poubeau, P., Cerrina, J., Duroux, P., and Drouet, L. (1995). Increased plasma serotonin in primary pulmonary hypertension. Am J Med, 99, 249-254. [CrossRef] [PubMed] [Google Scholar]
  • Hoyer, D., Fozard, J.R., Saxena, P.R., Mylecharane, E.J., Clarke, D.E., Martin, G.R., and Humphrey, P.P.A. (1994). IUPHAR classification of receptors for 5-Hydroxy-tryptamine (serotonin). Pharmacol Rev, 46, 157-203. [PubMed] [Google Scholar]
  • Kéreveur, A., Callebert, J., Humbert, M., Hervé, P., Simonneau, G., Launay, J.M., and Drouet, L. (2000). High plasma serotonin levels in primary pulmonary hypertension : effect of long-term epoprostenol (Prostacyclin) therapy. Arterioscler Thromb Vasc Biol, 20, 2233-2239. [CrossRef] [PubMed] [Google Scholar]
  • Launay, J.M., Hervé, P., Peoc’h, K., Tournois, C., Callebert, J., Nebigil, C., Etienne, N., Drouet, L., Humbert, M., Simonneau, G., and Maroteaux, L. (2002). Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med, 8, 1129-1135. [CrossRef] [PubMed] [Google Scholar]
  • Launay, J.-M., Hervé, P., Callebert, J., Mallat, Z., Collet, C., Doly, S., Belmer, A., Diaz, S.L., Hatia, S., Côté, F., Humbert, M., and Maroteaux, L. (2012). Serotonin 5-HT2B receptors are required for bone-marrow contribution to pulmonary arterial hypertension. Blood, 119, 1772-1780. [CrossRef] [PubMed] [Google Scholar]
  • Limsuwan, A., Pakakasama, S., Rochanawutanon, M., and Hong-Eng, S. (2006). Pulmonary arterial hypertension after childhood cancer therapy and bone marrow transplantation. Cardiology, 105, 188-194. [CrossRef] [PubMed] [Google Scholar]
  • Liu, Y.S., and Yang, M. (2006). The effect of 5-hydroxtryptamine on the regulation of megakaryocytopoiesis. Hematology, 11, 53-56. [CrossRef] [PubMed] [Google Scholar]
  • Liu, Y., Wei, L., Laskin, D.L., and Fanburg, B.L. (2011). Role of protein transamidation in serotonin-induced proliferation and migration of pulmonary artery smooth muscle cells. Am J Resp Cell Mol Biol, 44, 548-555. [CrossRef] [Google Scholar]
  • Long, L., MacLean, M.R., Jeffery, T.K., Morecroft, I., Yang, X., Rudarakanchana, N., Southwood, M., James, V., Trembath, R.C., and Morrell, N.W. (2006). Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ Res, 98, 818-827. [CrossRef] [PubMed] [Google Scholar]
  • Louis, W.J. (1999). Primary pulmonary hypertension and anorectic drugs. N Engl J Med, 340, 480-482. [CrossRef] [PubMed] [Google Scholar]
  • Marsboom, G., Pokreisz, P., Gheysens, O., Vermeersch, P., Gillijns, H., Pellens, M., Liu, X., Collen, D., and Janssens, S. (2008). Sustained endothelial progenitor cell dysfunction after chronic hypoxia-induced pulmonary hypertension. Stem Cells, 26, 1017-1026. [CrossRef] [PubMed] [Google Scholar]
  • Montani, D., Perros, F., Gambaryan, N., Girerd, B., Dorfmuller, P., Price, L.C., Huertas, A., Hammad, H., Lambrecht, B., Simonneau, G., Launay, J.-M., Cohen-Kaminsky, S., and Humbert, M. (2011). C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am J Resp Crit Care Med, 184, 116-123. [Google Scholar]
  • Morecroft, I., Dempsie, Y., Bader, M., Walther, D.J., Kotnik, K., Loughlin, L., Nilsen, M., and MacLean, M.R. (2007). Effect of tryptophan hydroxylase 1 deficiency on the development of hypoxia-induced pulmonary hypertension. Hypertension, 49, 232-236. [CrossRef] [PubMed] [Google Scholar]
  • Nebigil, C.G., Etienne, N., Messaddeq, N., and Maroteaux, L. (2003). Serotonin is a novel survival factor of cardiomyocytes : mitochondria as a target of 5-HT2B-receptor signaling. FASEB J, 17, 1373-1375. [PubMed] [Google Scholar]
  • Popat, U., Frost, A., Liu, E., Guan, Y., Durette, A., Reddy, V., and Prchal, J.T. (2006). High levels of circulating CD34 cells, dacrocytes, clonal hematopoiesis, and JAK2 mutation differentiate myelofibrosis with myeloid metaplasia from secondary myelofibrosis associated with pulmonary hypertension. Blood, 107, 3486-3488. [CrossRef] [PubMed] [Google Scholar]
  • Porvasnik, S.L., Germain, S., Embury, J., Gannon, K.S., Jacques, V., Murray, J., Byrne, B.J., Shacham, S., and Al-Mousily, F. (2010). PRX-08066, a novel 5-hydroxytryptamine receptor 2B antagonist, reduces monocrotaline-induced pulmonary arterial hypertension and right ventricular hypertrophy in rats. J Pharmacol Exp Ther, 334, 364-372. [CrossRef] [PubMed] [Google Scholar]
  • Rhodes, C.J., Davidson, A., Gibbs, J.S., Wharton, J., and Wilkins, M.R. (2009). Therapeutic targets in pulmonary arterial hypertension. Pharmacol Ther, 121, 69-88. [CrossRef] [PubMed] [Google Scholar]
  • Sata, M. (2006). Role of circulating vascular progenitors in angiogenesis, vascular healing, and pulmonary hypertension : lessons from animal models. Arterioscler Thromb Vasc Biol, 26, 1008-1014. [CrossRef] [PubMed] [Google Scholar]
  • Shimizu, K., Sugiyama, S., Aikawa, M., Fukumoto, Y., Rabkin, E., Libby, P., and Mitchell, R.N. (2001). Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic transplant arteriopathy. Nat Med, 7, 738-741. [CrossRef] [PubMed] [Google Scholar]
  • Stenmark, K.R., Fagan, K.A., and Frid, M.G. (2006). Hypoxia-induced pulmonary vascular remodeling : cellular and molecular mechanisms. Circ Res, 99, 675-691. [CrossRef] [PubMed] [Google Scholar]
  • Steward, C.G., Pellier, I., Mahajan, A., Ashworth, M.T., Stuart, A.G., Fasth, A., Lang, D., Fischer, A., Friedrich, W., and Schulz, A.S. (2004). Severe pulmonary hypertension : a frequent complication of stem cell transplantation for malignant infantile osteopetrosis. Br J Haematol, 124, 63-71. [CrossRef] [PubMed] [Google Scholar]
  • Thomas, D.P., and Vane, J.R. (1967). 5-hydroxytryptamine in the circulation of the dog. Nature, 216, 335-338. [CrossRef] [PubMed] [Google Scholar]
  • Thomas, M., Ciuclan, L., Hussey, M.J., and Press, N.J. (2013). Targeting the serotonin pathway for the treatment of pulmonary arterial hypertension. Pharm Ther, 138, 409-417. [CrossRef] [Google Scholar]
  • Toshner, M., and Morrell, N.W. (2010). Endothelial progenitor cells in pulmonary hypertension - dawn of cell-based therapy? Int J Clin Practice Supp, 64, 7-12. [CrossRef] [Google Scholar]
  • Toshner, M., Voswinckel, R., Southwood, M., Al-Lamki, R., Howard, L.S.G., Marchesan, D., Yang, J., Suntharalingam, J., Soon, E., Exley, A., Stewart, S., Hecker, M., Zhu, Z., Gehling, U., Seeger, W., Pepke-Zaba, J., and Morrell, N.W. (2009). Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Resp Crit Care Med, 180, 780-787. [CrossRef] [Google Scholar]
  • West, J.D., Carrier, E.J., Bloodworth, N.C., Schroer, A.K., Chen, P., Ryzhova, L.M., Gladson, S., Shay, S., Hutcheson, J.D., and Merryman, W.D. (2016). Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension. PloS One, 11, e0148657. [CrossRef] [PubMed] [Google Scholar]
  • Yan, L., Chen, X., Talati, M., Nunley, B.W., Gladson, S., Blackwell, T., Cogan, J., Austin, E., Wheeler, F., Loyd, J., West, J., and Hamid, R. (2015). Bone Marrow-derived Cells Contribute to Pathogenesis of Pulmonary Arterial Hypertension. Am J Resp Cri Care Med, sous presse. [Google Scholar]
  • Yang, M., Li, K., Ng, P.C., Chuen, C.K., Lau, T.K., Cheng, Y.S., Liu, Y.S., Li, C.K., Yuen, P.M., James, A.E., Lee, S.M., and Fok, T.F. (2007). Promoting effects of serotonin on hematopoiesis : ex vivo expansion of cord blood CD34+ stem/progenitor cells, proliferation of bone marrow stromal cells, and antiapoptosis. Stem Cells, 25, 1800-1806. [CrossRef] [PubMed] [Google Scholar]
  • Ye, J.Y., Liang, E.Y., Cheng, Y.S., Chan, G.C.F., Ding, Y., Meng, F., Ng, M.H.L., Chong, B.H., Lian, Q., and Yang, M. (2014). Serotonin Enhances Megakaryopoiesis and Proplatelet Formation via p-Erk1/2 and F-Actin Reorganization. Stem Cells, 32, 2973-2982. [CrossRef] [PubMed] [Google Scholar]
  • Yoder, M., and Rounds, S. (2011). Bad blood, bad endothelium : ill fate? Blood, 117, 3479-3480. [CrossRef] [PubMed] [Google Scholar]
  • Yu, Z., Ohba, M., Nakamura, M., Sasano, T., Ono, M., Sugawara, S., and Endo, Y. (2009). Dynamics of platelet mobilisation into lungs in response to 5-hydroxytryptamine (serotonin) in mice. Thromb Haemost, 102, 1251-1258. [PubMed] [Google Scholar]
  • Zopf, D.A., das Neves, L.A.A., Nikula, K.J., Huang, J., Senese, P.B., and Gralinski, M.R. (2011). C-122, a novel antagonist of serotonin receptor 5-HT(2B), prevents monocrotaline-induced pulmonary arterial hypertension in rats. Eur J Pharmacol, 670, 195-203. [CrossRef] [PubMed] [Google Scholar]
  • Zucker-Franklin, D., and Philipp, C.S. (2000). Platelet production in the pulmonary capillary bed : new ultrastructural evidence for an old concept. Am J Pathol, 157, 69-74. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.